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In this paper we describe two methods to exclude faulty 
radio navigation measurements in a situation where there 
is a large number of measurements (>20) and the 
probability that any measurement might be faulty is very 
high (50% and more). 

This situation can arise in many applications, as in the case 
of multiple GNSS measurements in an urban environment, 
when using terrestrial range measurements (and therefore 
very prone to be affected by multipath), or when using 
signals of opportunity (which might have faulty or not 
calibrated clocks). 

Previous work in fault detection for radio navigation has 
focused in the ability of fault detection methods to detect 
the outlier measurements [1].  In this work we will first 
argue that finding the outliers is actually not an issue in the 
sense that there is a known algorithm that provides an 
optimal exclusion option (under some assumptions) [3].  
This algorithm consists in evaluating all the subsets of 
measurements for consistency and in choosing the best 
consistent subset (under some sense).  However, this 
algorithm relies on a combinatorial search which can 
become intractable as the number of measurements 
increases.  It is therefore useful to develop methods that can 
achieve the performance of the combinatorial search at a 
lower computational cost. 

In this work, we study two simple and fast exclusion 
algorithms.  The first one is based on a greedy search.  In 
this algorithm the measurements are removed sequentially 
based on the size of the least squares residual.  The second 
one is based on L1 norm minimization.  For this purpose, 
we analyze the link between outlier exclusion and sparse 
signal recovery, for which there is a large body of work 
(compressed sensing) [5].  In particular, there are rigorous 
results on the sparsity promoting nature of L1 norm 
minimization [6].  Then, we test an implementation of fault 
detection using both algorithms.  We will investigate 
examples based on two and four core GNSS constellations 
and attempt to answer the following two questions: how 
well does each of these algorithms approach the exhaustive 
algorithm.  

INTRODUCTION 

In the first part, we will first describe the metric used to 
measure the consistency of a subset of measurements (the 
chi-square statistic).  Then we will define the optimal 
algorithm based on this metric, which is the exhaustive 
search.  In the second part, we will describe the exclusion 
algorithm based on the greedy search.  In the third part, we 
will show how the search for outliers is related to the search 
for sparse solutions, and its link to L1 norm minimization, 
and we will describe an exclusion algorithm based on L1 
norm minimization.  Finally, we will test the three 
algorithms under simulated conditions with a large number 
of outliers. 

 

EXHAUSTIVE SEARCH ALGORITHM 

The exclusion algorithm is used when the set of available 
measurements appears to be inconsistent.  This happens 
when, depending on which subset of measurements is used, 
one gets a different enough solution that the probability 
that it can be explained by nominal errors is low.  A 
measure of the maximum difference between subset 
position solutions (normalized by the expected standard 
deviation) is given by the chi-square statistic [7]:  
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In this equation, y is the vector of measurement residuals, 
W is the weighting matrix (a diagonal matrix whose entries 
are the inverse of the assumed variances of the 
measurement error), and G is the geometry matrix.  A 
definition of all these terms in the context of satellite 
navigation can be found in [7]. 

The goal of the exclusion algorithm is to remove the 
measurements that are most likely to be erroneous. A 
measurement or subset of measurements is likely to be 
erroneous when the set of remaining measurements 
appears to be consistent.  In fact, the outliers can only be 
found by finding the consistent subsets.  



As we will be characterizing the consistency of the 
measurements by the chi-square statistic, the exhaustive 
search algorithm consists on computing the chi-square 
statistic for all subsets.  Once this list is formed, a threshold 
on the chi-square (for example, determined by a probability 
of false alert) is chosen.  Among this list, we discard all the 
subsets with a statistic that exceeds the threshold.  Of the 
remaining ones, we choose the one with the largest number 
of measurements.  (If there are several consistent subsets 
with the same number of measurements we choose the one 
with the lowest statistic). 

As described above the algorithm assumes that we are only 
considering faults of satellite subsets.  It is possible to 
generalize the above algorithm to all the faults that consist 
on adding a state to the measurement equation (as in [8]). 

Given our chosen metric (the chi-square statistic), the 
exhaustive algorithm will provide the best performance, in 
the sense that it will find all the consistent sets of 
measurements.  However, it can be prohibitively expensive 
in computational load.  In this paper we are considering 
situations were a large number of measurements could be 
corrupted (up to 50%).  For example, if there are 21 
measurements and we consider all the possible subsets with 
10 or more measurements, then as many as 220~106 subsets 
may have to be tested.  If one considers 30 measurements 
and all subsets with 15 or more measurements are 
candidates, then there are on the order of 109 subsets to be 
tested.  Although there are techniques to reduce the amount 
of computation by exploiting the structure of the problem, 
the exhaustive algorithm becomes impractical with a large 
number of measurements and a high probability of fault. 

 

GREEDY SEARCH ALGORITHM 

The greedy search algorithm consists in removing 
measurements one by one to lower the chi-square statistic 
until it meets the consistency threshold.  At each step, we 
exclude the measurement that has the largest impact on the 
chi-square.  As shown in [7], this measurement is the one 
that has the largest normalized residual.  At each step we 
compute (with the remaining measurements): 
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For each measurement i, we compute: 
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Then, we remove the measurement with the largest ri.  If 
the chi-square statistic is below the threshold, the algorithm 
stops, because a self-consistent set has been found. 
Otherwise, a new residual is removed by repeating the 
same process.  We stress that a new estimate and a new set 
of normalized residuals must be computed at each step.  
The algorithm stops when the remaining set of 
measurements is self-consistent. 

 

L1 NORM MINIMIZATION ALGORITHM 

In this paragraph we show the link between the search for 
a sparse solution and the search for a consistent set of 
measurements (or outlier detection).  To show this link, we 
will first assume that there is no nominal noise.  We start 
by writing the observation equation: 
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In Equation (4), y are the measurements, x is the vector of 
position and clock states (of length p), and ε is noise on 
the measurement. 

Now we want to find the largest set of consistent 
measurements.  This means that we want to find the 
position solution x  and the largest set of measurements J 
such that for i in J we have: 
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This is equivalent to finding the position solution that 
requires the fewer outliers to explain the measurements.  
That is, we are trying to solve the optimization problem: 

0
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The notation 
0L

  denotes the number of non-zero 

coordinates.  We can rewrite this problem as: 
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In the lines below we draw from reference [5].  The idea of 
Compressed Sensing is to solve the problem: 
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In this equation, the norm L0 is simply the amount of non-
zero coordinates of x.  That is, the idea of this approach is 
to find the simplest explanation of the data.  It is very 
important to see that it is not necessary that the system is 



overdetermined.  The solution corresponds to the sparsest 
x explaining the data.   

Now, because the above problem is in general very hard to 
solve (because it is combinatorial in nature), it can be 
replaced by the convex problem: 
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The only change between Problems (8) and (9) is the 
objective function, which is now the L1 norm.  The L1 norm 
is defined as: 
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Problem (9) can be cast as a linear program (see Appendix) 
that can be solved efficiently with widely available 
software tools.  It turns out that solving this relaxation often 
solves the original problem, and recent work provides 
rigorous proof that these problems have a high probability 
of being equivalent [6].  This is very useful, as it replaces 
an unfeasible problem with one that can be treated in a 
guaranteed time (because of its convexity). 

Similarly, we replace Problem (7) by its L1 relaxation:  
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Now, to account for the fact that there is nominal noise in 
the measurements, we can weigh these residuals and write 
the problem as: 
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In this equation σi is the standard deviation of the nominal 
noise expected on measurement i.  It can be useful here to 
compare this problem to the problem that least squares 
solves, which is given by:  
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The solution of the Problem (12) does not yield directly the 
outliers.  The idea is now to order the following residuals 
in descending order: 
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We now have an order in which to exclude the 
measurements if the chi-square test does not pass.  Instead 

of having to test billions of subsets, we only have to test n-
p+1. 

We should note that the conditions under which the search 
of the sparsest solution coincides with the L1 minimization 
do not hold in our application in at least two points. First, 
there is nominal noise; second, the matrix A has a very 
specific structure. 

 

PERFORMANCE EVALUATION 

The goal of the algorithm described above is to find a self-
consistent set of measurements among a set of 
measurements which appears to be inconsistent.  It is 
important to stress that we are not testing the ability of the 
algorithm to find the actual outliers.  Instead, we are 
evaluating how it compares to the exhaustive search 
algorithm.  In addition, we are not testing the algorithm 
under worst case outliers, that is, outliers which have a non-
negligible probability of remaining undetected.   Outliers 
are modeled as random errors with a significantly larger 
standard deviation.   

We now examine some simulation results corresponding to 
a multi-constellation GNSS geometry corresponding to the 
G matrix included in the Appendix.  A nominal noise of 1 
m is assumed in each measurement.  The threshold for self-
consistency was given by setting false alert probability Pfa 
to 10-4, that is, for n measurements and p states, we set: 
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We simulated the outliers as Gaussian errors with a 
standard deviation of 10 m and 20 m instead of 1 m.    

Each simulation consisted on: 

- simulating the nominal noise 
- choosing Noutliers randomly 
- simulating the bias in each outlier 

For each number of outliers, 1000 simulations were 
performed.  The three algorithms were applied to each 
simulation. 

Two core constellation results 

In the first set of results we only considered the two core 
constellations in G, that is, the first 19 measurements.  
Figure 1 shows the standard deviation of the position error 
for each number of outliers for each of the algorithms.  It 
also shows the standard deviation of the position error 
when no exclusion is applied.   



We can see that, in this simulation, the L1 minimization 
algorithm matches the performance of the exhaustive 
algorithm for all numbers of outliers.  This suggests that it 
is likely that the exhaustive algorithm can be replaced by 
the L1 minimization algorithm without loss of performance 
(at least when considering the standard deviation of the 
position as a metric). 

Figure 1 also shows that the greedy search matches the 
performance of the exhaustive algorithm up to a maximum 
number of outliers of four, and the degradation beyond four 
is slow (up to 30% for eight outliers).  This is useful, 
because of the three algorithms, the greedy search is by far 
the simplest one.  

 

Figure 1. Standard deviation of the position error for 
each algorithm in the two core constellation example. 

 

Four core constellation results 

In the four core constellation case (Figure 2 and 3), it was 
not possible to run the exhaustive algorithm for more than 
six simulated faults (as it became too time consuming).  
The trends are similar to the previous example: the L1 
minimization algorithm matches the exhaustive algorithm 
(at least for the values where the comparison was possible), 
the greedy search algorithm performs as well up to a large 
number of faults, and the difference in performance 
between the L1 minimization and greedy search grows 
slowly beyond that point. 

 

Figure 2. Standard deviation of the position error for 
each algorithm in the four core constellation example 
(and outliers 10 times worse than nominal). 

 

Figure 3. Standard deviation of the position error for 
each algorithm in the four core constellation example 
(and outliers 20 times worse than nominal). 

In Table 1, we have compared the speed of each algorithm 
for one position fix in the four core constellation example.  
As expected, the runtime of the exhaustive algorithm 
increases exponentially with the number of faults.  Both the 
L1 minimization algorithm and the greedy search are much 
faster than the exhaustive algorithm (even for only two 
faults), and the runtime is not very sensitive to the number 
of faults.  It is interesting, that the L1 minimization, which 
requires a linear program solution, has a runtime 
comparable to the greedy search.   



Number 
of faults 

Exhaustive L1 
minimization 

Greedy 
search 

2 0.03 s 0.010 s 0.007 s 
4 2.8 s 0.013 s 0.008 s 
6 121 s 0.012 s 0.008 s 
8 - 0.017 s 0.011 s 

10 - 0.019 s 0.011 s 
12 - 0.019 s 0.008 s 
14 - 0.013 s 0.007 s 
16 - 0.015 s 0.009 s 

 

Table 1. Speed comparison in the four core constellation 
case. 

 

SUMMARY 

Fault exclusion consists in finding subsets of 
measurements that appear to be self-consistent.  If one 
assumes that all faults have a similar probability of 
occurring and are not correlated, an adequate strategy (and 
probably optimal one) is to find the largest subset that 
appears to be consistent.  An exhaustive search algorithm 
will therefore always find the largest self-consistent subset.  
However, the exhaustive search algorithm becomes 
impractical when the number of faults is large.  We have 
defined and studied two simple and fast algorithms and 
compared their performance to the exhaustive search 
algorithm in two example geometries.  The algorithm 
based on L1 norm minimization matches closely the 
performance of the exhaustive algorithm for all the 
situations where it could be tested.  The greedy search 
algorithm matched the performance of the exhaustive 
algorithm for a small number of faults, but its performance 
degraded slightly when more faults were present. 
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APPENDIX 

Example geometry 

G = [ -0.690   -0.062   -0.720    1   0   0   0 
           0.197    0.932   -0.302    1   0   0   0 
         -0.866   -0.450   -0.212    1   0   0   0 
         -0.325    0.780   -0.534    1   0   0   0 
          0.668    0.290   -0.684    1   0   0   0 
        -0.090   -0.821   -0.563    1   0   0   0 
        -0.508   -0.849   -0.143    1   0   0   0 
    0.387   -0.645   -0.657      1   0   0   0 
   -0.987   -0.074   -0.137         0   1   0   0 
   -0.680    0.446   -0.581         0   1   0   0 
    0.045    0.774   -0.631         0   1   0   0 
    0.696    0.675   -0.241         0   1   0   0 
    0.507    0.827   -0.241         0   1   0   0 
    0.683    0.230   -0.692         0   1   0   0 
    0.486   -0.555   -0.674         0   1   0   0 
    0.057   -0.977   -0.204         0   1   0   0 
    0.243   -0.787   -0.566         0   1   0   0 
   -0.444   -0.423   -0.789         0   1   0   0 
   -0.871    0.165   -0.461         0   1   0   0 
   -0.786    0.366   -0.497         0   0   1   0 
   -0.832    0.266   -0.486         0   0   1   0 
   -0.017    0.637   -0.770         0   0   1   0 
   -0.299   -0.355   -0.885         0   0   1   0 
    0.804    0.525   -0.278          0   0   1   0 



    0.378   -0.466   -0.799          0   0   1   0 
   -0.105   -0.973   -0.201          0   0   1   0 
    0.396   -0.809   -0.432          0   0   1   0 
    0.601    0.404   -0.688         0   0   1   0 
    0.951   -0.232   -0.200         0   0   0   1 
    0.452   -0.548   -0.703         0   0   0    1 
   -0.376   -0.579   -0.722         0   0   0    1 
   -0.921   -0.302   -0.244         0   0   0    1 
   -0.207    0.858   -0.468         0   0   0    1 
   -0.781   -0.483   -0.393         0   0   0    1 
   -0.687    0.252   -0.680         0   0   0    1 
   -0.000    0.946   -0.322         0   0   0   1 
    0.550    0.502   -0.667         0   0   0   1 
    0.814   -0.247   -0.525         0   0   0   1]; 
 
Casting L1 minimization as a linear program 
 
The L1 minimization problem is given by: 
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x

y Gx     (16) 

This is not a linear program, but it can be turned into one 

by introducing the vectors t and t : 
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