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ABSTRACT 

We describe a prac<cal method to enable Advanced RAIM in mega-constella<ons, where the number of ranging 
sources and the fault rates could be very high (thus rendering standard approaches poten<ally imprac<cal).  The 
method is based on a combina<on of a branch-and-bound approach and on the Gershgorin circle theorem.  We 
evaluate the performance of ARAIM in mega-constella<ons for fault rates that would be unfeasible with standard 
RAIM and ARAIM approaches.  We find that for constella<ons where 100 to 200 satellites may be in view for a 
user, the proposed approach would enable the computa<on of finite and useful Protec<on Levels with fault rates 
as high as 10-2 per hour. 

 

INTRODUCTION 

Mega-constella<ons like OneWeb or Starlink could revolu<onize satellite radionaviga<on by providing a very large 
number of high-power ranging signals.  The number of ranging signals visible at any <me by a user could increase 
from about forty now to more than a hundred.   

In addi<on to the gains in accuracy, resilience, and availability, this increased redundancy can be exploited to 
compute error bounds on the es<mated posi<on.  For error bounds with integrity, we will need a guarantee of 
performance for the ranging signals (either through service history or commitments from service providers), but 
with so many of them, we might be able to tolerate high fault rates.   

Advanced Receiver Autonomous Integrity Monitoring (ARAIM) for mul<-constella<on provides a framework to 
compute integrity error bounds for any number of ranging signals with a known bound on the probability of fault 
(which may be different depending on the constella<on and satellite).  In theory, the ARAIM baseline algorithm 
could deal with arbitrarily high fault probabili<es and any number of satellites, but such an approach might not be 
possible in prac<ce.  The ARAIM user algorithm monitors a set of faults and combina<ons of faults such that all 
other combina<ons of faults can be considered unlikely enough to be leS un-monitored (Blanch (2015a)).  For 
example, for a dual constella<on GPS Galileo, the probabili<es of fault lead the ARAIM user algorithm to monitor 
most dual faults (for the default constella<on performance commitments).  

In mega-constella<ons, two characteris<cs may cause the number of monitored faults to increase beyond what 
may be computa<onally prac<cal:  first, the large number of signals used in the solu<on could (beyond a 100), and 
second the poten<ally large probabili<es of fault of the new satellites (since naviga<on is not the main mission of 
these satellites).  This will result in a very large number of fault combina<ons.  For example, with 50 ranging signals 
and a probability of fault of 10-3 per satellite, the algorithm might need to monitor all the simultaneous quadruple 
faults, of which there are more than two million.  While this does not mean that the algorithm must compute as 
many subset solu<ons, it does mean that it needs to compute a bound on the worst subset standard devia<on.   



In our earlier work, we have described methods: 1) to iden<fy many outliers (Blanch (2015b)) and 2), to compute 
PLs for fault detec<on when the probabili<es of fault were large enough to have to consider mul<ple simultaneous 
faults that greatly reduced the computa<onal load compared to standard approaches (Blanch (2021)).  In this 
paper, we combine this method with a branch-and-bound approach.  

More precisely, we provide prac<cal formulas and methods to compute: 

- The probabili<es of the events that are not strictly mi<gated by the redundancy check 
- The prior probabili<es of p simultaneous faults 
- Upper bounds on the subset sigmas or, equivalently, the fault slopes for mul<ple simultaneous faults  

All these quan<<es are key inputs to the computa<on of a protec<on level, which we also provide. 

In the last sec<on, using the service volume availability tool MAAST, we will show that it might be possible and 
prac<cal to provide useful integrity error bounds (at the 10-7 level, for example) with satellite fault rates of 10-3 per 
hour or even higher in constella<ons with 200 satellites in view. 

 

ADVANCED RAIM FRAMEWORK 

In the ARAIM framework, the pseudorange error model is described by a discrete number of fault hypotheses Hk, 
where H0 is the fault free hypothesis.  Each fault hypothesis corresponds to the addi<on of an addi<onal unknown 
state bk in one or more measurements and has a known prior fault rate Rfault,k and mean fault dura<on TMFD,k.  In 
the implementa<on of ARAIM concept for avia<on, each of the fault hypotheses is derived from a set of primary 
faults. These primary faults correspond to single satellite faults and single constella<on faults.  These primary faults 
are assumed to be independent, thus enabling the deriva<on of the fault rates and mean fault dura<ons for the 
composite faults. 

 

STATE PROBABILITIES FOR COMPOSITE FAULTS 

We consider n primary events.  In our case, these will be satellite faults and constella<on wide faults, as described 
in the ARAIM framework.  An event is the occurrence of a fault in one or a subset of measurements.  
Mathema<cally, this is expressed by the addi<on of a new state in the observa<on equa<on.  We will assume that 
these primary events are mutually independent.  As a result, the probability of occurrence of simultaneous events 
is the product of the probability of those events.  More precisely, let us consider m primary events i1 through im. 
The probability of occurrence of these events (at least) is: 

 

The probability of occurrence of these events and only these is given by: 

     (1) 

Equa<on (1) is the formula that is used to compute the state probability of each composite fault pfault,k that will be 
used in the protec<on level (PL). 
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The probability of no faults is a par<cular case of the above formula.  It is given by 

 

With this defini<on, we can re-write the probability as 

   (2) 

Equa<on (2) is a form of Equa<on (1) that will be prac<cal. 

Let us now compute the sum of the probabili<es of all events composed of m primary events.  This probability will 
be later used to reduce the computa<onal load compared to the baseline ARAIM approach.  We need to sum over 
all combina<ons of m primary events: 

 

There are terms in this sum.  To compute this sum, we use the Newton iden<<es.  The sum 

 

is the kth elementary symmetric polynomial.  These polynomials can be expressed as a func<on of the power sums: 

 

The first four are: 

 

 

 

 

There is a general formula, but it is prac<cal to compute them itera<vely using the recursion formula 
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Using these formulas, it is straighZorward to compute the probability of exactly k events or an upper bound on 
the probability of at least k events. Note that the formula does not require all the probabili<es to be equal. 

A very prac<cal upper bound is given by 

 

This formula is very accurate for rela<vely small values of q, and it is the one that we use in our code.  It will also 
be useful to have formulas for the probability of having at least m events.  Using the same approach, we have, with 
the same deriva<on: 

  (3) 

 

FAULT RATE PROBABILITIES FOR COMPOSITE FAULTS 

One way to determine a sufficient list of monitored modes is by ensuring that all composite faults with more than 
m+1 primary events have a total probability of occurring (during the exposure <me) that is only a frac<on of the 
total integrity budget PHMI. 

Let us now consider one fault mode with fault rate R and mean fault dura<on M.  The probability of having a fault 
in an interval TEXP is bounded by (and very well approximated by) 

 

An upper bound on the fault rate of a composite fault composed of two primary faults 1 and 2 or more is given by 

 

The corresponding mean fault dura<on is given by 

 

These formulas can be generalized to composite faults with m primary faults as follows Blanch 2020, Milner 2020: 

 

The mean fault dura<on is given by 
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To compute the probability of having more than m faults over an interval TEXP, we sum over all the sets with m 
events 

 

We cannot directly apply the Newton formulas above because of the term containing the mean fault dura<ons. 
We can however compute an upper bound by considering the m lowest mean fault dura<ons. The composite fault 
corresponding to these primary faults is the one with the shortest mean fault dura<on.  We note it TMFD,m,low.  Using 
the approach above, we get: 

 

As before with the state probabili<es, we can bound it by 

 

Now we note: 

    (4) 

This is a bound on the probability of occurrence of any m simultaneous primary events. 

 

Important case: iden<cal mean fault dura<on 

In the case all satellites have the same mean fault dura<on we can use the formula 

  (5) 

 

 

DETERMINATION OF FAULTS MODES TO BE MONITORED 

There are as many fault modes are there are combina<ons of primary faults.  It is however not necessary to 
monitor them all, because many of them have probabili<es that are very small.  To limit the number of monitored 
modes, we determine the smallest integer m such that 
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where 

  α is a tunable parameter between zero and one 

PHMI is the available integrity budget  

This can be done with an itera<on star<ng at m=0 using Equa<on (5). 

Once m is determined, the list of monitored modes is simply the list of faults composed of m or less primary modes 
(be they constella<on wide faults or satellite faults). 

 

MONITORING THE FAULT MODES AND PROTECTION LEVEL EQUATION 

The Advanced RAIM algorithm described in Blanch 2015 uses solu<on separa<on to monitor the fault modes. That 
is, it tests that for all  

 with  

where  

 is a fault tolerant posi<on solu<on for fault mode k 

 is the standard devia<on of the solu<on separa<on  under nominal condi<ons  is a 

scalar set to meet a pre-determined false alert rate under fault free condi<ons. 

The protec<on level in the coordinate q, PLq, can be computed by solving the equa<on: 

  (6) 

where: 

pfault,k is the prior probability of fault hypothesis Hk  

pfault,k (TEXP) is the prior probability of fault hypothesis Hk occurring at any <me during the exposure <me 
TEXP 

PHMIq is the integrity alloca<on to the qth coordinate 

Nes is the number of effec<ve samples per hour (which translates the probabili<es over a finite interval 
to per event probabili<es.  In the baseline ARAIM algorithm, it is determined by the required <me to 
alert) 

Consistency checks 

The sum in Equa<on (6) can poten<ally contain up to millions of terms for satellite fault rates of 10-3 per hour and 
100 satellites in view.  In addi<on, each of these terms corresponds to the computa<on of a fault tolerant solu<on.  
This may be a problem, even for future processors.  To reduce the computa<onal load, we need a way to reduce 
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the number of terms in this Equa<on and the number of fault detec<on tests.  To achieve this, we will use the 
approaches described in [1] with a few modifica<ons. 

 

Reducing the number of tests 

The number of tests can be easily reduced by exploi<ng the rela<onship between the normalized solu<on 
separa<on sta<s<cs and the sum of squared normalized residuals.  More precisely, we have 

 

where 

W is the inverse of the covariance of the measurements (assumed to be diagonal) 

G is the observa<on matrix 

y is the vector of measurements (linearized about the solu<on) 

This means that we can replace any number solu<on separa<on tests by the sum of squared residuals test 
(although we don’t need to replace them all).  If we set a threshold and ensure that 

 

Then we are sure that we also have for any solu<on separa<on test 

 

Let us suppose for now that we check all the subsets using this method.  The corresponding PL equa<on is now: 

 

While we have reduced the number of tests, we s<ll have all the terms in the sum, so we s<ll need to compute the 
fault tolerant standard devia<ons .  Note that if we have , we can compute  using the rela<onship: 

 

The next step is to find bounds on for groups of satellites.  Let us suppose that we have m such groups, 

iden<fied each by a set of indices Ωj for j from 1 to m.  For each of these groups we have a such that for each 

k in Ωj, we have 
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Because each of the terms in the PL sum are monotonously increasing func<ons of , we have 

 

Therefore, the PL defined by  

  (7) 

is valid.  The important point here is that now there are only m terms in this sum.  In the next two sec<ons we 
describe how to obtain the terms in this sum. 

 

Choice of fault groups 

We will start describing the groups for the case where the constella<on wide faults can be leS un-monitored 
(that is, that their cumula<ve prior probability is below the available integrity budget).  In that case, each group 
Ωj is formed by all composite faults formed using j primary events.  For example, if j=2, the group contains all the 
dual satellite faults.  This is the approach in its simplest form. 

 

Bound on the standard devia<on of the fault tolerant solu<ons using Gershgorin circle theorem and branch-and-
bound approach 

The key to the approach described in this paper is the use of a computa<onally efficient method to compute the 

upper bound  .  We will partly use the upper bound developed in Blanch 2021, which is based on the 
Gershgorin circle theorem.  This bound was shown to be several orders of magnitude faster than compu<ng the 
list of standards devia<ons, even when applying rank-one updates.  However, a direct applica<on of these bounds 
can result in poor performance, because the bounds can be excessively conserva<ve.  The main contribu<on of 
this work is to combine this upper bound with a branch-and-bound approach.   

First, let us define the func<on f that provides an upper bound over a class of subsets: 

 

where 

I is the set of indices that are used 

J = {j1,…,jm} is the set of indices out which we remove measurements (J must be a subset of I) 

k is the number of simultaneous faults removed out of J (k must be smaller or equal to the number of 
elements in J) 

For example, if J =[1:n], and k = 1, the func<on will return an upper bound of all the one-out subsets.  If K = [2:n], 
and k=2, the func<on will return an upper bound of all the 2-out subsets where satellite one is never removed.  
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The func<on f is defined recursively as follows.  The upper bound is ini<ally computed using the minimum of the 
sigma obtained from: 

- The Gershgorin bound (restricted to J) 
- The subset that excludes all measurements in J (this can only be computed when I\J has sufficient 

satellites) 

If this bound is too large (here a tunable threshold is used), for example compared to the all-in-view sigma, then 
the algorithm divides the subsets in as many branches as there are elements in J.  The first branch bounds all the 
subsets that include j1 (out of the all the subsets defined by J and k).  This is computed by calling 

 

 The second branch bounds all the subsets with j1 out and with j2.  This is computed by calling 

 

The p-th branch is computed by calling 

 

To illustrate the branching mechanism, if 0 means a measurement out and 1 a measurement in, the different 
branches correspond to the following rows 

 

As a refinement, we can treat each sub-group bounded by in a branch as a term in the PL equa<on by combining 
this computa<on with the probability of subset fault. 

 

Example for a set of k-out subsets 

Figure 1 shows the histogram of 3-out subset sigmas for two examples (with 149 satellites and 100 satellites).  
These histograms were obtained by lis<ng every possible 3-out geometry and compu<ng the corresponding sigma.  
There are respec<vely 540274 and 152096 subsets.  The algorithm proposed above returns an upper bound for all 
these subsets instead of compu<ng all the subset sigmas (respec<vely 0.2045 and 1.075).  For large number of 
satellites, the bounds provided by the algorithm are oSen extremely <ght, as in these two cases. 
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Figure 1.  Standard devia<ons (s(k)) of 3-out subsets for Nsat = 149 (leT) and Nsat = 100 (right).  There are respec<vely 
540274 and 152096 subsets in these histograms.  The proposed algorithm provides an upper bound of 0.2045 (leT) 
and 1.075 (right) 

 

COMPUTATIONAL LOAD ESTIMATES 

Figure 2 shows the number of subsets that would need to be monitored in the baseline algorithm as a func<on of 
the probability of satellite psat and the number of satellites in view.  The criterion used to determine the depth of 
the subsets is the one described in the sec<on “determina<on of fault modes to be monitored”.  For this plot, we 
used a target integrity risk of 10-7 per hour, and a mean fault dura<on of one hour is assumed for all primary faults.   

 

Figure 2.  Number of fault modes to be monitored as a func<on of psat and the number of satellites in view (Nsat).   
For number of satellites above 40 or psat above 10-3, the baseline algorithm is imprac<cal or even unfeasible. 



To illustrate the power of the proposed approach, Table 1 shows execu<on <mes (observed and es<mated) for 
three geometries.  The first row corresponds to values typical for a dual constella<on ARAIM scenario, where about 
100 subsets must be monitored.  The computa<on of the PL took on the order of 10-3 s in a PC. 

For the second row, a psat of 10-3 and Nsat = 100 leads to a number of monitored subsets on the order of 107.  
Because the <me it takes to compute PL is approximately propor<onal to the number of subsets (the baseline 
algorithm computes the sigma for each subset successively), this would lead to an execu<on <me of 100 s.  In the 
third row, we increase psat to 10-2 and Nsat to 150, which leads to as many as 1017 monitored subsets.  With our 
PC, this would take on the order 0f 10000 years to compute. 

The last column of Table 1 shows the <me it took with the proposed approach, which is only slightly more than in 
the dual constella<on ARAIM scenario with low psat, which means that it is both feasible and prac<cal. 

Table 1.  Computa<onal load es<mates 

Number of 
satellites 

Probability of 
satellite fault 

Number of 
monitored subsets 

Execu<on <me for one 
geometry for baseline 
approach 

Proposed approach 

20 10-4 100 10-3 s 10-3 s 

100 10-3 107 100 s 2 x 10-3 s 

150 10-2 1017 1012 s ~ 30000 years 4 x 10-3 s 

 

AVAILABILITY SIMULATIONS 

We demonstrate the feasibility of this approach using an almanac corresponding to the Starlink constella<on.  This 
is a constella<on that has more than 5000 satellites at al<tudes between 330 km and 550 km with inclina<ons 
between 40 and 98 degrees.  This constella<on was chosen because the very large number of satellites would 
render the direct applica<on of a baseline ARAIM algorithm unfeasible with high or even moderate fault rates.  

For the ranging accuracy we made used the same models used for GPS with a URA of 1.5 m.  We also assumed an 
eleva<on masking angle of 5 degrees. 

The simula<ons were performed using the Stanford MAAST simula<on tool with a 10 by 10 degree user grid and 
300 <me steps over 24 hours. 

The HPL was computed as described in Equa<on (7).  We will be using a target PHMI of 10-7 per hour, of which 90% 
are allocated to the modes that are not monitored (α parameter defined above).  We will use a false alarm of 10-6 
per hour. 

We evaluated two scenarios with very high fault rates: 10-3 and 10-2 per hour.  This is 100 to 1000 <mes worse than 
what GPS currently provides.  Our purpose here is to demonstrate that we can compute a useful PL even with 
these high fault rates.  Since we are only considering one constella<on, we assumed that constella<on wide faults 
could be neglected.  



Table 2. Integrity Support Data assump<ons 

Pconst,default 1×10-8 

Psat,default 1×10-3, 1x10-2 

Rconst, default 1×10-8/h 

Rsat, default 1×10-3/h 

MFDconst, default 1 hour 

MFDsat, default 1 hour 

σURA,default, dual frequency [m] 1.5 m 

NES 450 

 

In Figure 3, we show the HPL for one user over a period of 24 hours.  A typical user would have between 100 and 
200 satellites in view at any given <me.  With the criteria used to determine the list of monitored fault modes, a 
standard ARAIM algorithm would monitor all the fault modes composed of 6 or less primary faults.  There are up 
1010 such fault modes, which makes it unfeasible to apply it.  With the approach described in this paper, it is not 
only possible but quite fast to compute the PL, since there are only 7 terms in the PL (Equa<on (7)).   In our 
simula<ons, the computa<on of one PL took less than 0.002 seconds for 10-3 and less than 0.005 for 10-2. 

 

Figure 3. PL for a user located at lat.  and lon. (0,0).  For this user all simultaneous faults with 5 or less faults are 
monitored.  There are about 7.5 x 107 such modes.  

Figure 4 and 5 show a maps of the PL corresponding to the 99.5% percen<le of the PLs over 24 hours for psat = 
10-3 and 10-2.  For psat = 10-3, the HPLs are below 10 m in most of the globe and the VPLs are mostly below 25 m 



(recall that we have assumed an arbitrary URA of 1.5 m).  For psat = 10-2, the PLs increase significantly, they are 
however s<ll finite, and poten<ally useful.  The main point here is that we can compute a PL in the first place in a 
prac<cal way. 

  

Figure 4. 99.5% Fault Detec<on PL maps for geometries corresponding to Starlink with fault rates of 10-3 per 
hour. 

  

Figure 5. 99.5% Fault Detec<on PL maps for geometries corresponding to Starlink with fault rates of 10-2 per 
hour. 

A NOTE ON EXCLUSION FUNCTION 

The PLs described above correspond to a fault detec<on PL.  They are the PLs that would be obtained if no 
exclusion was azempted.  If the consistent set used in final posi<on fix was the result of an exclusion process, 
the formula<on of the PL we would simply need to correct the integrity alloca<on in Equa<on (7) to account for 
the mul<ple risk exposure caused by the exclusion process (as it is done in Blanch 2021 and the Advanced RAIM 
reference algorithm).   The search of the consistent set could be performed using for example a greedy search, as 
described in Blanch 2015b or Wendel 2022. 



 

SUMMARY 

We have described an implementa<on of ARAIM that enables the computa<on of integrity error bounds for mega-
constella<ons with large fault rates.  The key to the approach is to reduce the number of terms in the Protec<on 
Level equa<on by compu<ng upper bounds on the standard devia<ons of the subset solu<ons rather than 
compu<ng them explicitly.  An example based on the Starlink constella<on shows that, with this approach, it would 
be possible to compute useful PLs even when the probability of up to 6 simultaneous faults cannot be neglected. 
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