
Fast Multiple Fault Exclusion with a Large Number of
Measurements

Juan Blanch, Todd Walter, Per Enge. Stanford University

In this paper we describe two methods to exclude faulty
radio navigation measurements in a situation where there
is a large number of measurements (>20) and the
probability that any measurement might be faulty is very
high (50% and more).

This situation can arise in many applications, as in the case
of multiple GNSS measurements in an urban environment,
when using terrestrial range measurements (and therefore
very prone to be affected by multipath), or when using
signals of opportunity (which might have faulty or not
calibrated clocks).

Previous work in fault detection for radio navigation has
focused in the ability of fault detection methods to detect
the outlier measurements [1]. In this work we will first
argue that finding the outliers is actually not an issue in the
sense that there is a known algorithm that provides an
optimal exclusion option (under some assumptions) [3].
This algorithm consists in evaluating all the subsets of
measurements for consistency and in choosing the best
consistent subset (under some sense). However, this
algorithm relies on a combinatorial search which can
become intractable as the number of measurements
increases. It is therefore useful to develop methods that can
achieve the performance of the combinatorial search at a
lower computational cost.

In this work, we study two simple and fast exclusion
algorithms. The first one is based on a greedy search. In
this algorithm the measurements are removed sequentially
based on the size of the least squares residual. The second
one is based on L1 norm minimization. For this purpose,
we analyze the link between outlier exclusion and sparse
signal recovery, for which there is a large body of work
(compressed sensing) [5]. In particular, there are rigorous
results on the sparsity promoting nature of L1 norm
minimization [6]. Then, we test an implementation of fault
detection using both algorithms. We will investigate
examples based on two and four core GNSS constellations
and attempt to answer the following two questions: how
well does each of these algorithms approach the exhaustive
algorithm.

INTRODUCTION

In the first part, we will first describe the metric used to
measure the consistency of a subset of measurements (the
chi-square statistic). Then we will define the optimal
algorithm based on this metric, which is the exhaustive
search. In the second part, we will describe the exclusion
algorithm based on the greedy search. In the third part, we
will show how the search for outliers is related to the search
for sparse solutions, and its link to L1 norm minimization,
and we will describe an exclusion algorithm based on L1
norm minimization. Finally, we will test the three
algorithms under simulated conditions with a large number
of outliers.

EXHAUSTIVE SEARCH ALGORITHM

The exclusion algorithm is used when the set of available
measurements appears to be inconsistent. This happens
when, depending on which subset of measurements is used,
one gets a different enough solution that the probability
that it can be explained by nominal errors is low. A
measure of the maximum difference between subset
position solutions (normalized by the expected standard
deviation) is given by the chi-square statistic [7]:

  12 T T Ty W WG G WG G W y


  (1)

In this equation, y is the vector of measurement residuals,
W is the weighting matrix (a diagonal matrix whose entries
are the inverse of the assumed variances of the
measurement error), and G is the geometry matrix. A
definition of all these terms in the context of satellite
navigation can be found in [7].

The goal of the exclusion algorithm is to remove the
measurements that are most likely to be erroneous. A
measurement or subset of measurements is likely to be
erroneous when the set of remaining measurements
appears to be consistent. In fact, the outliers can only be
found by finding the consistent subsets.

As we will be characterizing the consistency of the
measurements by the chi-square statistic, the exhaustive
search algorithm consists on computing the chi-square
statistic for all subsets. Once this list is formed, a threshold
on the chi-square (for example, determined by a probability
of false alert) is chosen. Among this list, we discard all the
subsets with a statistic that exceeds the threshold. Of the
remaining ones, we choose the one with the largest number
of measurements. (If there are several consistent subsets
with the same number of measurements we choose the one
with the lowest statistic).

As described above the algorithm assumes that we are only
considering faults of satellite subsets. It is possible to
generalize the above algorithm to all the faults that consist
on adding a state to the measurement equation (as in [8]).

Given our chosen metric (the chi-square statistic), the
exhaustive algorithm will provide the best performance, in
the sense that it will find all the consistent sets of
measurements. However, it can be prohibitively expensive
in computational load. In this paper we are considering
situations were a large number of measurements could be
corrupted (up to 50%). For example, if there are 21
measurements and we consider all the possible subsets with
10 or more measurements, then as many as 220~106 subsets
may have to be tested. If one considers 30 measurements
and all subsets with 15 or more measurements are
candidates, then there are on the order of 109 subsets to be
tested. Although there are techniques to reduce the amount
of computation by exploiting the structure of the problem,
the exhaustive algorithm becomes impractical with a large
number of measurements and a high probability of fault.

GREEDY SEARCH ALGORITHM

The greedy search algorithm consists in removing
measurements one by one to lower the chi-square statistic
until it meets the consistency threshold. At each step, we
exclude the measurement that has the largest impact on the
chi-square. As shown in [7], this measurement is the one
that has the largest normalized residual. At each step we
compute (with the remaining measurements):

  1T Tx G WG G Wy


 (2)

For each measurement i, we compute:

 
 

2

1
1

T
i i i

i
T T
i i i

w y g x
r

g w G WG g








 (3)

Then, we remove the measurement with the largest ri. If
the chi-square statistic is below the threshold, the algorithm
stops, because a self-consistent set has been found.
Otherwise, a new residual is removed by repeating the
same process. We stress that a new estimate and a new set
of normalized residuals must be computed at each step.
The algorithm stops when the remaining set of
measurements is self-consistent.

L1 NORM MINIMIZATION ALGORITHM

In this paragraph we show the link between the search for
a sparse solution and the search for a consistent set of
measurements (or outlier detection). To show this link, we
will first assume that there is no nominal noise. We start
by writing the observation equation:

y Gx   (4)

In Equation (4), y are the measurements, x is the vector of
position and clock states (of length p), and ε is noise on
the measurement.

Now we want to find the largest set of consistent
measurements. This means that we want to find the
position solution x and the largest set of measurements J
such that for i in J we have:

,. 0i iy G x   (5)

This is equivalent to finding the position solution that
requires the fewer outliers to explain the measurements.
That is, we are trying to solve the optimization problem:

0
min

Lx
y Gx (6)

The notation
0L

 denotes the number of non-zero

coordinates. We can rewrite this problem as:

0,
min subject to

n Lx R
y Gx


 


  (7)

In the lines below we draw from reference [5]. The idea of
Compressed Sensing is to solve the problem:

0
min subject to

n LX R
X y AX


 (8)

In this equation, the norm L0 is simply the amount of non-
zero coordinates of x. That is, the idea of this approach is
to find the simplest explanation of the data. It is very
important to see that it is not necessary that the system is

overdetermined. The solution corresponds to the sparsest
x explaining the data.

Now, because the above problem is in general very hard to
solve (because it is combinatorial in nature), it can be
replaced by the convex problem:

1
min subject to

n LX R
X y AX


 (9)

The only change between Problems (8) and (9) is the
objective function, which is now the L1 norm. The L1 norm
is defined as:

1
iL

x x  (10)

Problem (9) can be cast as a linear program (see Appendix)
that can be solved efficiently with widely available
software tools. It turns out that solving this relaxation often
solves the original problem, and recent work provides
rigorous proof that these problems have a high probability
of being equivalent [6]. This is very useful, as it replaces
an unfeasible problem with one that can be treated in a
guaranteed time (because of its convexity).

Similarly, we replace Problem (7) by its L1 relaxation:

1,
min subject to

n Lx R
y Gx


 


  (11)

Now, to account for the fact that there is nominal noise in
the measurements, we can weigh these residuals and write
the problem as:

1

min
Tn

i i

x
i i

y g x




 (12)

In this equation σi is the standard deviation of the nominal
noise expected on measurement i. It can be useful here to
compare this problem to the problem that least squares
solves, which is given by:

2

1

min
Tn

i i

x
i i

y g x



 
 
 
 

 (13)

The solution of the Problem (12) does not yield directly the
outliers. The idea is now to order the following residuals
in descending order:

T
i i

i

y g X




 (14)

We now have an order in which to exclude the
measurements if the chi-square test does not pass. Instead

of having to test billions of subsets, we only have to test n-
p+1.

We should note that the conditions under which the search
of the sparsest solution coincides with the L1 minimization
do not hold in our application in at least two points. First,
there is nominal noise; second, the matrix A has a very
specific structure.

PERFORMANCE EVALUATION

The goal of the algorithm described above is to find a self-
consistent set of measurements among a set of
measurements which appears to be inconsistent. It is
important to stress that we are not testing the ability of the
algorithm to find the actual outliers. Instead, we are
evaluating how it compares to the exhaustive search
algorithm. In addition, we are not testing the algorithm
under worst case outliers, that is, outliers which have a non-
negligible probability of remaining undetected. Outliers
are modeled as random errors with a significantly larger
standard deviation.

We now examine some simulation results corresponding to
a multi-constellation GNSS geometry corresponding to the
G matrix included in the Appendix. A nominal noise of 1
m is assumed in each measurement. The threshold for self-
consistency was given by setting false alert probability Pfa
to 10-4, that is, for n measurements and p states, we set:

 2 1n n p faT P   (15)

We simulated the outliers as Gaussian errors with a
standard deviation of 10 m and 20 m instead of 1 m.

Each simulation consisted on:

- simulating the nominal noise
- choosing Noutliers randomly
- simulating the bias in each outlier

For each number of outliers, 1000 simulations were
performed. The three algorithms were applied to each
simulation.

Two core constellation results

In the first set of results we only considered the two core
constellations in G, that is, the first 19 measurements.
Figure 1 shows the standard deviation of the position error
for each number of outliers for each of the algorithms. It
also shows the standard deviation of the position error
when no exclusion is applied.

We can see that, in this simulation, the L1 minimization
algorithm matches the performance of the exhaustive
algorithm for all numbers of outliers. This suggests that it
is likely that the exhaustive algorithm can be replaced by
the L1 minimization algorithm without loss of performance
(at least when considering the standard deviation of the
position as a metric).

Figure 1 also shows that the greedy search matches the
performance of the exhaustive algorithm up to a maximum
number of outliers of four, and the degradation beyond four
is slow (up to 30% for eight outliers). This is useful,
because of the three algorithms, the greedy search is by far
the simplest one.

Figure 1. Standard deviation of the position error for
each algorithm in the two core constellation example.

Four core constellation results

In the four core constellation case (Figure 2 and 3), it was
not possible to run the exhaustive algorithm for more than
six simulated faults (as it became too time consuming).
The trends are similar to the previous example: the L1
minimization algorithm matches the exhaustive algorithm
(at least for the values where the comparison was possible),
the greedy search algorithm performs as well up to a large
number of faults, and the difference in performance
between the L1 minimization and greedy search grows
slowly beyond that point.

Figure 2. Standard deviation of the position error for
each algorithm in the four core constellation example
(and outliers 10 times worse than nominal).

Figure 3. Standard deviation of the position error for
each algorithm in the four core constellation example
(and outliers 20 times worse than nominal).

In Table 1, we have compared the speed of each algorithm
for one position fix in the four core constellation example.
As expected, the runtime of the exhaustive algorithm
increases exponentially with the number of faults. Both the
L1 minimization algorithm and the greedy search are much
faster than the exhaustive algorithm (even for only two
faults), and the runtime is not very sensitive to the number
of faults. It is interesting, that the L1 minimization, which
requires a linear program solution, has a runtime
comparable to the greedy search.

Number
of faults

Exhaustive L1
minimization

Greedy
search

2 0.03 s 0.010 s 0.007 s
4 2.8 s 0.013 s 0.008 s
6 121 s 0.012 s 0.008 s
8 - 0.017 s 0.011 s

10 - 0.019 s 0.011 s
12 - 0.019 s 0.008 s
14 - 0.013 s 0.007 s
16 - 0.015 s 0.009 s

Table 1. Speed comparison in the four core constellation
case.

SUMMARY

Fault exclusion consists in finding subsets of
measurements that appear to be self-consistent. If one
assumes that all faults have a similar probability of
occurring and are not correlated, an adequate strategy (and
probably optimal one) is to find the largest subset that
appears to be consistent. An exhaustive search algorithm
will therefore always find the largest self-consistent subset.
However, the exhaustive search algorithm becomes
impractical when the number of faults is large. We have
defined and studied two simple and fast algorithms and
compared their performance to the exhaustive search
algorithm in two example geometries. The algorithm
based on L1 norm minimization matches closely the
performance of the exhaustive algorithm for all the
situations where it could be tested. The greedy search
algorithm matched the performance of the exhaustive
algorithm for a small number of faults, but its performance
degraded slightly when more faults were present.

REFERENCES

[1] Nathan L. Knight , Jinling Wang. “A Comparison of
Outlier Detection Procedures and Robust Estimation
Methods in GPS Positioning,” Journal of Navigation,
Volume 62, Issue 04, October 2009, pp 699-709.

[2] M. Yetkin, C. Inal. “L 1 Norm Minimization in GPS
Networks.” Survey Review, Volume 43, Issue 323, 01
October 2011, pp. 523-532.

[3] Carlone, A. Censi, F. Dellaert, “Selecting good
measurements via ℓ1 relaxation: a convex approach for
robust estimation over graphs”, Int. Conf. on Intelligent
Robots and Systems (IROS), accepted, 2014.

[4] Peter J. Huber, “The place of the L1-norm in robust
estimation,” Computational Statistics & Data Analysis,
1987, vol. 5, issue 4, pages 255-262.

[5] Candès, E.J., & Wakin, M.B., An Introduction To
Compressive Sampling, IEEE Signal Processing Magazine,
V.21, March 2008

[6] David L. Donoho. “For most large underdetermined
systems of linear equations, the minimal l1 solution is also
the sparsest solution.” Comm. Pure Appl. Math.,
59(7):907–934, July 2006.

[7] Blanch, J., Walter, T., Enge, P., Lee, Y., Pervan, B.,
Rippl, M., Spletter, A., "Advanced RAIM user Algorithm
Description: Integrity Support Message Processing, Fault
Detection, Exclusion, and Protection Level Calculation,"
Proceedings of the 25th International Technical Meeting
of The Satellite Division of the Institute of Navigation (ION
GNSS 2012), Nashville, TN, September 2012.

[8] Blanch, J., Walter, T., and Enge, P.,” Optimal
Positioning for Advanced RAIM,” NAVIGATION, Vol. 60,
No. 4, Winter 2013, pp. 279-290.

APPENDIX

Example geometry

G = [-0.690 -0.062 -0.720 1 0 0 0
 0.197 0.932 -0.302 1 0 0 0
 -0.866 -0.450 -0.212 1 0 0 0
 -0.325 0.780 -0.534 1 0 0 0
 0.668 0.290 -0.684 1 0 0 0
 -0.090 -0.821 -0.563 1 0 0 0
 -0.508 -0.849 -0.143 1 0 0 0
 0.387 -0.645 -0.657 1 0 0 0
 -0.987 -0.074 -0.137 0 1 0 0
 -0.680 0.446 -0.581 0 1 0 0
 0.045 0.774 -0.631 0 1 0 0
 0.696 0.675 -0.241 0 1 0 0
 0.507 0.827 -0.241 0 1 0 0
 0.683 0.230 -0.692 0 1 0 0
 0.486 -0.555 -0.674 0 1 0 0
 0.057 -0.977 -0.204 0 1 0 0
 0.243 -0.787 -0.566 0 1 0 0
 -0.444 -0.423 -0.789 0 1 0 0
 -0.871 0.165 -0.461 0 1 0 0
 -0.786 0.366 -0.497 0 0 1 0
 -0.832 0.266 -0.486 0 0 1 0
 -0.017 0.637 -0.770 0 0 1 0
 -0.299 -0.355 -0.885 0 0 1 0
 0.804 0.525 -0.278 0 0 1 0

 0.378 -0.466 -0.799 0 0 1 0
 -0.105 -0.973 -0.201 0 0 1 0
 0.396 -0.809 -0.432 0 0 1 0
 0.601 0.404 -0.688 0 0 1 0
 0.951 -0.232 -0.200 0 0 0 1
 0.452 -0.548 -0.703 0 0 0 1
 -0.376 -0.579 -0.722 0 0 0 1
 -0.921 -0.302 -0.244 0 0 0 1
 -0.207 0.858 -0.468 0 0 0 1
 -0.781 -0.483 -0.393 0 0 0 1
 -0.687 0.252 -0.680 0 0 0 1
 -0.000 0.946 -0.322 0 0 0 1
 0.550 0.502 -0.667 0 0 0 1
 0.814 -0.247 -0.525 0 0 0 1];

Casting L1 minimization as a linear program

The L1 minimization problem is given by:

min
x

y Gx (16)

This is not a linear program, but it can be turned into one

by introducing the vectors t and t :

   min 1 1 1 1

such that

and 0, 0

t t

y Gx t t

t t

 

 

 



  

 

 

 (17)

