
A New Ionospheric Estimation Algorithm for 
SBAS Combining Kriging and Tomography 

 
 

Juan Blanch, Todd Walter, and Per Enge.  Stanford University 
 
 
 
ABSTRACT 
 
One can divide the existing ionospheric methods for 
SBAS in two categories: tomography and methods relying 
on the thin shell model.  At first sight, tomography 
appears to be the right choice.  Tomography reconstructs 
the three dimensional density of the ionosphere from the 
available measurements.  However, there are several 
drawbacks to tomography: the system of equations to be 
solved is often underdetermined – leading to artificial 
constraints -, the basis functions that are used are 
arbitrary, and the stochastic properties of the ionosphere – 
which are extremely variable – are not taken into account.  
The thin shell model methods on the other hand 
(including the planar fit that is currently used in the Wide 
Area Augmentation System (WAAS) and methods based 
on kriging) assume that the vertical density profile is an 
impulse function.  This assumption is very limiting and 
gives rise to the vertical to slant error.  But it allows us to 
transform a three-dimensional problem in a two 
dimensional estimation problem, and to easily 
characterize the stochastic properties of the ionosphere. 
 
We present an ionospheric estimation method that has 
elements from both categories.  Like tomography, it takes 
into account the three dimensional nature of the 
ionosphere, and like in the thin shell model methods 
mentioned (planar fit, kriging), it relies on the measured 
stochastic properties of the ionosphere.  This method is 
not a heuristic mix of both methods, but rather a natural 
extension of kriging in three dimensions.  The technique 
was tested using post-processed ionospheric Total 
Electron Content measurements from the US and Brazil. 
 
 
INTRODUCTION 
 
The ionosphere causes the most difficult error to mitigate 
in Satellite Based Augmentation Systems (SBAS) [1].  
This is particularly true when the ionosphere contains 
disturbances, which happens rarely in mid-latitudes [2] 
(although enough to deny service several days a year over 
the US [3]) and routinely in the low latitudes [4].  
Currently, the ionospheric models used in SBAS rely on 
the thin shell approximation [5].  The error bound 

generated for each approximated delay is based on the 
correlation of the ionospheric delay projected on the thin 
shell [6], [7], [8].  These models work very well on quiet 
days over mid-latitudes and, by reducing the 
dimensionality, allow the augmentation system to send 
the ionospheric delay information to the users in a 
compact manner [5]. 

The limitations of the thin shell are well known: 
as the ionospheric vertical density profile departs 
(considerably) from the thin shell assumption, the 
decorrelation of the measurements deteriorates, 
particularly for small distances, features appear in the 
middle of quiet regions, and it is difficult to decide 
whether they are due to real ionospheric features or a 
particular geometry of the ray paths.  To solve these 
problems, tomography has been proposed [9], [10].  
Tomography reconstructs the electronic density in the 
ionosphere from the slant measurements.  The user then 
receives a representation of the density and can 
reconstruct the ionospheric delay for each ray path, as 
well as an error bound.  There are also several drawbacks 
to tomography: the equation to solve is underdetermined 
and there is no notion of decorrelation of the ionospheric 
density with distance; also, the basis functions used are 
often global, leading to the creation of artificial features at 
the edge of coverage, which causes large estimation errors 
[10]. 

The ionospheric estimation problem for SBAS 
can be separated in two sub-problems.  First, we want to 
find the ionospheric estimation method that minimizes the 
estimation error (the difference between the real delay and 
the delay computed by a user) and that provides an error 
bound, assuming that the user has all the knowledge about 
the measurements performed at the reference stations.  
The second problem arises from the bandwidth limitations 
and the computing limitations at the receiver:  the SBAS 
message needs to be short, and the information included 
needs to be processed easily; as a result, not all the 
measurement information can be sent to the user.  (In the 
current SBAS standard, this problem is handled with the 
ionospheric grid [5].) 

In this paper we will only consider the first 
problem: finding an estimation method that minimizes the 
estimation error and provides an error bound related to the 
geometry of the measurements and the ionospheric 



conditions.  First, we will introduce the model used for 
the ionosphere.  Then, we will derive the best estimation 
algorithm under that model. Finally, the algorithm will be 
evaluated in terms of the standard deviation of the 
estimation error and the ability to provide a reliable error 
bound. 

 
 

IONOSPHERIC MODEL 
 
We would like the model to include two properties of the 
ionosphere: the vertical density profile (ignored in the thin 
shell models) and the decorrelation of the ionospheric 
delay as a function of distance (ignored in the 
tomographic models.)  To this purpose, we generalize the 
two dimensional model that is used in kriging and is 
based on multivariate Gaussian random fields [7], [8] by 
introducing p layers instead of a single thin shell.  As in 
the thin shell models, we use a local model (as opposed to 
global in ionospheric tomography).  This allows us to 
assume that in each layer k, the vertical delay has a mean 
value φkm, where m is the same across the layers and φk is 
constant and determines the mean vertical profile.  We 
take: 

1k
k
ϕ =∑ . 

The variable m can interpreted as the mean vertical 
ionospheric delay.  In each layer, the ionospheric vertical 
delay is: 

( )( ),vertical k k kI m r xϕ= ⋅ +  
where x is the location of the pierce point and rk(x) is a 
multivariate Gaussian field with a distance dependent 
covariance similar to the one introduced in [findref]: 
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The random fields rk are assumed to be independent and 
to have the same properties in each layer.  The constants 
are set to A=5 m2 and d= 200 km.  The main difference 
with the covariance used in kriging is the absence of the 
nugget effect [7] (discontinuity at the origin).  There is no 
nugget effect because the difference between converging 
ray paths goes to zero (as opposed to the difference 
between IPP measurements as the IPPs get closer).  A 
delay measurement is assumed to be formed as follows: 

( )( ), ,
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,slant i k k k i k i
k
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In this equation, xk,i is the location of the pierce point of 
the ith measurement on the kth layer and obk,i is the 
corresponding obliquity factor [5].  The purpose of this 
formulation is to enable the computation of a covariance 
between the ray paths.  The layers are described in Table 
1. 
 

Height in 
km 

350 400 450 500 550 600 650 

φk .25 .125 .125 .125 .125 .125 .125 
 
Table 1.  Mean ionospheric vertical profile. 
 
Using this model we can compute the covariance between 
two measurements (once the mean has been removed): 
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In this paper, we have assumed that the different random 
fields are independent, in which case the formula is: 
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Notice that the complete covariance of the measurement 
includes the covariance of the measurement noise. In this 
paper the measurement noise covariance is noted M.  
 
 
ESTIMATION ALGORITHM 
 
Almost all the ionospheric estimation techniques are 
linear, that is, the estimated delay for a ray path is a linear 
combination of the measurements (let us suppose that 
there are n) taken at the reference stations: 

,
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n

unknown i meas i
i

I Iλ
=

= ∑  

The estimator presented in this work is also linear.  Now 
let us fix a certain ray path.  We first require (like in 
kriging [7], [8], [11]) that the estimator be unbiased i.e. 
the expectation of the estimated value is equal to the 
expectation of the real value: 

( ) ( )ûnknown unknownE I E I=  

If we introduce in this equation the assumed ionospheric 
model (see the previous section) we end up with the linear 
constraint on the coefficients: 
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The next step is the minimization of the estimation 
variance (subject to the linear constraint above): 
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As in kriging, the estimation variance is a quadratic form 
of the coefficients, and the form of the solution is the 
same [8], [12]: 
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where W is the inverse of the covariance of the 
measurements (coming both from the ionosphere and the 
measurement noise): 
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c is an n by 1 vector defined by: 
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G is an n by 1 vector defined by: 
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and finally: 
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The multiple layers are only used to compute the 
covariance between the measurements (we do not attempt 
to estimate each layer).  As with kriging, the error bound 
is derived from the estimation variance [7], [8].  The 
estimation variance is given by the equation: 
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σ2
est depends on the assumed average density profile, the 

assumed covariance dependence on each of the layers, 
and the geometry of the surrounding measurements.  This 
method can be interpreted as a generalization of ordinary 
kriging to a multilayer setting.  For this reason we will 
designate it in this paper by extended kriging. 
 
 
RESULTS 
 
In this section we evaluate the performance of extended 
kriging by computing the difference between the true 
delay and the estimated delay, and comparing it to the 
estimated error bound.  We will compare this algorithm to 
two others: the planar fit used in the current WAAS 
algorithm [1] and a proposed improvement based on 
kriging [7], [11].  The algorithm was evaluated using real 
data gathered at dual frequency receivers over the United 
States (WAAS network) and Brazil (a selection of GIS 
stations).  The WAAS data is the so-called supertruth data 
[6] and the Brazil data has been post-processed at JPL [4].  
In both cases the tracks have been carrier smoothed and 
the satellite and receiver biases have been mostly 
removed.  As a result, we have a low noise data set of 
slant GPS ionospheric delays.  The data sets correspond to 
April 6, 2000 (severe storm), September 7, 2002 
(moderate storm) and July 2, 2000 (quiet day) for the US 
and February 19 and 21, 2002 for Brazil.  The data was 
decimated down to 500 seconds for the US and down to 

150 seconds for Brazil.  For the US, only the 
measurements taken from CONUS (Conterminous US) 
were tested.  Figure 1 shows the location of the Brazilian 
reference stations. 

 
Figure 1.  Reference station network over Brazil 
 
The method used to evaluate the algorithms is cross-
validation: for each measurement from the data set, we 
compute the delay and the error bound using the 
remaining measurements.  Because the method presented 
here relies on neighboring ray paths, we also excluded all 
of the measurements belonging to the same station.  As 
with the current WAAS algorithm, past measurements are 
not used.   

A new algorithm should not have more 
requirements for estimation (in number of measurements, 
for example) than the current algorithms: every time the 
current algorithm provides an estimate, the new algorithm 
has to provide one too.  For each delay to be estimated, 
the selection of measurements to be used for the 
estimation was the same for the three algorithms: all 
measurements with IPPs (at 350 km height) within 1200 
km of the ray path IPP were selected (excluding, as 
mentioned before, the ones taken at the same reference 
station).  Also, a minimum of 10 points was required for 
estimation. 

The results summarizing the accuracy of each of 
the algorithms for each day are presented in Tables 1 and 
2.  In order to compare the three algorithms we computed 
the corresponding vertical ionospheric delay for extended 
kriging.  For each day and algorithm we tabulated the 
standard deviation of the error (top) and the maximum 
absolute error.  These results need to be read with caution: 
some test measurements are too far from any 
measurement to be estimated correctly with any 
algorithm.  Also, the data have been decimated, so some 
maximum error values could have been missed.  

 
 

 



July 2, Sept. 7, Apr. 6, 
 2000  2002  2000  

 max max rms max rms rms 
Planar .21 1.7 .55 5.4 1.68 10.7 
Kriging .18 1.5 .41 3.3 1.44 10.4 
Extended  
Kriging .17 1.5 .33 3.4 .86 9.4 

 
Table 1.  Standard deviation of the error and maximum 

 

able 2.  Standard deviation of the error and maximum 

he results corresponding to the new algorithm are 

ation Planar Kriging Extended 

absolute error in meters in CONUS 
 
 

 
T
absolute error in meters in Brazil 
 
T
always better than for the planar fit and kriging (and 
kriging is always better than the planar fit).  The residuals 
are reduced by almost 50% over Brazil and on April 6 
over the US.  The maximum errors are not as dramatically 
reduced, but this is due to the edge location of some of the 
stations.  For evidence of this, we show in Table 3 the 
results by reference station over Brazil for February 19. 
 
  
St

Kriging 
 rms max rms max ax rms m
BRAZ  1.15 4.68  .94  4.68  .63  4.48  
CUIB .92  4.01  .82  3.82  .69  3.10  
FORT .99  4.65  .87  4.18  .84  5.10  
IMPZ .97  4.06  .92  3.52  .85  4.22  
MANA .90  3.27  .76  2.38  .68  1.70  
PARA .96  5.94  .66  4.96  .45  5.03  
POAL .93  .4.55  .75  4.26  .60  4.01  
RECF .96  7.15  .86  5.72  .68  4.81  
RIOD .99  5.16  .60  3.59  .42  2.48  
SALV 1.19  6.50  1.03  5.20  .72  4.11  
UEPP 1.06  6.02  .88  4.81  .62  3.88  
VICO 1.05  7.64  .77  5.09  .50  3.44  
 
Table 3.  Standard deviation of the error and maximum 

 we exclude Fortaleza (FORT) and Imperatriz (IMPZ) 
where the maximum error is slightly larger, both the 

valuation consists on comparing 
e actual error to the computed error bound.  (Here the 

absolute error in meters for each station in Brazil on 
February 19,2002. 
 
If

standard deviation and the maximum error are 
dramatically decreased (up to 50%), especially in the well 
covered stations.  The residuals as a function of time are 
shown in the Appendix. 
 
The second part of the e
th
error bound will designate the standard deviation  of the 
expected error).  The error bound is the product of the 
square root of the estimation variance and an inflation 
factor Rirreg, which is a function of the chi-square statistic. 
The determination of this inflation factor is exposed in 
[8].  Here it suffices to say that it is meant to inflate the 
error bound according to the ionospheric behavior. 
 

( )( )12 T T TR I W WG G WG GW Iα
−

= −irreg n meas meas  

 
In this equation, the factor αn is a constant function of the 

umber of measurements and it is given in the Appendix.  n
Imeas is the vector of measurements used of estimation.  
We have: 
 

error bound = irreg estR σ  
 
Once we have the error bound we form the ratio: 
 

normalized residual =
estimated vertical delay - computed vertical delay 

error bound
 

 
The result for February 19, 2002 over Brazil is shown in a 

istogram in Figure 2: h
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Figure 2.  Normalized residuals for February 19, 2002 
 

ds 
own in Figure 3. 

Feb. 19, Feb. 21, 
 2002  2002  

max max rms rms 
Planar 1.05 7.6 1.60 10.5 
Kriging .85 5.7 1.13 8.5 
Extended  
Kriging .64 5.1 .90 8.0 

These residuals where obtained with the error boun
sh
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Figure 3. Error bound distribution for February 19, 2002 
 
Except for some outliers (due to the edge of coverage 
location of some of the stations where the ionosphere is 
more disturbed than in the locations where there are 
available measurements), the error bounds behave 
correctly.  These results, although preliminary, show that 
it is possible to compute an error bound with this 
algorithm. 
 
 
CONCLUSION 
 
Extended kriging reduces the estimation errors between 
30% and 50% compared to a planar fit on the thin shell 
and between 15% and 30% compared to kriging.  This 
result suggests that many of the features of the ionosphere 
as projected on the thin shell seen during disturbed 
conditions are due to limitations in the thin shell model 
itself, and that there is a way of reducing the ionospheric 
estimation errors even during ionospheric storms and in 
low latitudes, in particular in well covered locations.  
However, because the current SBAS message relies on 
the thin shell model, this technique cannot be applied in 
the current standards. 
 The next step will consist on checking whether 
the benefit of this method holds over the course of at least 
five minutes (five minute is the update rate of ionospheric 
information in WAAS) and on optimizing these results by 
finding more appropriate vertical profile functions.  If the 
results are consistently better than the thin shell approach, 
it will be worth studying the minimum bandwidth 
requirements.  If they are not achievable, it might still be 
possible to take some advantage of these results within 
the current algorithm by reducing our threat models [2]. 
 The results presented so far strongly indicate that 
there is a real benefit of extending kriging to a multilayer 
setting.  Furthermore, this technique has demonstrated 
that it does mitigate the limitations of the thin shell model 
while not adopting the problems of tomography. 
 
 

APPENDIX 
 
Additional results 
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Figure 4.  Standard deviation of the errors as a function 
of time on July 2, 2000 in the US 
 

 
Figure 5.  Standard deviation of the errors as a function 
of time on September 7, 2002 in the US 
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Figure 6.  Standard deviation of the errors as a function 
of time on April 6, 2000  in the US 



 

 
Figure 7.  Standard deviation of the errors as a function 
of time on February 19, 2002 in Brazil 
 

 
Figure 8.  Standard deviation of the errors as a  function 
of time on February 21, 2002 in Brazil 
 
 

able of αT n 

n αn n αn n αn 
 
n αn 
10 1.208 19 0.164 28 0.075 37 0.047 
11 4 20 6 29 0 38 5 0.82 0.14 0.07 0.04
12 0.600 21 0.131 30 0.066 39 0.043 
13 0.459 22 0.119 31 0.062 40 0.041 
14 0.365 23 0.109 32 0.059 41 0.040 
15 0.299 24 0.100 33 0.056 42 0.038 
16 0.251 25 0.092 34 0.053 43 0.037 
17 0.214 26 0.086 35 0.051 44 0.036 
18 0.186 27 0.080 36 0.049 45 0.035 
 
Table to mu g ch e s sti
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