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ABSTRACT 

 

Advanced Receiver Autonomous Integrity Monitoring is a 

concept that extends RAIM to multi-constellation and 

dual frequency that could provide worldwide coverage of 

vertical guidance [1], [2].  A baseline algorithm for the 

user receiver has been described in [3].  This baseline 

algorithm included the computation of the Protection 

Levels, the Effective Monitor Threshold, the accuracy, 

and a preliminary description of an exclusion algorithm.   

 

The objective of this paper is to develop a set of 

requirements for the exclusion algorithm (as there is for 

the computation of the Protection Levels) and to propose 

a baseline algorithm that fulfills these requirements, 

therefore attempting to complete the work started in [3]. 

 

 

INTRODUCTION 

 

The purpose of the exclusion function is to provide an 

integrity error bound and a position solution when a fault 

is detected, therefore increasing both availability and 

continuity.  Ideally, one would wish to simply exclude the 

satellite that seems to be causing the measurements to be 

inconsistent and compute a position solution and error 

bound as if that satellite had never been present (using for 

example the formulas described in [3]).  However, adding 

the exclusion option increases the overall exposure to an 

integrity fault, so that it must be accounted in the integrity 

risk assessment.  This can greatly complicate both the 

integrity analysis and the Protection Level calculation. 

 

The main objective of the exclusion algorithm presented 

here is that in the presence of an unambiguous fault, the 

protection level is the same as if the excluded satellite had 

not been included in the first place.  This constraint 

guarantees that the temporal behavior of the protection 

level is consistent, and that the Protection Level 

calculation after exclusion remains as simple as the all-in-

view Protection Level calculation.  We will show that this 

can be achieved through the use of exclusion confirmation 

tests.  This type of test was described in [3], and has 

already been exploited in previous Fault Detection and 

Exclusion algorithms (as in [6]).  A secondary objective 

of the approach proposed in this paper is to condition the 

integrity risk on the knowledge that exclusion has been 

performed, which means that a fault has probably 

occurred in a subset of satellites.  This is achieved by 

using a specific allocation of the integrity risk across the 

different exclusion modes.  In this paper we modify, 

simplify, and complete the approach introduced in [3]. 

 

We will first go through the requirements that must be 

fulfilled by the fault detection and exclusion algorithm as 

a whole.  Then we will describe the exclusion 

confirmation tests, which are the main tool used here to 

fulfill the requirements when exclusion is performed.  

After briefly describing the different steps of the ARAIM 

airborne algorithm, we will derive an integrity equation.  

Based on this integrity equation, we will describe how to 

set the thresholds and Protection Levels to fulfill the 

integrity equation. 

 

 

INTEGRITY REQUIREMENT 

 

The integrity requirement is a probability requirement, 

and is therefore dependent on what is supposed to be 

known when computing the probability.  In the integrity 

risk calculation done in RAIM and ARAIM, it is usually 

assumed that the probability of Hazardously Misleading 

Information is conditioned on the geometry of the 

satellites, the nominal error model, and the prior 

probabilities of fault.  When considering exclusion, a 

question arises: do we condition the integrity risk by the 

knowledge that exclusion has been performed or do we 

assume that it is an event to which we can assign a 

probability?  In the approach proposed here, we attempt to 

rigorously meet the integrity requirement considering 

exclusion as a random event.  That is, the probability of 

HMI is not conditioned on whether a certain fault has 

been excluded.  However, we will attempt to introduce a 

notion of conditional integrity through the choice of the 



integrity risk allocation across the different exclusion 

cases. 

 

 

CONTINUITY REQUIREMENT 

 

Continuity of service can be affected by flagged faults, 

satellites that go out of view (because of banking), or by 

faults detected by RAIM.  The algorithm described here 

will assume that continuity is mostly affected by the 

former reasons and not the latter one.  To further support 

this assumption, we consider the risk of a continuity 

failure due to a fault.  Let us consider the probability of 

onset of any fault Ponset, and the continuity exposure time 

Texposure. The probability that a pseudorange fault causes a 

detection (and attempted exclusion) is on the order of: 

 

 exposure exposuredetection during onsetP T P T  

 

Using a value of 4 x 10
-4

/hour for Ponset, and a Texposure of 

15s (defined in [5]), we get the estimate: 

 

  4 6

exposure

15
detection during 2 10 10

3600
P T      

 

This is well below the continuity risk requirement of 8 x 

10
-6

/15s.  Finally, as described in [1], the continuity 

requirement is a false alert requirement under fault free 

conditions.  This approach is consistent with the 

approaches taken in the integrity monitoring algorithms 

for SBAS. 

 

 

EXCLUSION CONFIRMATION TESTS 

 

The exclusion confirmation tests are designed to limit the 

probability that the exclusion process leads to a false 

exclusion.  The idea (already exploited in previous work, 

as in [6]) is to check whether excluding the fault source j 

is the only way to explain the large residuals.  In other 

words, we make sure that the probability of having large 

residuals due to threat i is unlikely.  This is done by going 

through all possible threats i.  For each threat i, a statistic 

independent of whether fault i is present is formed.   For a 

given threat i, the probability that these statistics exceed a 

certain threshold can be controlled through the choice of 

the threshold.  In the case of single faults, the exclusion 

confirmation test is simply that if we have a threshold test 

that doesn’t pass, it is only by removing one given 

satellite that we obtain a consistent set of measurements.  

The algorithm presented here generalizes this approach to 

multiple faults and links (what has been called in previous 

literature) the probability of false exclusion to the 

integrity requirement. 

 

 

PROPOSED EXCLUSION ALGORITHM 

 

In this section we describe the proposed fault detection 

and exclusion algorithm.  The notations of [3] are used.  

We will only describe process for the Vertical Protection 

Level. 

 

1) The solution separation statistics and thresholds 

are computed as indicated in [3]. 

 

2) If the solution separation statistics are within the 

thresholds, the all-in-view VPL, noted VPL0 is 

computed. 

 

3) If the threshold tests do not pass, the algorithm 

determines a subset such that: it is consistent (in 

the sense that the solution separation statistics 

are within the thresholds) and that there are no 

larger sets that are consistent. [3] shows that the 

determination can be done by computing the chi-

square statistic of the subsets that exclude each 

candidate (is is not necessary to go through all 

the solution separation statistics within the 

subsets).  Let us label j the fault mode that is 

excluded. The new position solution is labeled
 ˆ j

x . 

 

4) In this step, the confirmation test statistics are 

formed as follows.  For each fault mode i such 

that j is not included in i, we compute the 

residual: 

 
   
3 3

ˆ ˆij i
x x  

 

We compare it to a the residual Texcl,j,ij.  If for all 

i we have: 

 
   
3 3 , ,

ˆ ˆij i

excl j ijx x T   (1) 

 

Then the exclusion of fault j is said to be 

confirmed.  In this case the VPL, which we label 
C

jVPL , is computed.  In this case, the fault j is 

excluded for a period Tquarantine.  This constant is 

determined by the time it takes the ground 

segment to either, remove the fault, or flag it as 

unhealthy.  

 

  

5) If the confirmation test does not pass, we still 

exclude the fault but compute instead 
N

jVPL , and 

the fault is not quarantined (at the next time step, 

all satellites are included and tested). 



 

 

INTEGRITY EQUATION 

 

This section evaluates the integrity risk resulting from the 

algorithm described above.  As before, i is the index 

associated to each fault mode that is monitored, and j is 

the index associated to each fault source j that is excluded 

(for a method to determine faults to be monitored and the 

term Pnot monitored, refer to [3], although some notations 

have been lightened to improve readability): 

 

   

    _

,

,   excluded

,   excluded, fault 

j

not monitored

i j

P HMI P HMI j

P HMI P HMI j i P

 
  

 

 
  

 

   (2) 

 

In the next step we sort the indexes (i,j) in two groups. 

The first group contains the indexes such that fault j is not 

included in i.  The second group contains the indexes such 

that fault j is included in i (abusing notation, we will note 

this j i ).  For example, if i designates a fault in 

satellites 1 and 2, and j a fault in satellite 1, then (i,j) is in 

the second group.  

 

 

  
  

,

, /

, /

,   excluded, fault 

,  excluded, fault 

,  excluded, fault 

i j

i j j i

i j j i

P HMI j i

P HMI j i

P HMI j i





 
 

 



 

 (3) 

 

The event that we have HMI, that j is excluded, and that 

there is a fault in i is the union of two events.  This can be 

written:  

 

 
  

  

3 3

3 3

,   excluded, fault 

ˆ , , fault 

ˆ , , fault 

j C C

j j

j N N

j j

HMI j i

x x VPL y i

x x VPL y i



  

   

 (4) 

 
C

j is the region of the measurements y such that fault j is 

excluded and the confirmation tests pass. 
N

j is the region 

of the measurements y such that fault j is excluded but the 

confirmation tests don’t pass.  We therefore have: 

 

  
    

    

3 3

3 3 , ,3 3

3 3 3

ˆ , , fault 

ˆ , fault 

ˆ , fault 

j C C

j j

ij ijC

j j ij

j jC

j

x x VPL y i

x x VPL T b i

x x VPL b i

   

    
 
 
     
 

 

and 

  
    

    

3 3

3 3 , ,3 3

3 3 3

ˆ , , fault 

ˆ , fault 

ˆ , fault 

j N N

j j

ij ijN

j j ij

j jN

j

x x VPL y i

x x VPL T b i

x x VPL b i

   

    
 
 
     
 

 (5) 

 

As in Appendix H of [3], these inclusions assume that the 

effect of fault i on
 
3

ˆ j
x is a positive bias. 

 

 

Faults for which an exclusion test exists 

 

We first evaluate the first term (where the fault i is not 

included in j) of Equation (3).  We have the upper bound: 

 

  
  

, /

/

,  excluded, fault 

,  excluded, fault 

i j j i

j i j i

P HMI j i

P HMI j i








 (6) 

 

Each exclusion case j is not considered separately.  We 

have: 

 

 

 

 

,  excluded, fault 

,  excluded not confirmed, fault 

,  excluded confirmed, fault 

P HMI j i

P HMI j i

P HMI j i





 (7) 

 

We look at the first term in Equation (7): 

 

 
  3

,  excluded not confirmed, fault 

ˆ , , fault 
j N N

j j

P HMI j i

P x x VPL y i



  
 

 
  
      

3

3 3 3 , ,3

ˆ , , fault 

ˆ ˆ ˆ, , fault 

j N N

j j

j ij jN

j j ij

P x x VPL y i

P x x VPL x x T i

   

   

(8) 

 

These are the same conditions as Appendix H in [3], so 

we can write: 

 



 

   
3 , ,3 3

,

/

,  excluded not confirmed, fault 

2

i

j ijN N

j j j ij

fault i

i i jj ij
j i

P HMI j i

VPL b VPL T b
Q Q p

 




     
   
   
   




 

  (9) 

 

We do not need to consider in the sum the threats such 

that i is included in j, because they are accounted in the 

first term. 

 

For the second term of Equation (7), we have: 

 
  3 3

,  excluded confirmed, fault 

ˆ , , fault 
j C C

j j

P HMI j i

P x x VPL y i



  
  (10) 

  

Recalling the conditions under which the exclusion of 

fault j is said to be confirmed, we have: 

 

  
     

   

3 3

3 3 3 3 , ,3

3 3 , , ,3

ˆ , , fault 

ˆ ˆ ˆ, ,

ˆ ˆ , fault 

j C C

j j

j ij jC

j j ij

ij i

excl j ij

x x VPL y i

x x VPL x x T

x x T i

   

    
 
 

  
 

 (11) 

 

In particular we have: 

 
  
    

3 3

3 3 , , ,3

ˆ , , fault 

ˆ ˆ , fault 

j C C

j j

ij i

excl j ij

P x x VPL y i

P x x T i

   

 

  

 (12) 

The distribution of the residual 
   
3 3

ˆ ˆij i
x x is not affected 

by fault i, so we can write: 

 
  
    

3 3

3 3 , , ,3 ,

ˆ , , fault 

ˆ ˆ

j C C

j j

ij i

excl j ij fault i

P x x VPL y i

P x x T p

   

 

 (13) 

 

Let us assume that 
   
3 3

ˆ ˆij i
x x has a zero mean normal 

distribution with standard deviation: 

 

           , 2

,3 3 3

T
i ij ij i ij iT

ss acce S S C S S e     (14) 

 

For the definition of the different terms in this Equation, 

please refer to [3] (please see the Appendix for additional 

comments on this assumption).  We can write: 

 

    

, , ,3

3 3 ,,

,3

ˆ , , fault 
excl j ijj C C

j j fault ii ij

ss

T
P x x VPL y i Q p



 
     

 
 

   (15) 

 

Summing over the indices j, we obtain: 

 

 

 

/

, , ,3

,,
/ ,3

,  excluded confirmed, fault 

2

i j i

excl j ij

fault ii ij
i j i ss

P HMI j j

T
Q p









 
 
 
 




(16) 

 

 

Faults for which a confirmation test does not exist 

 

We now consider the second term in Equation (3).  For 

the pairs in this group we have j i , therefore: 

 
   ˆ ˆij i

x x  

As a consequence: 

 

  
    
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3 3 , ,3 3
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j
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   

    
 
 
     
 

 

and 

  
    
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j
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   

    
 
 
     
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 (17) 

 

We show in the Appendix that it is reasonable to assume 

that we have: 

 

, ,3 0 0, ,3

C

j j ij iVPL T VPL T    

and 

, ,3 0 0, ,3

N

j j ij iVPL T VPL T    (18) 

 

This is true for both the confirmed case and non-

confirmed case.  As a consequence we have: 

 

    
    

    

  

3 3 , ,3 3

3 3 0 0, ,3 3
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j j ij

i i

i
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j

x x VPL T b i
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    

    
 
 
     
 

  (19) 

 

From this point, we will neglect the probability of the 

event on the right hand side, as given the sign of the fault, 

it is much less likely than the left hand side (except for the 

case j=0). 

 



This implies that for all indices j such that j i  

(excluding j =0): 

 

  
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/

3 3 0 0, ,3 3

,  excluded, fault 

ˆ , fault 

j j i

i i

i

HMI j i

x x VPL T b i


 

   

 (20) 

And: 
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       

   





  (21) 

 

This is very useful: it shows that the probability of HMI 

due to fault i and all exclusion cases of j included in i is 

bounded by the term already included in the no exclusion 

case (as long as the inequalities (18) hold).  

 

Note: If we had not used the assumption that the effect of 

fault i on each subset solution has the same sign for each 

solution
 
3

ˆ j
x , we would have needed to add a factor of 2 

to each term of the sum in Equation (21). 

 

 

Final integrity equation 

 

The final integrity equation is then: 
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 
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

 

  t monitored

   (22) 

 

In the case where there are no confirmation tests, the 

equation becomes: 
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 



 

   (23) 

 

If in addition we made all the VPLs identical for each 

exclusion case, we would end up with an integrity 

equation very similar to the one described in [4]. 

 

 

Interpretation 

 

Equation (22) has three contributions.  The first one is: 

 

   0

0 0, ,3 30 3

,

0

2

i

i

fault i
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VPL T bVPL b
Q Q p

 
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  

   (24) 

 

It accounts for the all-in-view integrity risk as well as all 

the combinations of exclusion cases and threats for which 

there is no exclusion confirmation test. 

 

The second one is: 

 

   
3 , ,3 3

,

1 /

2

j ijN N

j j j ij

fault i

j i i jj ij
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 

    (25) 

 

It accounts for each exclusion case that has not been 

confirmed. 

 

The third one is: 

 

, , ,3

,,
/ ,3

2
excl j ij

fault ii ij
j i j i ss

T
Q p



 
 
 
 

  (26) 

 

It accounts for each confirmed exclusion case.  At first 

sight it might seem puzzling that 
C

jVPL does not appear in 

the equation.  However, this equation is only valid if the 

conditions (18) hold.  In addition, after a confirmed 

exclusion, and for consistency in the results, the VPL 

must be at least as large as it would be if the fault j had 

been flagged by a mechanism exterior to ARAIM. 

 

 

 

 



INTEGRITY BUDGET ALLOCATION 

 

In the previous section, we have seen which conditions 

must be fulfilled by VPL0, 
N

jVPL , 
C

jVPL  and the 

thresholds Texcl,i,ij,3 .  In this section we describe a practical 

way of determining them. To simplify the processing, we 

set as a constraint that the receiver should only need to 

compute the thresholds, standard deviations, and biases 

associated to exclusion j if j is actually excluded.  This 

means that the allocation across the different modes must 

be made independent of the geometry. 

 

 

Integrity allocation based on conditional integrity risk 

 

We rewrite the integrity equation as follows: 
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 not monitoredP

  (27) 

 

We can approximately say that the j
th

 term in this sum 

represents P(HMI, j excluded), that is, the probability that 

HMI occurs and j is excluded: 
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 (28) 

 

The first step consists on allocating the available integrity 

budget to each exclusion case. We find aj such that: 

 

1j

j

a    (29) 

We will then impose: 

 

    ,  excluded j VERT not monitoredP HMI j a PHMI P   

   (30) 

 

As expressed above, any choice of positive coefficients 

fulfilling will work.  At this point we do add a new 

constraint: we would like to have that the probability of 

HMI given that j is excluded is below the available 

integrity budget.  That is: 

 

  ,|  excluded not monitoredP HMI j PHMI P   (31) 

 

Writing Bayes formula we get: 

 

 

 
,

,  excluded

  excluded
not monitored

P HMI j
PHMI P

P j
   (32) 

 

The probability that j is excluded can be approximated by 

the probability of the fault j.  The condition above is 

therefore written: 

 

   , ,,  excluded fault j not monitoredP HMI j p PHMI P   

   (33) 

This means that: 

 

,j fault ja p   (34) 

 

In addition, we need to decide how to allocate among the 

confirmed and not confirmed case.  For this we will 

introduce the parameter θ.  We allocate ,fault jp to the 

non-confirmed case and   ,1 fault jp to the confirmed 

case. 

 

 

THRESHOLDS AND PROTECTION LEVEL 

FORMULAS 

 

Continuity thresholds 

 

For each of the exclusion functions, the continuity Tj,ij,3 

thresholds are determined as in [3].  That is, they are set 

such that in the presence of fault j, the probability of 

exceeding the consistency threshold must be below the 

continuity requirement for the set that excludes j.  Notice 

that a different interpretation of the continuity 

requirement could lead to different continuity allocations 

across the exclusion cases (as in [4]). 

 

All-in-view VPL 

 

The all-in-view VPL, noted VPL0 is determined by the 

equation: 
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 (35) 



 

In practice, pnofault is so close to one that we can assume 

that the VPL is determined as shown in [3]. 

 

 

Exclusion VPL with no confirmation 

 

The equation determining 
N

jVPL is: 
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  (36) 

 

According to the integrity equation, it is only necessary to 

include the indexes i such that j i .  However, to ensure 

that the inequalities (18) hold, we include all threats that 

affect the position solution
 
3

ˆ j
x .  This also ensures that the 

equation is formally similar to the all-in-view equation. 

 

 

Exclusion thresholds 

 

The exclusion thresholds must be such that we have: 
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For the baseline algorithm, we can choose to allocate the 

integrity risk evenly across the different terms: 
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    (38) 

 

In this equation, Nj is the number of terms in the sum of 

Equation (37).  Finally: 
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Exclusion VPL with confirmation 

 

The exclusion VPL with confirmation is computed 

exactly as the all-in-view VPL, but excluding fault j.  It 

can be written: 
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The term Pnot monitored has changed (and a subscript j is 

added) because it might be different for the subset that 

excludes j.  As for the all-in-view VPL, in practice the 

Equation can be considered to be: 
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 (41) 

 

As indicated above, the integrity equation is valid if we 

have the inequalities  (18).  We show in Appendix A that 

this will generally hold if the VPL is computed using 

Equation (41). 

 

 

SUMMARY 

 

There are three contributions in this paper: the description 

of a baseline exclusion algorithm for ARAIM that uses 

exclusion confirmation tests, the integrity risk equation 

that the Protection Levels and exclusion confirmation 

tests must fulfill, and a practical method to determine 

them.  One of the goals of the algorithm presented here is 

to provide a set of conditions under which a fault (satellite 

or group of satellites, for example) can be excluded and 

treated as if it was flagged by the ground.  This property 

allows the receiver to treat the satellites remaining after 

exclusion as an all-in-view situation, which greatly 

simplifies the processing.  In addition, the allocation of 

the integrity risk among the different exclusion modes is 

determined to provide a notion of conditional integrity 

risk. 
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APPENDIX A 

 

In this Appendix we show why it is reasonable to assume 

that the inequalities (18) hold.  First we will assume that 

the VPL after exclusion is larger than the all-in-view: 

 

  

0

N or C

jVPL VPL    (42) 

 

If it doesn’t hold using the formulas, this inequality could 

be enforced by the receiver, if deemed necessary. We 

show that we have: 

, ,3 0, ,3j ij iT T    (43) 

We show it here in the case that Cacc and Cint coincide. In 

this case we would have: 
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Since j is included in i, we have: 
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i ij
     (45) 

And: 

   0 2 2

3 3

j
    (46) 

Combining the last three equations yields: 

   , 2 0, 2

,3 ,3

j ij i

ss ss    (47) 

 

Because the continuity budget is divided among fewer 

subsets in the excluded case, we have (see formula in [3]): 

,3, ,3,0fa j faK K   (48) 

 

Combining the two last equations, we get (43), which 

ends the proof. 

 

APPENDIX B 

 

Refining the integrity equation 

 

More credit can be taken from Equation (11), as the 

proposed approach does not take into account the VPL.  

In [3], the following approximation was made:  
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 (49) 

Because this approximation is not strictly valid (although 

it is very good for strong geometries), in this paper we 



choose to only take credit for the exclusion confirmation 

test.  At the expense of more complexity, it is possible to 

exploit this equation more than it is proposed here. 

 

Use of continuity error model for the exclusion 

confirmation tests 

 

As described above the exclusion tests use the continuity 

error model, as shown in Equation  (14).  This choice was 

made because there are already many layers of 

conservatism in the integrity bounding.  For a more 

conservative approach, we can use instead: 

 

               , 2 2 2

,3 3 int 3 3 3

T
i ij ij i ij i ij iT

ss e S S C S S e      

   (50) 

(as well as the corresponding bias). 

 

Use of chi-square instead of solution separation in 

exclusion confirmation tests 

 

For the description above, we have chosen to use the 

solution separation for the exclusion confirmation tests.  It 

is possible that a better choice is given by the chi-square 

statistic that is independent of fault i, for example, in the 

case of fault i, it would be (using the notations of [3]): 

 

   
1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

T
T T T T

i i i i i i i i i i i i
y W y G W y G W G G W y



  (51) 

 

Indeed, faults that would manifest themselves in the chi-

square statistic might not be apparent in the solution 

separation statistic.  Alternatively, we could add tests on 

the horizontal solution separation.   


