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ABSTRACT

Now that the Wide Area Augmentation System (WAAS)
has finalized the algorithms providing Lateral
Navigation/Vertical Navigation (LNAV/VNAV) service,
an increasing level of attention is being given to the
feasibility of a GNSS Landing System (GLS) service.
This would reduce the required Vertical Alarm Limit
(VAL) from 50 meters to 20 meters or below. One of the
algorithms that would be required to increase
performance substantially is the ionospheric correction
algorithm. WAAS incorporates information from
reference stations to create a correction map of the
ionosphere. More importantly, this map contains
confidence bounds describing the integrity of the
corrections. The confidence bounds must be large enough
to describe the error in the correction but tight enough to
allow the operation to proceed. The difficulty in
generating these corrections is that the reference station
measurements are not co-located with the aviation user
measurement. For any estimation algorithm, a very
sensitive parameter in the real time estimation of the
ionospheric delay is the quality of the coverage by the
Ionospheric Pierce Points (IPPs) measurements. Because
the IPPs are scattered irregularly over the region of
interest, the measure of coverage, or metric, is not an easy
parameter to define, and has lead to many difficulties in
the current WAAS system.

Geostatistics, a field that was originally developed for ore
reserve estimation and is part of the broader field known
as spatial statistics, has created a number of models and
techniques to treat estimation problems involving spatial
data. In particular the method called kriging is nowadays
popular in many fields of science and industry where
there is a need for evaluating spatially or temporally
correlated data.

After summarizing the geostatistical method, this paper
examines the worthiness of kriging for ionospheric
estimation. It is explained in particular how to generate a
family of metrics measuring the quality of sampling of a
given region, useful for any estimation method. Extensive
validation of the algorithms presented, using past WAAS

ionospheric measurements for both quiet and disturbed
periods, suggest that kriging provides useful insights and
solutions to the ionospheric estimation problem, and
could help WAAS to achieve GLS capability.

INTRODUCTION

The vast majority of the development effort for the Wide
Area Augmentation System (WAAS) is devoted to
designing algorithms that generate in real time protection
limits for the residual position error in the differential
correction to GPS. The ionospheric correction relies upon
the estimation of the ionospheric delay at any location
from the measurements obtained by the network of
(WAAS) reference stations [1]. These reference station
receivers have dual frequency capability, which enables
them to measure the total electron content crossed by the
raypath [2]. The estimation process is simplified by the
assumption that the total electron content is concentrated
at a given altitude. In this model, called thin shell model
[3], each measurement corresponds to a location in the
shell, labeled Ionospheric Pierce Point (IPP). Figure 1
shows a map of the CONUS region with the IPPs at a
given time.

Figure 1. IPPs over the CONUS region for a quiet day
(July 2nd, 2000).



Ideally, each user would use the IPP
measurements to estimate the ionospheric delay from the
user receiver to each of the satellites in view, by
estimating the delay at each corresponding IPP as well as
the confidence bound on the estimate. Unfortunately, the
available bandwidth to transmit the corrections is not
sufficient to transmit both the location of the
measurement –which changes over time - and the
magnitude. Instead, the WAAS message specifies the
ionospheric delay and the confidence bound for a set of
points disposed in a regular grid, the Ionospheric Grid
Points (IGPs)[4]. In this paper we are interested in the
limitations of ionospheric delay estimation due to
ionospheric behavior and due to the location of the
measurements (IPPs), within the thin shell model. For this
reason, we assume here that each user has complete
knowledge of all IPP locations and ionospheric delays, as
if all the necessary bandwidth were available. The
problem then becomes the estimation of the delay and the
protection limit at the location x0, knowing the delay at
the locations x1, …,xn.

Previous work [5] strongly suggests that the
degree of correlation of the measurements is a function of
the distance between the locations, even after removing a
planar trend. For example, as we arbitrarily remove points
from the fit, the empirical distribution of the residuals
(error-confidence bound ratio) gets worse. This
phenomenon is not harmful for the actual level of
capability (LNAV/VNAV), since this effect is small for
the very conservative confidence bounds sent.
Nevertheless, in the actual algorithm the measure of
coverage is taken into account through a corrective term
labeled σ ‘undersampled’. This term measures very
conservatively the quality of coverage. The method to
obtain σ ‘undersampled’ in the current algorithms is fully
described in [6].

The next goal for WAAS is to achieve GLS
capability. It would require in particular to reduce the
ionospheric confidence bound by at least a factor of 2
(from 1.5 meters to .60 meters. For this reason, either
much more sensitive ‘metrics’ will be needed, or an
algorithm whose performance is not affected by poor
coverage.  The purpose of this work is to show how we
could obtain such an algorithm by using the models and
techniques developed in geostatistics. We will also show
how we can use those concepts to produce a family of
‘metrics’.  After a brief introduction of the technique
called ‘ordinary kriging’, the actual algorithm is
described; this is followed by the results of the algorithm
on the supertruth data [2]. Finally, a possible metric
measuring coverage of a region based on kriging is
suggested.

GEOSTATISTICS

One of the most important problems in mining is to
predict the ore grade in a mining block from observed
samples at irregularly spaced locations. To treat this
problem geostatistics uses models comprising one random
variable per location to model incomplete knowledge.
However, the different random variables are correlated,
with varying degrees depending on the distance. The
collection of random variables is a random function :
{Z(x, ω)| x∈ !2, ω∈Ω }

For a fixed location xi, Z(xi, ω) is a function of ω, that is,
it is a random variable. For a fixed ωj in Ω, Z(x, ωj) is a
deterministic function of x. Our assumptions about what
Ω is will determine the estimation algorithm. For
example, that Z(x) is a linear function of  x with
independent noise the algorithm should be based on a
planar fit.
 A classical assumption in geostatistics is the
intrinsic stationarity. It states that for any x and in a
neighborhood of x :

E( Z(x+h) - Z(x) ) = 0                (1)

var( Z(x+h) - Z(x) ) = 2γ(|h|)     (2)

Equation (1) states that the expectation of Z is locally
stationary and (2) states that the variance of a
measurement to another measurement is only a function
of the distance between the measurements.  The IPP
measurements violate the first assumption (since they
follow a clear trend  -shown in Figure 1). A variable trend
can also be assumed, but we will assume this model for
the sake of simplicity in the presentation.

Kriging provides a solution to the problem of
estimation based only on the above assumptions and on
the knowledge of the function γ, called the variogram. We
summarize below the most common type of kriging,
known as ordinary kriging [7], [8]. It assumes that the
mean is unknown. We write the estimate at x0 as a linear
combination of the function at known locations:
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We want to minimize the difference between the estimate
and the true value, that is:
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The minimization of this function with the constraint on
the sum of the coefficients is straightforward using the
method of Lagrange. Using the following notations:
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the equation defining the minimizer is:

A bλ =

The resulting estimation variance is:
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Under the above assumptions the kriging estimator is the
best unbiased linear estimator in the sense that it
minimizes the estimation variance, also called kriging
variance. The main feature of kriging is the explicit use of
spatial decorrelation to optimize the estimation, resulting
in two properties that are desirable in an estimation
algorithm. First, near points carry more weight than
distant ones. Their relative proportions depend on the
position of the sampling points and on the variogram γ.
Second, there is a declustering effect: measurements that
are close together will carry less weight individually than
isolated ones at the same distance. At the same time the
kriging variance is a function of the geometric location
that closely follows our intuition: points that are ‘far’
from the measurements will have a larger kriging
variance. In Figure 2 a map of the kriging variance has
been generated using a linear variogram.

Figure 2. Kriging variance map over CONUS region for
a quiet day.

The critical point in kriging is the variogram γ.γ is not
known and needs to be estimated from the IPP
measurements. There are several ways of estimating it.
The classical formula for the experimental variogram is:
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where m(hj) is the number of pairs of measurements
separated by a distance h comprised in the interval [hj,
hj+1]. However, one cannot use the experimental
variogram in the formulas above. γ has to be such that the
estimation variance is always positive. More precisely, γ
needs to be Conditional Negative Semidefinite. For the
purposes of this work, we retain that any variogram γ of
the form γ(h)=a+b(distance)α is admissible provided that a
and b are positive and α is between 0 and 2. Once the
experimental variogram is determined we match an
admissible variogram to it.

ALGORITHM

In order to apply kriging to ionospheric estimation, we
need to know what variogram should be used, that is,
which one describes the random behavior of the
ionosphere conservatively. Figure 3 shows the variogram
of the ionosphere for quiet days computed using the
formula above, taking the width of each bin to be 200 km.



Figure 3. Variogram of ionospheric measurements for
quiet days.

The shape of this variogram is mainly determined by the
planar trend of the ionosphere. A deterministic planar
trend produces a parabolic variogram with a flat
derivative at the origin. If that was the true structure of the
ionosphere, kriging would not be adapted to ionosphere
estimation. However one can see that the derivative at the
origin is not zero, which means that even after removing
the planar trend the decorrelation decreases with distance.
We also see that for distances larger than 1500 km the
behavior is not planar anymore.

In this study it we chose to estimate the
variogram in real time. For each location where the
ionosphere needed to be computed, the experimental
variogram was computed with the IPPs located within
2000 km. The theoretical variogram –an admissible
variogram close enough to the experimental variogram-
was chosen to be linear γ(h)=a+b*distance. The constant
term was taken to be the intercept of the experimental
variogram γ̂  and the slope was such that γ̂ would lie
under γ. All those choices were arbitrary, mainly because
the algorithm performance was robust against changes,
provided they were reasonable.

Once the variogram was computed, the kriging
equations were applied to find the estimate and the
variance. Figure 1 and 2 show the map of the kriging
estimates and the map of the kriging variances at a given
time respectively.

RESULTS

The evaluation of the algorithm was done through cross-
validation: for each measurement we compute the
estimate produced by the remaining measurements at the
same location as well as the kriging variance. We then
form the normalized residual:
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Figure 4 shows such a distribution for July 2nd 2000.

Figure 4. Histogram of the normalized residuals for July
2nd 2000.

The performance of the algorithm was measured through
the characteristics of the resulting distribution: mean,
variance, maximum normalized residual, gaussian
overbound. The gaussian overbound is the tighter normal
distribution such that it always bounds the empirical
cumulative distribution function. It is expressed as a
factor indicating by how much we would have to inflate
the bound. If this factor is larger than 1 it means that there
might be integrity failures. The algorithm based on
kriging was compared to one based on a planar fit where
the decorrelation is determined in real time [9]. Three
days worth of supertruth data where analyzed: a nominal
day, July 2nd 2000, a quiet day showing some unusual
behavior without being stormy, May 25th 2000 and a
storm day, July 15th 2000. Tables 1, 2 and 3 summarize
the results obtained.

KRIGING PLANAR
FIT

Variance of norm.
residuals

.51 .86

Gaussian overbound 1.01 1.14
Maximum norm.
residual

4.33 4.93

Mean of σbound .28 meters .23 meters
Table 1. Results for July 2nd 2000.



KRIGING PLANAR
FIT

Variance of norm.
residuals

.37 .78

Gaussian overbound .91 1.44
Maximum norm.
residual

3.78 6.14

Mean of σbound .38 meters .28 meters

Table 2. Results for May 25th 2000.

KRIGING PLANAR
FIT

Variance of norm.
residuals

.52 .80

Gaussian overbound .95 1.21
Maximum norm.
residual

3.76 5.40

Mean of σbound .82 meters .69 meters
Table 3. Results for July 15th 2000.

We first notice that kriging provides results that are
comparable in performance to the planar fit. Besides this,
kriging also seems to provide more integrity than the
planar fit since its gaussian overbound is systematically
under the one corresponding to the planar fit. However,
these results depend heavily on parameters that can be
tuned.

It is far more informative to look at the behavior
of these algorithms under data deprivation schemes. The
estimation algorithms are more likely to fail in providing
integrity when there are few measurements. These
undersampled situations do not occur often but can be
responsible for integrity failures. It is thus essential to test
the robustness of the estimation algorithms by simulating
these undersampled situations. For this study, we
implemented a disk data deprivation scheme: in the
estimation process we only use measurements that are at a
distance larger than a given radius R. The cross-validation
process was carried out for radii going from 0 km to 900
km every 100 km. For each radius an empirical
distribution was obtained. Instead of displaying the 10
different empirical distributions we show in Figure 5 their
variance as a function of the radii.

Figure 5. Variance of the normalized residuals of both
algorithms under a data deprivation scheme (July 2nd

,2000).
In the planar fit the parameter that has a major

impact on the estimated bound is the number of
measurements considered for the fit. One can see that this
parameter does not describe the degree of coverage very
well: the distribution of the normalized residuals widens
as the excluded radius increases. It is for this reason that a
metric had to be added in the current WAAS algorithm to
account for this deterioration without losing too much
availability. The curve corresponding to kriging has a
much more satisfactory behavior: the distribution of the
normalized residuals remains the same, regardless of the
radius. Because of the explicit use of the variogram, the
algorithm takes into account the loss of information due
to the scarcity of data, or due to its clustering.

METRICS BASED ON THE KRIGING VARIANCE

There are still many questions that need to be studied to
bring full integrity to an algorithm based on kriging. In
this section we propose a short term application of kriging
that could enhance the capabilities of the current
algorithms with few modifications. The shape of the
kriging variance map shown in Figure 2 suggests that
kriging could be readily applied to measure the degree of
coverage of a given region, regardless of the estimation
algorithm. The regions where the kriging variance is large
correspond to regions where visually we would assign a
larger uncertainty. This feature makes the kriging
variance a good candidate for a metric, that can be used to
determine σ ‘undersampled’ following the method
presented in [6]. For this purpose, we do not need to
estimate the variogram in real time. Instead, we need to
find a fixed variogram that produces a good correlation
between error and kriging variance.

kriging

planar fit



CONCLUSION

Since the measure of uncertainty is given by the
variogram, it is essential to have a very high confidence
on the variogram used in a given situation. Although here
a real time estimation of the variogram gave excellent
results, we need to further study the stationarity of the
ionosphere.

Kriging does not try to fit a given shape to the
ionosphere; instead, it only uses the correlation between
measurements to take into account the loss of information
due to distance. It includes explicitly the random behavior
of the ionosphere through the variogram. It is this
capacity to model spatial uncertainty that distinguishes
kriging from other estimation techniques. By applying
kriging under data deprivation schemes we have shown its
ability to measure uncertainty. Because of the good
results obtained and the attractive features of kriging we
believe that the undersampled problem in WAAS could
be greatly mitigated using ideas based on kriging.
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