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ABSTRACT 
 
In safety of life applications using satellite navigation, the 
Protection Level (PL) equation translates what is known 
about the pseudorange errors into a hard bound on the 
positioning error (the Protection Level).  The current PL 
equations for Satellite Based Augmentation Systems are 
based on Gaussian statistics: all errors are characterized 
by a zero mean Gaussian distribution which is an upper 
bound of the true distribution.  This approach is very 
practical: the calculations are simple and the receiver 
computing load is small.  However, when the true 
distributions are far from Gaussian, such characterization 
forces an inflation of the protection levels that damages 
performance.  Also, in the certification process, it is very 
difficult to agree on a given distribution when the 
statistics are gathered from a multitude of situations (like 
differing elevation angle in the case of multipath), or 
when the process involved has large deviations from a 
Gaussian model (stormy ionospheric behavior).  With the 
development of new optimization methods and the 
increasing computing power, it is worthwhile exploring 
new ways of calculating integrity error bounds. 
 
In this paper we present a way of computing optimal 
protection levels when the errors are characterized by a 
Gaussian random component and a bias that is linearly 
constrained.  We show that the minimization of the 
protection level can be cast as a second order cone 
program (SOCP), and that this particular structure allows 
a quick computation.  As an example, this algorithm is 
applied to a dual frequency Wide Area Augmentation 
System where biases are sent to the user (as well as the 
usual Gaussian terms). 
 
 
INTRODUCTION 
 
Now that the next generation WAAS is being developed, 
it is the moment to determine which new information 
should be included in the new L5 messages in order to 
increase performance.  It has been suggested [1] that 
sending maximum bias information through the new 
messages could decrease the Protection Levels, and thus 
increase performance.  Here, we want to determine, once 

we have bias information, what is the best way of 
combining the pseudorange measurements in order to 
minimize the Protection Level. 

In this work, bias designates an error that does 
not change with time (or very slowly) and that is 
susceptible to cause systematic positioning errors over 
time (as opposed to random errors) for a given user, or at 
a given location.  Some examples of biases in the case of 
SBAS are: 
 

- antenna bias at the reference stations caused by 
the differential group delay.  This bias affects 
both the clock and ephemeris estimate and the 
ionospheric estimate and can reach several tens 
of centimeters.   

- the systematic error in the geostationary 
pseudorange tracking caused by signal 
deformation [2].  Although this bias is random 
from user to user, it is fixed for a given user.  For 
more details about this problem please refer to 
[2].  It has been suggested that even GPS 
pseudoranges might be biased: what is now 
generally accepted to be caused by multipath 
could actually be due to signal deformation. 

 
In addition to the previous examples, where we only add 
biases to the current random errors, a more radical 
approach can be taken, which is to characterize all errors 
as biases.  These biases could be subjected to linear 
constraints.  For example, during disturbed ionospheric 
conditions, it is problematic to characterize the errors as 
being Gaussian.  In this case, it leads to extremely 
conservative estimates of the position error and it is more 
natural to describe the error as a set of biases constrained 
by what has actually been observed.  Such an approach 
has been suggested in [3].  

Current PL equations for SBAS are based on 
Gaussian statistics: all errors are characterized by a zero 
mean Gaussian distribution which is an upper bound of 
the true distribution in a certain sense [4].  For a detailed 
explanation on the current SBAS VPL equation please 
refer to [5].  Here only a summary is provided.  Using the 
SBAS messages, the user computes the inverse of a 
weighting matrix (where n is the number of pseudorange 
measurements): 



2
1

1

2

0 0
0 0
0 0 n

W C
σ

σ

−

⎡ ⎤
⎢ ⎥

= = ⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
This matrix can be interpreted as the covariance of a 
Gaussian overbound of the pseudorange errors.  The 
matrix H that projects the measurements onto the user 
position estimate is then (G is the 4 by n matrix 
describing the line of sights): 
 

( ) 1T TH G WG G W
−

=  
 
This projection matrix minimizes the variance of the 
positioning error in each coordinate.  Let us assume that 
the third column of G is the vertical component of the line 
of sight.  The variance of the vertical error is: 
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The VPL is defined as: 
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where K=5.33 (corresponding to a probability of 10-7 of 
being outside the PL).  An alternate form of the variance 
that will make it easier for us to modify in the next section 
is: 
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where k is the third row of coefficients of the matrix H. 

The outline of the paper is as follows: first we 
will modify the VPL equation so that it includes biases, 
then we will show how to optimize the VPL under the 
new formulation using second order cone programming, 
and finally, as an example, we will show how we can 
study the full benefit of sending biases through the 
WAAS channel with this type of optimization. 
 
 
A VPL EQUATION INCLUDING BIASES 
 
First we give a new error characterization.  Every 
pseudorange error εi is characterized as a normal 
distribution N(µi, σi), where the only information known 
about µi is | µi|<βi.  Under this characterization, and 
assuming that the coefficients applied to the 
measurements to determine the vertical position are 
labeled ki, then a conservative vertical error bound is 
given by: 
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There are ways to take advantage of the fact that a biased 
solution has asymmetric tails, but they will not be 
considered in this work. 

In the previous equation, the coefficients k have 
to be such that when the measurements have no error, we 
retrieve the true position solution.  Let us now consider 
the matrix H that projects the pseudorange measurements 
onto the position solution xest (k is one row of H).  We 
break down the pseudorange into the true pseudorange y 
and the error. We have: 
 

( )estx H y error= +  
y Gx=  

 
Without error and for any position we want: 
 

estx HGx x= =  
 
As a consequence, HG=I and: 
 

[ ]0 0 1 0TG k =  
 
To be valid, any set of coefficients k needs to satisfy this 
linear constraint. 
 
 
VPL OPTIMIZATION 
 
In this section we show how to obtain, for a given 
geometry, the minimal error bound under the error 
characterization presented in the previous section. 
 
The problem can be stated as: 
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As stated, this problem does not have a recognizable 
structure.  The first step consists in expressing differently 
the quantity to be minimized.  Let us define A and b as: 
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We have: 
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The notation A bε ≤ has to be interpreted component 
wise.  The problem is now: 
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Under this form, the problem looks more complex than in 
the original form.  This transformation has two purposes: 
first, to show that the problem can be generalized to more 
complex constraints on the biases; second, we show in the 
Appendix that this problem is equivalent to: 
 

[ ]
minimize      
subject to     0 0 1 0

                    0

T T T

T T

K ACA b
G A

λ λ λ

λ

λ

+

=

≥

 

 
This transformation can be interpreted as the change of 
variable: TA kλ = . 

Before treating the general case, we now go over 
two limiting cases: b=0, and C=0.  When b=0, it is easy 
to see that we end up with the current least squares 
problem, which has an analytical solution.  With C=0, the 
minimization problem becomes a linear program (LP).  
Although there are no analytical solutions for linear 
programs, they can be very efficiently solved and LP 
solvers are now widespread and easily available. 

It turns out that the general problem has also a 
standard structure known as Second Order Cone 
Programming [6].  To make this structure more apparent, 
we introduce a new variable ν and write the problem as: 
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Under this form, we can see that we are optimizing over 
the intersection of a simplex and a second order cone.  
Second Order Cone programs (SOCP) are a class of 
convex problems that have been extensively studied in 
convex optimization theory and for which there exist very 
efficient solvers (although not as widespread as LP 
solvers) that use interior point methods.  These iterative 
solvers have the very important following properties: 

- they converge in very few steps (typically less 
than 20) 

- they provide an upper bound on the distance to 
optimality 

- they converge in polynomial time to a given 
accuracy 

 

In this work, we have not applied these solvers in an 
actual receiver.  Instead, we have relied on a MATLAB 
tool to simulate WAAS user geometries.  This way, we 
could use a MATLAB based toolbox to solve the Second 
Order Cone Programs.  We chose to use the free 
MATLAB package SeDuMi [7], interfaced with 
YALMIP [8].  Once installed, these tools are almost 
transparent for a MATLAB user: there is only three new 
commands to learn. 

The tools mentioned have been typically 
developed for very large numbers of variables (typically 
hundreds).  Here, we only have tens of variables (here the 
number of variables is the size of the vector λ).  The 
solver reached the optimal solution with 10 digits 
precision in about 10 iterations.  The computational load 
per iteration is equivalent to a least squares problem with 
the number of variables of the original problem.  We ran 
this solver on a Dell 4600 running with a Pentium 4 at 2.8 
GHz and it took about .3 seconds to get an error bound for 
a given geometry.  This is still a very large computational 
load for a receiver but is an acceptable load for analysis 
purposes. 
 
 
APPLICATION TO A DUAL FREQUENCY WAAS 
 
In this section, we are going to evaluate the benefit of 
sending bias information for the next generation dual 
frequency WAAS.  Specifically, we compare two possible 
computations of the VPL: one that uses the optimal k 
coefficients and another one that uses a suboptimal (but 
reasonable) least squares algorithm to determine k.  This 
study was done using the MATLAB based service volume 
analysis tool MAAST.  This software evaluates the 
performance of WAAS by computing the protection level 
for users placed on a regular grid over a given period of 
time [9]. 
 
For this simulation we have assumed:   

- a constellation of 24 optimal GPS satellites 
(which is the constellation specified by the 
MOPS) and 4 Geostationary satellites (POR, 
AOR-W, N107, N133) 

- that all satellites are dual frequency L1-L5 so 
there is no ionospheric error other than the 
uncertainty on the ionospheric delay estimate; 

- the current network of 25 WAAS reference 
stations. 

For the Geostationary satellites, the sigma values 
corresponding to the uncertainty on the clock and the 
ephemeris are no longer inflated to account for the biases.  
Instead, a maximum bias of 5 meters is sent for each of 
them. 

We have already outlined how the optimal 
algorithm was implemented.  Here we describe a 
suboptimal algorithm.  The VPL equation is still [eqref], 



what changes is the determination of k, which is no longer 
optimal.  A reasonable way to account for the biases is to 
modify the matrix C by adding a bias term for the 
geostationary satellites: 
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Then the matrix H is defined as: 
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k is then the third row of Hmod.   
 
The simulation was carried for users situated in a grid 
covering CONUS every 2.5 degrees during the course of a 
day and every 30 minutes.  The VPL plots show the 95% 
percentile of the VPL at each location. 
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Figure 1.  95% of the VPL using the optimal algorithm 
(SOCP) 
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Figure 2.  95% of the VPL using the suboptimal 
algorithm 
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Figure 3.  95% of the ratio between suboptimal and 
optimal algorithm 
 
Over all geometries, the worst ratio was found to be 11%.  
Although these simulation results are extremely 
dependent on several assumptions (on the network, the 
constellation, and the algorithms), they suggest that a 
good suboptimal algorithm might provide a performance 
that is close enough to optimal.  The most likely use of an 
SOCP solver would be as an analysis tool to make sure 
that we choose a suboptimal Protection Level equation 
that is not too far from the optimal one. 
 
 
CONCLUSION 
 
We have shown that the search of the optimal Protection 
Level in the presence of biased Gaussian error 
distributions can be cast as a Second Order Cone Program 
(SOCP).  This result is theoretically interesting, because 
up to now, there was only one type of pseudorange error 
characterization that could be used optimally to compute 
the position solution (zero mean Gaussian errors).  We 
have extended this type of errors to the case where the 
error is characterized by a random Gaussian component 
(which can be multivariate) and an unknown bias linearly 
constrained.  Although there are no analytical solutions to 
SOCPs, there are excellent iterative algorithms that 
converge very fast, in a guaranteed number of iterations 
and providing a bound on suboptimality. 

As an example of application of SOCPs in GPS, 
we have evaluated the performance of a dual frequency 
WAAS where bias information is sent to the user.  The 
results suggest that it is probably not worth computing the 
optimal VPL, as the difference with a suboptimal 
algorithm does not exceed 12%.  As a consequence, the 
most likely use of such an algorithm would be as an 
analysis tool to determine the best suboptimal error bound 
calculation in case biases are included in the VPL 
equation. 
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APPENDIX 
 
In this section we give some elements for the proof of 
equivalence of the two problems: 
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Let us call mj the minimum of Problem j. This proof relies 
mostly on the Karush-Kuhn-Tucker (KKT) conditions 
[10].  First, we show that there exists  such that: * 0λ ≥
 

( ) *

A b
max     T Tk b
ε

ε λ
≤

=  

 
To prove this we write the KKT conditions of optimality.  
Be *ε  the point where the maximum is reached.  There 
exists λ* such that: 
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From this set of equations it is easy to see that: 
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This first part of the proof shows that .  For the 
second part of the proof, we notice that if: 
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then: 
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