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ABSTRACT 

The goal of integrity monitoring in positioning algorithms consists in finding a test statistic and an 

estimator that meets both the integrity requirements and the alert requirements under a set of 

conditions.  The search for such test statistics can be cast as an optimization problem where the goal is to 

minimize the integrity risk while maintaining the alert requirements.  In this work, we provide results that 

extend previous results in two ways.  First, we provide a lower bound on the integrity risk for linear 

unbiased estimators (but not necessarily optimal).  Second we provide a lower on the integrity risk in the 

case of fault detection and exclusion.  The results developed in this work here are general.  In particular, 

they are applicable to both snapshot solutions and Kalman filter solutions, and to any combination of 

sensors. 

 

INTRODUCTION 

Until recently, integrity monitoring in radio-navigation was mostly limited to aircraft navigation.  It is now 

being expanded to automotive, rail, and maritime applications [1], [2], [3].  Given the increased awareness 

of GNSS threats (like spoofing), it is likely that integrity monitoring will pervade most navigation systems.  

There are many different types of integrity monitoring algorithms, each responding to a different design 

constraint.  In all cases, it can be useful to know what the minimum achievable integrity risk is, for at least 

three reasons.  First, these bounds tell us whether it makes sense to continue improving the algorithm; 

second, the search itself shows us which class of algorithms will likely perform well, third, if the lower limit 

is too high, then we know that we should be looking somewhere else to achieve the desired performances 

(like more measurements, additional structure, or more constraints on the fault modes). 

Finding the optimal integrity monitoring algorithm is in general a very difficult problem.  It is however 

possible to define tractable problems that can be proven to provide a lower bound on the achievable 

integrity risk in the original problems.  Optimality results in the range domain pre-date the development 

of integrity in GNSS ([4], [5]).  These results have been adapted to GNSS in at least [6].  In [7], we proved 

that in the case of one threat, even multi-dimensional, the optimal detection statistic is the solution 

separation statistic.  This was achieved by casting the search of the optimal detection region as a mini-

max problem, and using the Neyman-Pearson lemma to limit the search of the detection regions to a class 

of regions parameterized by a bias. These results allowed us to establish a lower bound on the minimum 

integrity risk.  However, these results were only proven for least squares estimators and for the detection 

problem only. 

In this work, we expand and generalize the theoretical results from [7] in two directions.  First, we provide 

lower bounds on the lowest possible achievable integrity risk given a set of measurements and a threat 

space in the case of linear estimators (but not necessarily least squares); second, we will consider the case 



of fault detection and exclusion with non-linear estimators.  For this case, we will show that, to obtain 

optimality results, it is useful to generalize the fault detection and exclusion process.  After introducing 

notations, definitions, and previous results, we provide two inequalities that place a lower bound on the 

optimal integrity given an alert probability. 

 

 

ERROR MODEL AND DEFINITIONS 

Fault free error model 

In this paper, we will assume that the linear approximation holds.  The fault free error model is given by 

the state equation: 

yy Gx         (1) 

where: 

  G is the geometry matrix (n by p) (p is 3 plus the number of clock states) 

  y is the set of measurements (n by 1) 

εy is the nominal noise (n x 1) 

x is the position and clock unknowns. 

The nominal noise follows a zero mean Gaussian distribution with covariance 
1W 

 : 

  10,y N W       (2) 

 

Fault error model 

The fault error model is the one adopted in [7] which generalizes the fault modes used in RAIM.  In this 

model, the measurements are determined by one error model, and one only, out of N +1 possible error 

models.  Each of these error models, or hypothesis, has a known probability of occurrence pHi and 

corresponds to the addition of an unknown state in the measurement equation: 

    i i

yy Gx A b         (3) 

A(i) and b(i)
 are an n by mi matrix and a mi by 1 vector respectively.  Ai is known, and b(i) is arbitrary.  In the 

rest of the paper, we will assume that the matrix [G Ai ] is full rank and that n>p+mi-1.  If there is no change 

of variable on the nuisance parameters that can make the matrix [G Ai ] full rank, then the fault cannot be 

monitored (this would happen for example if A(i) = G).  Similarly, if the system of equations (3) is 

underdetermined, which will happen if n<p+mi, then the fault cannot be monitored.   

The fault free case corresponds to i = 0.   

 



OPTIMAL DETECTION REGION 

The design of the integrity algorithm is therefore equivalent to the determination of a detection region Ω 

such that: 

  ˆ ,k k HMIP x x L y P        (4) 

Where: 

x̂ is the estimate of x obtained from the measurements y 

L is the Alert Limit 

PHMI is the required integrity risk 

In addition, there is a false alert requirement: under fault free conditions, the probability that the 

measurements are outside of Ω must not exceed the false alert budget Pfa:  

 0| faP y H P       (5) 

The optimal detection region can be defined as the region that minimizes the integrity risk given a false 

alarm rate, that is, it is the solution to the optimization problem: 

Minimize  ˆ ,k kP x x L y         (6) 

s.t.  | 0 faP y i P    

PREVIOUS RESULT 

From the results shown in [7], the most useful one concerned the case with one multidimensional fault 

mode and where the all-in-view solution is the optimal one under fault free conditions.  This result allowed 

us to compute a lower bound on the achievable integrity in the case with multiple faults: 

Optimal detection region for one multi-dimensional threat with a least squares all-in-view solution 

For a fixed false alarm probability, a detection region that minimizes the integrity risk when only one 

threat is considered (N=1) is given by: 

   * |
i TT

k ky s s y T        (7) 

where sk
(i)T is the kth-row of the least squares estimator of xk assuming the measurement model fault 

S(i)(3): 
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The threshold T is set to meet the false alarm requirement (Pfa): 
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This result means that the optimal detection statistics is the solution separation between the all-in-view 

solution and the least squares solution that is immune to the fault mode.  When A(i) corresponds to the 

addition of independent biases to a set of satellites, the least squares solution immune to the fault mode 

is the least squares solution that excludes the satellites affected by the fault mode. 

One of the goals of this paper is to extend this result when the all-in-view estimator is not necessarily the 

optimal one for accuracy (but still a linear one).  This is important because in some cases, it is useful to 

offset the all-in-view position solution from the most accurate solution to improve integrity 

([8],[9],[10],[11],[12],[13]). 

 

LOWER BOUND ON OPTIMAL INTEGRITY FOR LINEAR ESTIMATORS 

In this section, we provide a lower bound on the optimal integrity when the all-in-view estimator is a linear 

unbiased estimator (which covers [8],[9],[10],[11],[12],[13]), that is: 

x̂ Sy        (10) 

where S produces an unbiased estimate [8]: 

 E Sy x       (11) 

which implies that: 

SG I        (12) 

There are two steps in this process: first we develop a lower bound as a function of the integrity achieved 

by the solution separation statistic. 

 

We consider the detection region defined as in (7), but with a non-least squares estimator sNLS: 

     ,|
i TSS T

fa NLS k k faP y s s y T         (13) 

where the threshold Tfa is set to meet a false alert of Tfa. Note that this detection region is not necessarily 

optimal.   

We have the following result: 
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This lower bound is weak, because it is negative in some cases.  However, for small Pfa values, it is 

possible to find values of Pfa,1 that place a strictly positive lower bound on the achievable integrity. 

The next bound is only a conjecture, since we did not manage to prove it, (but believe it to be true): 
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This is a much tighter bound, and is always strictly positive. 

 

 

Elements for the proof 

The integrity risk can be written as follows:   

        ˆ ˆ, , | , | ,z

z

P L y z P L y z p z dz            (16) 

Where: 

ε is the position error  

̂ is the estimate of the errors given the measurements (which was proven to be the solution separation 

statistic) 

z completes ̂  into a basis of the parity space  

θ is the fault bias state (noted b(i) above) 

We start by considering a parameter θ* that realizes the maximum of the integrity risk for the optimal 

integrity region Ω*.  We have: 
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We now consider the region that is optimal for the parameter θ* only, which we label Ω(θ*).  We have by 

definition: 

    * * * *, | , |P L y P L y            (18) 

In what follows, we develop a lower bound of the left hand side term. 



First, it can be shown that for the optimal detection region, there is a lower threshold dependent on z, T-

(z) and an upper threshold T+(z), such that: 

   ,z T z T z            (19) 

where Ωz is the projection of Ω(θ*) onto a given z. 

 

So that: 
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In the next step, we decompose the second term according to the size of the threshold: 
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We have: 
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and: 
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We have the upper bound: 
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As a consequence: 
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We define: 
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We have: 
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Therefore: 
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which concludes the proof.  

 

 

LOWER BOUND ON INTEGRITY FOR NON LINEAR ESTIMATORS FOR THE FAULT DETECTION AND 

EXCLUSION PROBLEM 

Most RAIM algorithms are structured so that detection and exclusion in RAIM are two clearly defined 

steps in the algorithm.  At each step, a linear unbiased estimator is used.  After exclusion, the linear 

estimator corresponds to the best linear unbiased estimator corresponding to one of the fault modes.  

This approach will not necessarily lead to the minimum integrity risk. 



In this section we formulate the problem of fault detection and exclusion (FDE) as the search of two 

objects: an estimator and an acceptability region.  For the FDE problem there are two requirements.  The 

integrity requirement is identical to the one described above.   We can formulate it as follows: 

  ˆ ,P x y x AL y PHMI         (29) 

The false alert requirement becomes an Alert requirement.  We want to have: 

  AlertP y P        (30) 

In this equation,  x̂ y  is the estimator of the position.  The optimization problem can then be written: 

  ˆminimize ,P x y x AL y PHMI     

s.t   AlertP y P       (31) 

As mentioned above, most RAIM FDE algorithms are such that: 

     ˆ ˆ  if 
i
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     (32) 

where     ˆ i
x y   is a linear unbiased estimator that is not affected by fault i and Ωi is the region that leads 

to the choice of the estimator i.  However, the above requirements suggest that the estimator  x̂ y  and 

Ω that minimizes the PHMI (subject to the PFA) is most likely not given by an estimator with the structure 

given by (32).    

Determining an optimal estimator might be feasible, but seems a very complex problem.  We can however 

develop a lower bound on the achievable integrity. 

We start by developing the terms using the law of total probability: 
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We now bound each of the terms as follows.  We have by definition: 
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We have: 
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Combining Equations (34) and (35), we get: 
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Now we notice that we always have: 
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The above expression results from the fact that, for a given hypothesis Hi, the estimator that minimizes 

the integrity risk is the fault tolerant estimator.  With our assumptions about the nominal errors, we can 

calculate an explicit formula for the right hand side in Equation (37).  We have: 

    ˆ |
i

i

i

AL
P x y x AL H Q



 
    

 
    (38) 

Where     ˆ i
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Now, summing over all modes, we get: 
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In the right hand side of this inequality, we recognize the Alert probability written developed using the 

law of total probability: 

      |i i Alert
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We finally have: 
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This expression is a lower limit on the integrity risk that can be achieved with any estimator.   

 

SUMMARY 

Lower bounds on the achievable integrity risk are useful to determine whether it makes sense to improve 

a given monitoring approach.  They also indicate whether we will need more knowledge to attain a certain 

performance.  In this work we provide lower bounds on the achievable integrity risk in two cases.  First, 

in the case of linear unbiased estimators, we formulate a lower bound as a function of the integrity risk 

achieved using the solution separation test statistic.  Second, for any estimator (and therefore covering 

the Fault Detection and Exclusion case), we formulate an explicit lower bound which is a function of the 

fault tolerant estimators corresponding to the fault modes. 
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