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ABSTRACT 
 
We describe a methodology to test the integrity of Advanced RAIM algorithms through 
simulation. To this purpose we describe near worst-case fault magnitudes for multiple 
simultaneous faults, demonstrate through a set of examples that these faults do indeed achieve 
close to the worst case integrity risk, and propose an outline of the offline tests to demonstrate 
the integrity of ARAIM airborne algorithms based on these fault profiles.   
 
 
INTRODUCTION 
 
GPS L1 based RAIM has been extremely successful.  It has provided worldwide horizontal guidance 
to hundreds of thousands of aircraft since the mid 1990’s.  However, it does have some 
limitations. In particular, its performance is quite sensitive to the geometric strength of the GPS 
constellation.  We expect that Advanced RAIM, which will integrate new signals and new 
constellations, will mitigate these weaknesses, and eventually offer worldwide vertical guidance. 
 
The ARAIM concept was described in [1,2], and further defined in [3,4], and work is ongoing to 
develop the Standards and Recommended Practices [5] to be included in [6], as well as the 
receiver standards [7].  The ARAIM reports [1,2] presented several possible architectures, 
broadcasting options, and a reference airborne algorithm. As part of the concept validation, 
several prototypes of the airborne algorithm are being evaluated [8-10].   The outline of the proof 
of safety for the reference algorithm has been established analytically (at least in [11]).   
 
The purpose of this paper is to propose a methodology to demonstrate the safety of advanced 
RAIM airborne algorithms (including the reference ARAIM algorithm) using simulated faults, and 
both real and simulated nominal measurements.  This methodology could be used as a basis for 
the offline tests used in the future Minimum Operational Performance Standards for ARAIM to 
demonstrate compliance with the integrity requirements. 
 
In the first part, we introduce notations and definitions.  In the second part, we determine, for 
each fault mode (even multi-dimensional ones), a set of biases that is representative of the worst 
case.   Based on these faults, in the third part we describe a set of offline tests designed to 
demonstrate the integrity of fault detection algorithms for ARAIM.  
 
 
 
 



NOTATIONS AND DEFINITIONS 
 
Nominal and fault error model 
 
We use the nominal and fault error model described, among others, in [13] and [14]. In the fault 
free case, we have: 
 

y Gx          (1) 

 
where: 

y are the pseudorange measurements, 
G is the geometry matrix (n by p) 
n is the number of measurements 
p the number of states (3 coordinates and p-3 clock unknowns) 
x is the receiver location and clock offsets (one for each constellation) 
ε is the nominal noise and is assumed to be N(0,W-1) 

 
To start, we consider a very general fault error model: 
 

 y Gx Ab        (2) 

 
where: 

b is a vector of biases of length m 
A is a n by m matrix projecting a set of biases b onto the pseudorange measurements.  
Without loss of generality, we assume that the matrix [G A] is full rank. 

 
 
Position estimate and position error 
 
For each state q, we assume an unbiased estimator (which we later restrict to the least squares 
estimator) 
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q q qx e x s y     (3) 

 
where 

 ˆ
qx is the estimate of the state 

qe is the vector that selects the q-th state 

qs is the estimator for the q-th state  

 
The position error as a function of the fault bias is given by: 
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The position error distribution is therefore characterized by: 
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Test statistics: chi-square 
 
The chi-square statistic [13], [15],[16] is given by: 
 

Tt y Py       (6) 

where: 
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Under faulted conditions, the test statistics t follows a non-central chi-square with n-p degrees of 
freedom and non-centrality parameter λ defined by [15]: 
 

T Tb A PAb      (8) 
 

Test statistics: solution separation 
 
The solution separation statistic [11] is composed of the differences between the all-in-view 
solution and each of the fault tolerant solutions corresponding to each fault mode.  Using the 
notations from [11], the statistic can be written as: 
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where 
 k

qs is the fault tolerant estimator for fault mode k 

Tk,q is the corresponding detection threshold (as defined in [11]) 
 
 
 
Probability of missed detection 
 
The probability of missed detection is the probability that the position error exceeds the region 
defined by the alert limits or the protection levels (which we will note BAL) and the test statistic 
remains below a pre-defined threshold T.  For a given set of biases (as in Equation (2)), this 
probability is given by: 
 

   ˆ , |md ALP b P x x B t T b       (10) 

 
As mentioned above, the fault detection algorithm must protect against any b, so the integrity 
risk given a fault is given by: 
 



 maxmd md
b

P P b     (11) 

 
The goal of the next section is to determine the b that realizes the maximum (or at least gets close 
to it) that is: 
 

  maxmd mdP P b     (12) 

 
 
NEAR WORST-CASE FAULT FOR EACH FAULT MODE 
 
In this section, we determine near worst-case fault magnitudes for a given fault mode.  Fault 
modes in ARAIM are defined as sets of measurements that have arbitrary biases.  ARAIM must 
protect the user against the worst-case bias. A worst case fault is one that maximizes the integrity 
risk.  However, the integrity risk is dependent on the test statistic and the threshold used by the 
algorithm. As a consequence, given a fault mode, the worst-case fault is dependent on the test 
statistic.  We show that for two of well-known test statistics used in ARAIM the worst case profile 
is not very dependent on the test statistic. 
 
Here we derive the following: 

1. The exact worst-case fault for the chi-square statistic for one coordinate 
2. An approximate worst-case fault for the horizontal error for the chi-square statistic 
3. An approximate worst-case fault for the solution separation for one coordinate 
4. An approximate worst-case fault for the horizontal error for the solution separation 

statistic 
 
For all these, we will assume that the all-in-view solution is computed using a least square 
estimate, that is: 
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With this estimator, the position error and the measurement residuals are uncorrelated, and 
therefore independent, and since the test statistic is a function of the measurement residuals, the 
position error and the test statistic are independent.  We can write: 
 

     ˆ | |md ALP b P x x B b P t T b      (14) 

 
 
 
Case of chi-square statistic and one coordinate 
 
For this case we can replace the terms in Equation (14) with more explicit expressions: 
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    | , ,ncxP t T b P T n p        (16) 

 
where  

Pncx(T,n-p, λ) is the non-central cdf evaluated at T, with n-p degrees of freedom, and non-
centrality parameter λ (defined in Equation (8)). 
Q is the tail cdf of a normal distribution 
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The probability of missed detection is then given by: 
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The upper bound if this expression can be computed in two steps.  Here we provide a variant of 

the methods proposed in [15],[16]. 

For a fixed non-centrality parameter λ, the Pmd will be maximized with the largest possible 

position error bias.  That is, we solve (we drop the index q to lighten the notations): 

max Ts Ab  

Subject to T Tb A PAb      (18) 

 

There are many ways of solving the above optimization.  One way is by writing: 
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Applying the Cauchy-Schwarz inequality, we get: 
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Equality is achieved when: 
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  or equivalently:  
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  (21) 

 
where α is a scalar factor. 
 
The solution of the problem defined by (18) is therefore: 
 

 
1

max T T T Ts Ab s A A PA A s


   (22) 

 
We have: 
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where 
 0

q  , 
 A

q , and 
 

,

A

ss q are respectively the standard deviations of the all-in-view solution, 

of the fault tolerant solution, and of the solution separation.  This is shown in [16], [17] and a 
proof is given in Appendix A. 
 
The maximum is attained at: 
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The problem is now reduced to finding the worst case non-centrality parameter.  This can be 
now solved numerically by maximizing: 
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Particular case: subset solution 
 
We examine the case of a subset solution, and provide a more practical expression for (24).  In 
the Appendix, we show that we have: 
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where: 

G corresponds to the lines of sight in the observation matrix that are faulted 

G corresponds to the remaining lines of sight  
 
In the Appendix, we also show that the formula is valid in the case of a constellation wide fault, 
as long as we replace the above matrices with ones where the coordinate corresponding to the 



clock of the faulted constellation has been removed.  This formula shows that the worst case 
fault has the effect of a position solution offset on the faulted measurements.  This position 
offset is derived from the covariance of the fault free measurements. 
 
Approximate worst-case fault for the horizontal error for the chi-square statistic 
 
In this case, we have: 
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The expression is difficult to maximize.  It is tempting (and possible) to simply maximize the 
norm of the vector β defined by: 
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This approach does ignore the effect of the distribution of the nominal error, so we will attempt 
a slightly different approach. Let us first consider a vector of biases bmax that maximizes the 
expression (27) above.  We consider the rotation in the horizontal plane that aligns the first 
coordinate with the vector βmax (defined by Equation (28)).  We have: 
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where θ is the rotation angle and: 

     1 1 2cos sins s s      

     2 1 2sin coss s s      

 
We now make the approximation (which does not need to be an upper bound, since we are only 
looking for the argument of the maximum) that: 
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With this approximation, we can use the result corresponding to the one coordinate case 
(Equation (24)).  For a given angle θ, the worst case direction is approximated by: 
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Where 
   ,

A

ss q  is the solution separation statistic projected along the direction defined by θ. 

 
For subset faults, using Equation (26), we get: 
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where 

     cos sin 0 0
T

e         

 
To find an approximate worst case magnitude for a given θ, we need to solve the numerical 
problem (where λ is the unknown): 
 

   

 

   

 
 , ,

max , ,

A A

ss q ss q

ncx

q q

L L
Q Q P T n p



   


   

     
     

    
    

 (33) 

 
Ideally, we would like to solve this problem for all values of θ and take the maximum.  In 
practice, we will choose a discretization of the interval [0 π]. 
 
 
Approximate worst case for the solution separation statistic for one coordinate 
 
For the solution separation statistic, the function we need to maximize is given by: 
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An exact solution to this problem would in general be very computationally costly, because it 
involves the integration of a multivariate gaussian over a simplex.  
 
 Instead we will make the assumption that minimizing the right side term of the product is 
approximately equivalent to minimizing the sum of squares of the magnitude of the biases in 
each statistic. In order to keep the same structure as before, we will consider the dual problem 
(maximizing the position solution bias).  That is, we solve: 
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We can rewrite this problem as follows: 
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We now notice that the problem (36) is formally identical to (18).  Therefore, the solution is of 
the form: 
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Like before, we need to find the scale factor α that maximizes the Pmd.  For this step, we make 
the approximation: 
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The problem consists then in maximizing the one-dimensional function: 
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where 
T

qz s Ab .  As before, this is done numerically.  Once we find the argument realizing the 

maximum zmax, we determine the scale factor α with the equation: 
 

max

T

qz s Ab      (41) 

 
 
Approximate worst-case fault for the horizontal error for the solution separation statistic 
 
Using approximations and a method similar to the ones used in the second case (chi-square 
statistic and horizontal error), we determine an approximate worst-case fault as follows.  For 
each value of θ we determine zmax(θ) using Equation (40) for the coordinate rotated by θ.  We 
then choose the value of θ= θmax that maximizes the Pmd, and define the vector bmax as: 
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Summary 
 
We note that, in fact, Q and P have similar properties: they are both weighted projections 
whose kernel is defined by the matrix G. For this reason, we expect the near worst case faults 



defined above for both test statistics to be quite similar.  In the next section, the faults will be 
determined by: 
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with zmax defined by Equation (40). 
 
 
 
EVALUATION OF NEAR WORST-CASE FAULTS: EXAMPLES 
 
For the two detection statistics considered above, upper bounds on the Pmd can be determined 
using Equations (25) and Equation (40).  In the case of one coordinate and the chi-square statistic, 
we know that the worst case determined above realizes the computed Pmd.  For the other cases, 
we show through examples that these faults get quite close to the computed upper bound. 
 
We examine the case of one coordinate and the solution separation statistic.  We consider the 
geometry described in Appendix B.  For this example we chose: 

- An Alert limit of 50 m 
- A Pfa of 4x10-6 

  
For a given fault mode, the direction of the simulated fault was defined by Equation (32), and its 
modulus was defined by  Equation (41).  The resulting vector is given in Appendix B.  We simulated 
10000 samples of nominal measurements (following the statistics defined by the nominal noise) 
and ran the detection tests on them.   
 
 
Example 1: Fault mode corresponding to the constellation wide failure of Galileo 
 
The algorithm tested all the one out solution separation statistics as well as the Galileo out one.  
For the constellation wide fault of Galileo, the upper bound on the Pmd computed using Equation 
(40) was 3.5x10-2.   In the simulation, there were 362 integrity failures (cases where the error 
exceeded the Alert Limit and the tests did not trip).   The empirical Pmd was therefore 3.62x10-2, 
which, compared to the theoretical upper bound of 3.5x10-2, shows that the simulated faulted 
achieves the worst case Pmd. 
 
Example 2: Fault mode corresponding to one out GPS and one out Galileo 
 
For this example, we looked at a scenario where the simultaneous fault of two satellites must be 
monitored.  We considered the failure mode corresponding to the 5th GPS satellite and the 3rd 
Galileo satellite from the geometry described in Appendix B.  The upper bound on the Pmd using 
Equation (40) was 0.78.  In the simulation, we found that the fault defined as described above 
resulted in 7700 integrity failures.  This corresponds to a 0.77 empirical Pmd, which is very close to 
the upper bound of 0.78.   
 
We note that this is not a trivial result.  To demonstrate this, let us consider the same fault mode, 
but where we have changed the magnitude in the Galileo satellite to -80.  In this case, the 



empirical Pmd is 0: the fault was always detected in time.  Figure 1 shows the empirical Pmd as a 
function of the fault magnitude in the Galileo satellite for a range of values (for the figures, we 
only simulated 1000 samples). 
 

 
Figure 1. Empirical Pmd as a function of the bias in second faulted satellite (while fault is fixed in 

first satellite) 
 
 
Figure 2 shows the empirical Pmd also as a function of the Galileo fault magnitude, but where we 
have forced the projection of the error to remain at its worst case value. 
 



 
 
Figure 2. Empirical Pmd as a function of the bias in second faulted satellite (while fault bias in first 

satellite is adjusted to maintain a fixed bias in the position domain) 
 
 
These two examples strongly suggest that, first, the candidate worst-case faults defined in the 
previous section get very close to realizing the worst case fault, and second, that the choice of the 
fault magnitude is critical to adequately test the fault detection algorithm.  In Figure 3, we test 
the subset faults for which the expected contribution exceeds 10-3.  Again, we can see that the 
simulated faults achieve close to the worst case upper bound in every case. 
 



 
Figure 3. Empirical Pmd and upper bound for the subset faults with the largest contribution in the 

example geometry 
 
 
 
DEMONSTRATION OF INTEGRITY REQUIREMENTS THROUGH NUMERICAL TESTS 
 
Based on the worst case faults determined in the previous section, here we propose an approach 
to design the set of offline tests similar to the ones used to ensure that the integrity of RAIM FDE 
algorithms in [8].  In ARAIM, the fixed probability of missed detection requirement in RAIM is 
replaced by a more general integrity requirement in ARAIM, so the tests must be modified to 
account for this difference. To address this point, we use an approach similar to the one presented 
in [12], which consists in defining a generalized probability of missed detection. 
 
The tests must show empirically that the integrity risk is met.  That is, we need to have: 
 

        7ˆ & no alert within 10 s for  over 1 h 10ALP HMI P x t x t B t       (44) 

 
The integrity parameters allow the user to compute all the fault hypotheses Hk.  In this first 
proposal, we will assume that the fault is either present throughout the whole exposure window 
or not present.  This assumption, which greatly simplifies the design of the tests, may be revisited 
in the future.  We re-write Equation (44) using the formula of total probability: 
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Based on this equation, it would be possible to design the tests by creating a set of measurement 
Nsample samples as follows: 

1) Determine randomly which fault mode will be active.   This would be done according to 
the probabilities P(Hk).   

2) Determine the fault magnitude for Hk as described above 
3) Generate Nexp nominal error samples per satellite to represent the measurements over 

the whole exposure window (Nexp of 360 may be sufficient) 
4) Determine whether this set of measurements combined with the fault lead to an HMI 

event 
This process would be repeated for a sufficient number of samples.  The empirical integrity risk 
would be the number of HMI events over the total number of samples Nsample.   
 
The issue with this approach is that the number of necessary samples would be very high: to reach 
probabilities of 10-7, we may have to simulate 108 samples or more (and this would be for one 
geometry only).  As suggested in [12], we can drastically reduce the number required samples by 
noticing that the first term in (45) can be computed analytically with simple assumptions (in 
practice this term is usually negligible).  We therefore only need to demonstrate that: 
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The above inequality is equivalent to: 
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The denominator is the probability that there is a fault during the exposure window.  This 
probability, while dynamic, is expected to be below 10-3 in the worst case.  As a consequence, 
the right hand side term will be on the order of 10-4, which now results in a more feasible 
number of samples.  The above method is therefore modified as follows.  For each sample: 

1) Determine randomly which fault mode will be active.   This would be done according to 

the probabilities  iP H , where: 

 
 

 
1

i

i

k

k

P H
P H

P H





      (48) 

2) Determine the fault magnitude for Hi as described above 
3) Generate Nexp nominal error samples per satellite to represent the measurements over 

the whole exposure window (Nexp of 360 may be sufficient) 
4) Determine whether this set of measurements combined with the fault lead to an HMI 

event 



The main difference with the previous method is the number of samples, which now is only 

required to be on the order of 
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In addition, the tests will need to specify: 

- The values of the integrity parameters (Rsat, Rconst, MTTN) 
- The user geometries 
- The nominal error parameters (including the parameters determining the temporal 

decorrelation of the errors) 
  

The final version of this paper will include the results of these tests applied to the reference ARAIM 
airborne algorithm ([1],[11], both with simulated data and real data. 
 
 
SUMMARY 
 
We have described a methodology to test the integrity of Advanced RAIM algorithms through 
simulation. To this purpose, we have developed a simple formula for near worst-case fault 
magnitudes for multiple simultaneous faults, and demonstrated through a set of examples that 
these faults do indeed achieve close to the worst case integrity risk.  Finally, we have propose an 
outline of the offline tests to demonstrate the integrity of ARAIM airborne algorithms based on 
these fault profiles.  
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APPENDIX A 
 
Relationship between slope and solution separation 
 
By definition, we have:  
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The covariance of the fault tolerant subset solution CovA is given by (using the matrix inversion 
lemma): 
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(50) 

where: 
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      (51) 

 
We therefore have: 
 

       

 

1 1 12 1

1
2

A T T T T T T T

q q q q q

T T T

q

e G WG e e G WG G WAZ A WG G WG e

s A A PA A s





  




 

 

  (52) 

 
As a consequence: 
 

       1 2 0 2
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      (53) 

 
The last equality is shown in [16], and is a direct consequence of the fact that: 
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1 0
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        (54) 

where: 

 
1

T TS G WG G W


  

 
and SA can be any unbiased estimator. 
 
 
Proof of Equation  (26) 
 
This equation is given directly by considering the two forms of the matrix inversion lemma (one 
of the forms being the one given in Equation (50)).  Writing the two off-diagonal terms, we get: 
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 (55) 

We now examine how to extend this formula to the case where  
1

TG WG


is not invertible due 

to the clock offset of the faulted constellation. 
Due to the clock offset, neither the position solution nor the resulting residuals are changed by a 
common bias in all the measurements from one constellation.  In particular, we can assume that 
one of them is fault free.  We consider the covariance of the fault free measurements by 



separating the line of sight from the faulted constellation that we assume to be fault free, we 
have: 
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(56) 

 

where 
0

1

r
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, and the subscript r means that we have removed the column of 0s 

corresponding to the faulted constellation. We have: 
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  (57) 

Now let us assume that we add the bias  
1

T T

r r r rg G W G e


 to all the measurements in the 

faulted constellation.  As mentioned above, this does not affect the residuals or the position 
solution.  The faulted biases can be expressed as: 
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     (58) 

 
APPENDIX B 
 
The user geometry assumed in the examples is given by: 
 
G = [0.0225    0.9951   -0.0966  1  0.0000; 
    0.6750   -0.6900   -0.2612  1  0.0000; 
    0.0723   -0.6601   -0.7477  1  0.0000; 
   -0.6379   -0.2431   -0.7308  1  0.0000; 
    -0.9398    0.2553   -0.2269  1  0.0000; 
   -0.6748    0.4356   -0.5957  0  1.0000; 
    0.0938   -0.7004   -0.7075  0  1.0000; 
    0.5571    0.3088   -0.7709  0  1.0000; 
    0.9767    0.0298   -0.2125  0  1.0000; 
    0.6622    0.6958   -0.2780  0  1.0000]; 
 
The  measurement noise is set at 4 m for all measurements. 
 
The near worst-case fault for the constellation wide fault for the example is given by: 
 



b = [ 0         0         0         0         0  -50.5  -40.5  -82.3  -35.0  -54.1]; 
 
For the dual fault, the worst case fault was given by: 
 
b = [0         0         0         0   33.0         0         0  -35.5         0         0]; 


