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ABSTRACT 
 
One of the parameters driving the performance of the 
Wide Area Augmentation System (WAAS) is the Grid 
Ionospheric Vertical Error (GIVE). The GIVE bounds the 
estimation error of the ionospheric delay at each 
Ionospheric Grid Point (IGP). The GIVE is generated 
such that a user interpolating both the vertical ionospheric 
delays at the IGP and the GIVE, is protected. The GIVE 
is a function of several parameters: the geometry of the 
measurements, the measurement noise, and the state of 
the ionosphere, which yields the process noise. It is very 
important to distinguish carefully between measurement 
noise and process noise, as they have a different behavior 
in the generation of the confidence bound. The 
measurement noise contribution to the confidence bound 
tends to zero as the number of measurements increases. 
The process noise, characterized in the current WAAS 
algorithm by a standard deviation around the planar trend 
in nominal conditions, indicates a lower bound for the 
confidence bound. For each satellite, the measurement 
noise is well characterized as a function of the elevation 
and tracking time. However, the process noise, which has 
a large variability due to the possibility of storms or mild 
irregularities, is measured or tested only through 
observations that have measurement noise. For this 
reason, the observability of the state of the ionosphere is 
impaired by the measurement noise. Although this is not a 
problem for the current level of service for WAAS, it 
could become an issue as we try to increase availability 
by decreasing the conservatism of the nominal state of the 
ionosphere. 
 
In this study, we develop a set of formulas to evaluate the 
Probability of Hazardously Misleading Information 
(PHMI) for two possible algorithms. This analysis takes 
into account the loss of observability of the state of the 
ionosphere (which determines the process noise) due to 
the measurement noise. It can be applied to any vertical 
ionospheric delay model that has a deterministic trend and 
a random gaussian component. We will also see in what 
cases it is essential to distinguish between measurement 
noise and process noise. This analysis will help maintain 

integrity for further improvements to the WAAS 
ionospheric algorithms. 
 
 
INTRODUCTION 
 
It is well known that the large ionosphere variability over 
time and space together with the –necessarily- irregular 
sampling of the ionosphere has caused the WAAS 
ionosphere confidence bounds or Grid Ionospheric 
Vertical Errors (GIVE) to be very large [1], [2]. The 
GIVE calculation needs to take into account the geometry 
of the measurements, the noise affecting each of those 
measurements –the measurement noise- and the state of 
the ionosphere –which determines the process noise. 
While the measurement noise is well known at all times 
[3], the process noise is unknown in real time, but can be 
inferred from the measurements (which are affected by 
measurement noise). The goal of this paper is to 
understand the effect of the measurement noise on the 
uncertainty of the ionosphere state, and, as a consequence, 
on the probability of hazardously misleading information 
(PHMI) [4]. 

Despite its variability, the ionosphere can be well 
described by a very simple model. This model states that, 
locally, the ionosphere follows a planar trend [1]. Once 
the trend is removed, the residuals can be modeled by a 
random gaussian field –the process noise. One can either 
assume a constant covariance, or more accurately, a 
covariance that depends on distance [5]. The most 
common covariance structure is called the nominal 
ionosphere. Because the ionosphere does not always 
follow the nominal model, a chi-square test statistic is 
computed on the available measurements to check that 
they are compatible with the assumed nominal model [1]. 
Even if the measurements pass the test, the confidence 
bound needs to be inflated by a factor labeled Rirreg, to 
take into account the possibility that noise is impeding our 
ability to detect disturbed ionospheric conditions. The 
statistic can be used in several ways. In this work we will 
focus on two possible ways of computing this inflation. 
The first one is currently used in the WAAS ionospheric 
correction algorithm. In this option, the chi-square 



statistic is only used to check whether the measurements 
are compatible with the model. The second one, a 
proposed enhancement of the current algorithm, uses the 
chi-square statistic explicitly to correct the confidence 
bound [6].    This algorithm is called Real Time Rirreg. In 
both cases we need to compute the PHMI in order to 
evaluate the integrity of the system.  

This problem can only be approached using 
models for the random processes and for the ionospheric 
structure –both in quiet and storm conditions. In the first 
part, we will introduce the models and the assumptions 
we need to make. Then we will derive formulas to 
evaluate the PHMI for the two algorithms mentioned 
above. For both algorithms, we will study the dependency 
of the PHMI on measurement noise.  
 
 
DESCRIPTION OF THE PROBLEM 
 
It has been shown that within the thin shell model, the 
ionosphere is well described by a planar trend and a 
random gaussian field: 
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where x is the location. The covariance function of r is 
called C. However, this covariance structure is usually 
unknown. 
 At each time frame we have m ionospheric 
measurements, collected at the reference stations with 
dual frequency receivers. These measurements are 
corrupted by the measurement noise n, whose mean 
should be zero (the biases are removed using an off line 
least square process): 
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We call N the covariance matrix of n(x). It is usually a 
diagonal matrix since measurement noise is uncorrelated 
from one receiver to another. 

In the two algorithms considered here the user 
computes the vertical delay correction for each of the 
satellites in view by forming a linear estimate of the 
measurements [5]: 
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In this work it is not relevant how the weights are 
computed. The estimation variance is, for each of the 
delays: 
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We can divide this expression in two terms: the terms due 
to process noise, C, and the terms due to measurement 
noise: 
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The term s meas, which depends on measurement noise, can 
be computed (or we can at least find an overbound of it). 
However, sprocess depends on C, which we do not know. 
We do know that the ionosphere most of the time is well 
described by a nominal covariance Cnom. The estimation 
variance assuming a nominal covariance is: 
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We see that the difference between the true variance 
estimation and the computed estimation variance can be 
very large, depending on the state of the ionosphere. 
There fore we need to correct for this possible difference. 
 At this point, we need to make additional 
assumptions. A practical and very good approximation is 
to assume that true covariance is a multiple of the nominal 
covariance [7]: 
 

2
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This characterization captures most of the effects of a 
disturbed ionosphere, if we assume that the ionosphere is 
stationary. In this paper, we do not treat deviations from 
stationarity (for more information on how they are dealt 
with in WAAS, please refer to [2]). Now, all the 
uncertainty concerning ionospheric behavior is 
summarized in the unknown parameter u. To summarize, 
we have: 
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The question now is how to best use the available real 
time measurements to correct the difference between 
these two and fulfill the PHMI requirements. The two 
algorithms examined here make use of the chi-square 
statistic of the measurements to compute the inflation 
factor Rirreg. In this work, we choose to multiply also the 
term smeas because this is how it is done in the current 
system. The confidence bound is: 
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It has to be such that, when a correction is sent and 
flagged as usable, the probability of an actual error is 
5.33s estimated is below 10-7 (the factor 5.33 corresponds to 
the 10-7 quantile in a gaussian distribution): 
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 This is what constitutes the PHMI requirement [4]. 
 
 
STORM DETECTOR IN THE CURRENT WAAS 
ALGORITHM 
 
We now analyze the WAAS storm detector. First, a chi-
square distributed quadratic form on the measurements is 
computed. At this point there are two possible outcomes.  
If the statistic is above a pre-defined threshold, the 
measurements are declared not to be compatible with the 
nominal model and the confidence bounds set to their 
maximum value. If the statistic is below the threshold the 
measurements are assumed to be compatible with the 
nominal model. However, we need to account for the 
cases where a disturbed ionosphere results on a low chi-
square statistic. This is done by inflating the estimation 
variance by the factor Rirreg. In this algorithm, Rirreg is 
independent of the chi-square statistic. 
 The first step is to form a chi-square distributed 
variable from the measurements. This is only a possibility 
if we know the underlying covariance. Suppose the 
underlying covariance is the nominal covariance. From 
the m measurements we can get m-3 residuals that are 
independent unit gaussian under the nominal model: 
 

measy I= Γ  
 
Here Imeas is the vector of vertical ionospheric delay 
measurements (See appendix for an expression for G). 

The sum of the components of y is chi-square distributed 
under the nominal model. If the true model is not the 
nominal model, y is still 0 mean but its covariance is no 
longer the identity. The covariance is instead: 
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When u is different from unity, the sum of the 
components of y will not necessarily be chi-square 
distributed. There is a case where it will be chi-square 
distributed, which corresponds to N’ bein a multiple of 
the unity: 
  

3' mN Iµ −=  
 
Since we know that we have: 
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We need to have: 
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The parameter µ can be thought of as the proportion of the 
covariance matrix coming from the measurement noise. 
We have in this case: 
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This result means that: 
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is chi-square distributed. We see already in this equation 
the effect of measurement noise on the chi-square 
distribution: as µ gets closer to one, the distribution is less 
dependent on the parameter u. As a consequence, it will 
be more difficult to distinguish storm conditions from 
quiet conditions as measurement noise increases. 

We now go back to the general case and derive 
an expression for the PHMI for the storm detector. First 
of all, we condition the PHMI on the ionosphere state: 
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Since we do not want to specify any a priori distribution 
of u, we are going to study P(HMI|u). This term will be 
the product of the probability of the chi-square statistic 



being below the threshold and the probability of having 
an error 5.33 times larger than the broadcast confidence 
bound: 
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Here, there are two tunable parameters that can be 
changed: Rirreg and the threshold T. Because we are 
assuming gaussian random variables, the first factor of 
this product is: 
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As it was pointed out above, the term P(yTy<T|u) is in 
general not chi-square distributed. Instead, it is a weighted 
sum of chi-square variables. Although there is no simple 
analytical expression for such a distribution, an easy 
approximation can be found in [8]. 
 Figure 1 shows the behavior of the PHMI for a 
given Rirreg and a given threshold T but different levels of 
noise. We considered a situation with 30 measurements. 
The ionosphere covariance is s decorr

2I, with s decorr =.35 m. 
The measurement noise is assumed to be the same for all 
measurements. What is very noticeable is the degradation 
of the PHMI for large values of u as measurement noise 
increases. 
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Figure 1. PHMI as a function of the state of the 
ionosphere for different measurement noise. 
 

REAL TIME Rirreg 
 
Another way of taking into account the ionosphere 
behavior is by making Rirreg depend on the actual 
measurements. A reasonable algorithm consists on 
making Rirreg

2 a quadratic form of the measurements: 
 

2 T
irregR y Ry=  

 
If we assume that we do not make use of the threshold, 
the PHMI (given the ionosphere state u) is: 
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It would be impossible to try to evaluate this integral 
numerically, since it has n-3 dimensions (usually above 
30). But it turns out that this m-3-dimensional integral can 
be transformed in a univariate integral, using Craig’s 
formula for the Q-function [9]. The result is: 
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See the appendix for the details of the proof. Where we 
have: 
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This integral can be easily computed. Figure 2 shows the 
results for several parameters. The parameters used are 
the same as in Figure 1. Again we see how the PHMI 
increases as the measurement noise increases. It is less 
dramatic than in the storm detector. However, each curve 
is monotone (it gets worse as u increases), which is not 
the case in the storm detector. This could be fixed by 
adding a threshold. 
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Figure 2. PHMI as a function of the state of the 
ionosphere for different measurement noise for the Real 
Time Rirreg algorithm. 
 
For the noiseless case, the formula becomes: 
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which does not depend on the ionosphere state u. From 
this formula it is possible to show that the optimal R is a 
multiple of the identity. Therefore, in the noiseless case, 
the optimal real time Rirreg is a multiple of the chi-square 
statistic. 
 
 
CONCLUSION 
 
The large range of ionospheric behavior requires WAAS 
to monitor the state of the ionosphere before computing 
the correction and the confidence bound. A good way of 
monitoring the ionosphere is by using the chi-square 
statistic. However, it is very important to evaluate the 
impact of measurement noise on tests based on the chi-
square statistic. In this work, we have developed two 
calculations of the PHMI, one for the current WAAS 
storm detector and the other for a proposed enhancement 
of it. Both calculations show that measurement noise has 
to be taken into account carefully and the confidence 
bounds need to be adjusted accordingly. Otherwise, the 
PHMI increases by several orders of magnitude. This 
analysis will be helpful in particular as conservativeness 
in the confidence bounds is reduced. 
 
 
 

APPENDIX 
 
Obtaining n-3 independent unit gaussian residuals from 
m measurements. 
 
This is a standard procedure. It is however useful to show 
here how they can be obtained. The first step is to filter 
the trend for all measurements. We want to have: 
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for any vector a. Here G is an n by 3 matrix: 
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We therefore need: 
 

0GΓ =  
 
The matrix F defined by: 
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has such a property. We have: 
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where Imeas(x) designates the vector of measurements and 
n(x) is the measurement noise. 
The resulting vector is now zero mean and gaussian. We 
only need to diagonalize it. The covariance of FImeas is: 
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Since F is rank n-3 (the null space has dimension 3), we 
will only be able to extract n-3 independent unit gaussian. 
We need to find a matrix H such that: 
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We will then take: 
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Let us see now what H we should use. Let us define 
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Let us now define ( )
1 1

1
2 2T TP I W G G WG G W

−
= − . P 

is an orthogonal projection of rank n-3. There exists U 
orthogonal of size n by n such that: 
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Let us now write: 
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where U%  is n by m-3, and U is n by 3. We have the 
following equations: 
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T
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From the first equation we see that if we take 

TH U=% % then Γ fulfills the two conditions. Γis defined 
by: 
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Derivation of P(HMI|u) for real time Rirreg. 
 
We use Craig’s formula for Q(z), where the bounds on the 
integral do not depend on z: 
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 We have: 
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we now switch the order of the integration: 
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Now we can integrate over y: 
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finally, we have: 
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