
Real-Time Software Receiver for GPS
Controlled Reception Pattern Antenna Array

Processing

Yu-Hsuan Chen, Jyh-Ching Juang, National Cheng Kung University, Taiwan
David S. De Lorenzo, Jiwon Seo, Sherman Lo, Per Enge, Stanford University, U.S.A.

Dennis M. Akos, University of Colorado Boulder, U.S.A.

BIOGRAPHY

Yu-Hsuan Chen is a Ph. D. candidate in electrical
engineering of National Cheng Kung University, Taiwan.
He visited GPS Laboratory at Stanford University in 2010.
He received his M.S. degree in electrical engineering
from National Cheng Kung University, Taiwan in 2002.

David S. De Lorenzo is a research associate at the
Stanford University Global Positioning System (GPS)
Laboratory. He received his M.S. in Mechanical
Engineering from University of California, Davis and his
Ph.D. in Aeronautics and Astronautics from Stanford
University.

Jyh-Ching Juang received the Ph. D. degree in electrical
engineering from University of Southern California, Los
Angeles, in 1987. He had been with Lockheed
Aeronautical Systems Company before he went back to
Taiwan in 1993. Currently, he is a Professor at the
Department of Electrical Engineering, National Cheng
Kung University, Tainan, Taiwan. His research interests
include DSP-based control applications, GNSS navigation
design, sensor networks, and advanced signal processing.

Jiwon Seo is a Postdoctoral Scholar at Global Positioning
System Laboratory and Space Environment and Satellite
Systems Laboratory at Stanford University. He received
his B.S. degree in mechanical engineering (division of
aerospace engineering) from KAIST (Korea Advanced
Institute of Science and Technology) and received M.S.
degrees in aeronautics/astronautics and electrical
engineering from Stanford and a Ph.D. degree in
aeronautics/astronautics from Stanford in 2010.
His research interests include ionospheric effects on GPS
aviation; alternative positioning, navigation, and timing;
and atmospheric remote sensing. Dr. Seo was a recipient
of the Samsung Lee Kun Hee Graduate Fellowship for
five years.

Sherman Lo is a senior research engineer at the Stanford
University Global Positioning System (GPS) Laboratory.
He is the Associate Investigator for the Stanford
University efforts on the Federal Aviation Administration
(FAA) Alternate Position Navigation & Time (APNT)
study. .

Per Enge is a Professor of Aeronautics and Astronautics
at Stanford University, where he is the Kleiner-Perkins,
Mayfield, Sequoia Capital Professor in the School of
Engineering. He directs the Stanford University GPS
Research Laboratory.

Dennis M. Akos is an Associate Professor with the
Aerospace Engineering Science Department at the
University of Colorado at Boulder. Dr. Akos completed
the Ph.D. degree in Electrical Engineering at Ohio
University within the Avionics Engineering Center.

ABSTRACT

This paper demonstrates a real-time software receiver
supporting GPS L1 C/A controlled reception pattern
antenna (CRPA) processing. The software receiver is
implemented on a widely-available recent generation
multi-core processor and is capable of processing array
signals from either radio frequency (RF) front-end
modules or collected datasets. Most importantly, the
receiver allocates dedicated satellite-tracking antenna
patterns for each baseband receiver channel.

The architecture of such a software receiver needs to be
carefully developed so that it can process signals from
each individual antenna, calculate the appropriate beam
formed composite signals (one for each satellite/receiver
channel) and then process those signals. Multitasking and
synchronization mechanisms were developed to support

the tracking of multiple channels in real time. To achieve
real-time capability, parallel operations are necessary to
reduce computation complexity. Bit-wise operations are
exploited and implemented in the correlator. Additionally,
Single Instruction Multiple Data (SIMD) instructions are
used to efficiently calculate the covariance matrix for the
beam steering algorithm. The architecture supports at
least eighty tracking channels (ten channels from each of
seven antennas plus ten composite beam formed signals)
in real time.

The CRPA software receiver was architected to operate
without extensive set up and pre-calibration enhancing its
suitability for commercial users. The algorithm design
was architected to aid ease of set up. While conventional
antenna array system receivers are used with the geometry
of antennas and cable lengths known in advance, the
algorithm implemented allows for operation without such
a priori knowledge.

Two beam steering techniques were tested. First is
deterministic beam steering. An adaptive algorithm,
Minimum Variance Distortion Response (MVDR)
algorithm, was implemented to adaptively maximize
signal power. The architecture determines of the carrier
phase difference between signals from different antennas
for a single satellite in order to build the steering vector.
An experiment was conducted to show the enhanced
C/No and controlled reception patterns through directing
the CRPA toward the direction of satellite of interest. For
evaluating interference rejection, a LI GPS simulator is
used to build an environment with CDMA and CW
interferences. The result shows that the MVDR algorithm
has reliable performance than non beam steered and
deterministic beam steering under the both type of
interferences.

INTRODUCTION

GPS provides 24 hour all-weather position, navigation,
and timing (PNT) services worldwide. However, GPS and
GNSS signals are relatively weak and thus vulnerable to
deliberate and unintentional interference. An
electronically-steered antenna array system provides an
effective approach to mitigating interference by
controlling the reception pattern and steering beams/nulls.
As a result, so called controlled reception pattern antenna
(CRPA) array have been deployed by organizations such
as the US military which seek high levels of anti-jam
performance. However, there is a tradeoff in increased
cost and computational complexity which to-date has not
been acceptable to commercial GNSS users. The research
conducted in this paper brings the directive gains and
interference rejection benefits of electronically-steered
antennas closer to commercial users by implementing
CRPA processing on software receivers.

A software receiver was developed for study a civil use of
GNSS beam steering. It uses a 7-element antenna array
with one RF front-end per antenna to collect the desired
signals. The digitalized signals are then transferred to PC
by a USB microcontroller board. The signal processing,
positioning, and beamforming are accomplished by
software [3][4].

Conventionally, antenna array system receivers perform
CRPA with the geometry of the antennas and cable
lengths known in advance. In the developed software
receiver, the algorithm implemented allows for operation
without such a priori knowledge. As the carrier phase
difference is related to geometry of antenna as well as line
biases of the cables, this can be used as weights for
deterministic beamforming or constraints for adaptive
beamforming.

The software receiver contains ten channels per antenna
for assessing the carrier phase. . So for seven antennas
without beamforming we have seventy independent
channels. This results in high computational complexity.
In order to achieve real-time capability, single instruction
multiple data (SIMD) instructions [5] and assembly
programming is used to accelerate the operation.
Additionally, multi-threading programming is adopted to
fully exploit the multi-core resources of the processor.

An experiment was conducted to demonstrate that the
carrier to noise ratio (C/No) is enhanced by array
processing. With an injected interference, the developed
software receiver is also tested with low power CW and
CDMA interferences. Comparisons are made between a
single antenna, CRPA by deterministic beamforming and
MVDR adaptive beamforming.

The paper is organized as follows. First, the algorithms of
the CRPA are introduced. Then, the implementation of
the CRPA in our developed software receiver is described.
The architecture of the software receiver , including
hardware and software components, is explained in detail.
For verifying the real-time capability, the software
analyses, including thread activities and timing, are
shown. A calibration procedure by carrier phase precise
positioning is implemented for calculating the controlled
pattern results. The experiments for enhancing C/No and
interference rejection are described and results show the
performance of the CRPA software receiver. Finally,
some concluding remarks are made.

ALGORITHMS OF THE CONTROLLED
RECEPTION PATTERN ANTENNA

The primary goal of a controller reception pattern antenna
is to enhance the carrier-to-noise ratio of a selected
satellite and reject interference [1]. The basic algorithm is
deterministic beamforming which combines the signal of

antennas, multiplied by complex weights and then
summed over all antennas as shown in equation (1).

 SWwtsts T
M

i
ii =⋅=∑

=1

)()((1)

where)(tsi is the signal from ith antenna and iw is the
weight associated to the ith antenna. Traditionally, the
signal of one of the antennas is set as a reference and its
weight is set to 1. The other weights are set as phase shifts
relative to the reference antenna represented in equation
(2).
 ()()i

l
ii Ljw δϕ +∆−= exp (2)

where l
iϕ∆ is the phase difference based on antenna

geometry and the direction of desired satellite. iLδ is the
phase difference resulting from the cable length
difference and phase center inaccuracy. l

iϕ∆ can be
calculated as

λ

θφπ
ϕ

),(ˆ2 l
il

i
rp ⋅

=∆
r

 (3)

where ip
r

is the baseline vector of the ith antenna and

),(ˆ θφlr is the unit vector to satellite l as shown in the
figure 1.

θ

φ

r̂

x

y

z

rAnt

iAnt

ip
r

Figure 1. The antenna geometry and direction of satellite

showing calculation of l
iϕ∆

Because ip

r
is a known prior and),(ˆ θφlr can be

calculated after positioning, l
iϕ∆ can be obtained.

However, iγ∆ is needed to be re-calibrated whenever any
part of antenna array hardware is changed.

Compared to deterministic beamforming, the adaptive
scheme uses feedback to find the optimal weights for the
beam. The MVDR algorithm [2] uses weights of the
deterministic beamforming as the steering vector to
constraint the gain of the desired direction to unity while
steering the nulls to reject any interference. The null
steering is accomplished by calculating the appropriate
weights iteratively. The implementable updating
equations of MVDR is written as

 [] TWRIW nn +−=+ µγ1 (4)
where R is the covariance matrix and T is the steering
vector. Then, in order to keep the magnitude of weight of
the reference signal as unity, the weight vector is
normalized as shown in equation (5).
 1,11 +++ = nrnn wWW (5)

IMPLEMENTATION OF A CRPA IN A
SOFTWARE RECEIVER

For deterministic beamforming and the adaptive MVDR
scheme, obtaining the steering vector is the key to
implementing a CRPA. However, as mentioned in the
previous section, parameters of the steering vector are
obtained through calibration. A software receiver has the
flexibility of implementing channels to process multi-
antenna signals. A set of channels with the same PRN
assignment are configured to process the signal of an
individual antenna, respectively. The measurement of the
phase locked loop is integrated carrier phase (ICP) which
integrates carrier phase throughout tracking. The ICP is
often used to smooth code pseudorange for improving
accuracy of positioning. In our software receiver, ICP
differences between different antennas are taken to build
the steering vector. Without any calibration prior to
execution, the software receiver uses ICP differences to
perform CRPA instead of the azimuth/elevation to the
satellites and baseline vectors of antennas. Figure 2 shows
the block diagram of the implementation of the CRPA in
our software receiver.

MM
N

M
N 11 ϕϕϕ −=∆

1
1

1
2

1
21 ϕϕϕ −=∆

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

∆−

∆−

l
M

l

j

j

e

e

1

21

.

.

.

1

ϕ

ϕ

Figure 2. Block diagram of the implementation of CRPA

in a software receiver

Once all of the channels assigned to a given satellite are
tracking, the ICPs are needed to re-initialize according to
in-phase and quadrature-phase of individual correlator
output. It takes several milliseconds to average the phase.
Then, the ICPs are continuously integrated and the phase
difference between the reference antenna and others are
computed at runtime. Any of the tracked satellite can be
selected by the operator and then the ICP difference is
utilized to calculate the steering vector. For deterministic

beamforming, the weight vector is equal to steering vector.
For the MVDR algorithm, it is obtained through an
adaptive procedure as expressed in equations (4) and (5)
every millisecond. The beam formed signal is calculated
by multiplied weights with signals and then sum over all
antennas.

ARCHITECTURE OF SOFTWARE RECEIVER

The developed CRPA real-time software receiver runs on
a PC platform and uses USB for data input. It currently
operates on GPS L1 C/A signal. There are a total of 80
channels of which ten are allocated to process real data
for each antenna as well as ten tracking channels to
process complex data for the beam formed composite
signal. ICP measurements from each channel assigned to
track the same satellite are collected to build the steering
vector. Only one satellite is selected for beam steering
(signal beam). The weight updating rate of MVDR
algorithm is 1 KHz. Moreover, positioning is dedicated to
a beam formed composite signal. There is a GUI to show
ICP differences, weights and C/No of all channels to
illustrate the beamforming performance as well as the
positioning result.

A. HARDWARE

The 7-element antenna elements are arranged in circle
with one wavelength between the each on a circular plane
of aluminum. In the RF front-end, the L1 signal is down-
convertered to a 4.1304 MHz intermediate frequency and
sampled at 16.3676 MHz. The front-end outputs 2-bit real
IF data. The clocks of the front-ends must be perfectly
synchronized for array signal processing. A function
generator set as sinusoidal wave output at 16.3676 MHz.
It is divided to two branches by a 1-to-2 splitter. One is
used the drive the clock input of USB microcontroller.
The other one is further divided by a 1-to-8 splitter to
eight branches which are used as reference clock for each
front-end. The USB microcontroller serves as a bridge
from RF front-end to PC. Its 16-bit parallel digital
interface I/O is connected to seven 2-bit RF front-ends
outputs. The resulting data rate is 32 MByte/s close to the
limit of USB 2.0 data rate of 40 MByte/s. It is necessary
to have an efficient strategy to reach such a high data rate.
The hardware including antenna array, RF front-end and
USB microcontroller board was developed in [6]. Since
the developed software receiver implements as many as
80 channels, it required a multi-core processor with multi-
thread support. Further, the processor needs to support
single instruction multiple data (SIMD) instructions to
account for the high computational complexity. The
implementation of SIMD instructions for Intel is called as
MMX/SSE/SSE2 [7]. The 128-bit register of SSE can be
divided to several items in terms of bytes, words, or
double words and perform parallel mathematical and

comparative operations. The used processor is the quad-
core Intel Core i7 which runs eight threads at a time and
supports SIMD instructions sets including MMX and SSE
(1, 2, 3, 4, 4.1, 4.2). The hardware set-up of the CRPA
software receiver is depicted in the figure 3.

7‐element Antenna Array

RF Front‐end Box

1‐to‐8 Splitter

1‐to‐2 Splitter

Function Generator

USB Controller Board
PC with Intel Core i7 CPU

14

Figure 3. Diagram of hardware set-up of CRPA software

receiver

B. SOFTWARE

The software is developed with Visual Studio under 32-
bit version of Microsoft Windows XP. Most of source
code is programmed using C++. The functions with high
computational complexity are programmed by inline
assembly such as correlation operation and covariance
matrix calculation. The components used are listed in the
Table 1.

Table 1. Components list of software architecture
Component Description
USB driver
USB C++ library

Provided by chip manufacturer.

Software correlator

Hand-coded inline assembly using
SSE instruction set based on bit-
wise parallel algorithm [8].

Tracking
Positioning

Use GPL-GPS [9] open source
codeand modify interface to
software correlator [10].

MVDR adaptive
beamforming
-Covariance
Calculation
-Weight Update

Hand-coded inline assembly using
SSE instruction set for calculating
covariance.
Hand-coded C++ code for weight
update

Weight-and-Sum
and quantization of
composite signal

Hand-coded inline assembly using
SSE instruction set.

System Program Arrange threads to achieve real-
time capability

The IF data transfer uses the C++ library provided by chip
manufacturer for communicating with USB driver. The
procedure of the IF data transfer is depicted in the figure 4.

The width of data transfer for one sample is 16-bits for
the entire IF data stream from all antennas. The data is
further separated into a circular queue of individual
antennas. The size of the entry of the queue is C/A code
period (one msec). New IF data is stored into the rear
index of the queue and the processing of the data is
started from front index of queue.

Figure 4. Procedure of IF data transfer from the USB

interface to the circular queues

To fully exploit the resources of Intel Core i7 CPU,
multiple threads are created and arranged in a way such
that at most 8 threads need be executed. Figure 5 shows
the flowchart of the threads.

} } }

Figure 5. Flowchart of threads every msec

The main thread controls all the working threads. At first,
seven receiver threads process the IF data obtained from
the individual queue of antennas. Software correlation and

acquisition/tracking are performed within each receiver
thread. Next, the weight-and-sum operations for beam
forming are separated into 8 threads and run
simultaneously. The combined data is further quantized to
complex 2-bit outputs, and then processed within a
composite antenna receiver thread. In the composite
receiver thread, not only is software correlation,
acquisition and tracking performed, but the position
solution is also calculated. In parallel, the covariance
matrix is calculated by averaging over one msec within N
threads where N depends on the number of elements in
the covariance matrix. In addition, the MVDR weight
update is performed in another thread. The whole
procedure must be finished within one msec to achieve
real-time capability.

CODING EXAMPLES TO ENABLE REAL-TIME

The bit-wise parallel algorithm [8] represents an incoming
signal as a bit of a variable or register, and then performs
a parallel logic operation instead of multiplication. In the
software receiver, the algorithm is implemented using the
SIMD instructions. 128 samples can be processed at a
time using the 128-bit XMM registers. After the bit-wise
operation, the results are stored within the bits of the
register and an accumulation (counting the number of bit
set to one) is required. Conventionally, this operation is
performed by addressing a look-up table in the memory.
The memory size for 16-bit table is 64KB [8]. However,
with a CPU with SSE 4.2 can use POPCNT instruction
[11] which can count the number of bits set to one for a
32-bit register in a 32-bit operating system. An example
of counting the number of correlation results being six
using SSE instructions shows in the figure 6.

Figure 6. Example of counting the number of correlation

results being using SSE instructions

As mentioned in the previous section, the weight-and-sum
operation is to combine the IF data by multiplying the
complex weights and summing over all antennas. This
operation can be performed in parallel using SSE
instructions. Figure 7 shows implementation of the
weight-and-sum operation using SSE instruction. At first,
the real inputs and complex weights are loaded into the
XMM registers in terms of bytes. Then, the multiply
packed signed integers and store low (PMULLW)
instruction is performed to multiply real inputs with
complex weights in parallel. Finally, a parallel addition is
performed three times to obtain the summations of real
and imagery components.

Figure 7. Example of the weight-and-sum operation using

SSE instructions

CALIBRATION OF THE ANTENNA ARRAY BY
CARRIER PHASE PRECISE POSITIONING

Although the software receiver can act as a CRPA in real-
time without any prior knowledge, the calibration of the
antenna array in the post-processing mode will aid in
examining the CRPA performance of receiver. The gain
pattern of the composite antenna is critical to show the
performance of CRPA. The gain is calculated using
relative positions of antennas and weights as shown in
equation (6).

 ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ ∆+

⋅
×=∑

=
i

li
M

i
i

rpjwGP γ
λ

θφπθφ),(ˆ2exp),(
1

r

 (6)

where baseline vector ip
r and cable length differences

iγ∆ are obtained through calibration. Figure 8 shows the
used calibration procedure of the antenna array. In the
CRPA software receiver, the ICP measurements are
collected from the channels of the individual antennas for
one minute. The azimuth/elevation of satellites are also
obtained using the beam formed composite signal. The

single difference ICP between signals of antennas and
reference antenna j is represented as [12]:
 k

ij
k
ijij

k
ij

k
ij NLr εδλϕ +++= −1 (7)

where ijr is differential range toward the k satellite

between ith and jth antenna, k
ijN is the integer associated

to k
ijϕ , k

ijε is the phase error. The double difference ICP
between satellites and reference satellite l is represented
as:
 kl

ij
kl
ij

kl
ij

kl
ij Nr ελϕ ++= −1 (8)

The cable length difference term is subtracted in the
double difference. Based on the distance of the antenna
position close to one wavelength, equation (8) can be
written as:
 ()() kl

ij
kl
ijij

lkkl
ij Nprr ελϕ ++−−−= − ˆˆ1 (9)

where kr̂ is the unit vector to satellite k, ijp is baseline
vector between ith and jth antenna. By combining all the
double difference measurements of the pair ijth antennas,
the observations equation is represented as:

()
()

()
Ε++=Γ

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⋅+

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

−−−
−−−

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−
−

NGp

N

N
N

Ip

rr

rr
rr

ij

K
ij

ij

ij

K
ij

ij

ij

Kij

KK
ij

ij

ij

1

1

31

21

1

31

21

1

1

13

12

1

1

31

21

ˆˆ

ˆˆ
ˆˆ

λ

ε

ε
ε

λ

ϕ

ϕ
ϕ

MMMM (10)

From the positioning results of composite channels, the
azimuth and elevation of satellites are used to manipulate
matrix G. Before solving the relative antenna positions,
the integer vector N needs to be resolved. The LAMBDA
method, specified in reference [13], is used. By
substituting the solutions of N and ijp into the equation
(7), the cable length differences are calculated after
filtering the noise term.

Antenna Array Precise Positioning CRPA Software Receiver

Antenna#1
Channel #1~#N

Tracking

Single Difference
Measurements

.

.

.

Antenna#2
Channel #1~#N

Tracking

Antenna#7
Channel #1~#N

Tracking

Composite
Channel #1~#N

Positiong

ICP
Measurements

ICP
Measurements

ICP
Measurements

Satellite’s
Azimuth
Elevation

.

.

.

Double Difference
Measurements

Matrix Manipulation
Of G Matrix

Resolving
Integer Ambiguity

by LAMBDA Method

.

.

.

Solving Relative
Antenna Positions

Solving
Cable Length
Differences

Figure 8. Block diagram of the calibration procedure of

antenna array

ANALYSIS OF THE THREAD ACTIVITIES AND
TIMING PERFORMANCE

In order to analyze the activities of the threads of the
CRPA real-time software receiver, the Intel Thread
Profiler collector program is utilized. This is a thread
analyzer application to understand the threading patterns
in multi-threaded software. This collector program is
executed with our software receiver and outputs a
timeline diagram containing execution flow of all the
threads as shown in the figure 9. The resulting execution
flow exactly follows the designed flow shown in figure 5.

Figure 9. Execution flow of the threads of the CRPA real-
time software receiver collected from the Intel Thread

Profiler collector program

The execution time of the threads is measured by
counting the clock cycles of CPU. The threads needed to
execute in one msec are divided into three parts and
execution times is measured 1000 trials. The results are
represented as a box plot in the figure 10. The mean
execution times of each part are listed in the table 2. The
total mean execution time is less than one msec and
shows that the CRPA software receiver can achieve real-
time capability.

0

200

400

600

800

1000

1200

Antenna_1_7 Weight_n_Sum Composite_n_MVDR Total

Execution Time of Threads for one msec Data

Ti
m

e
(µ

se
c)

Figure 10. Box plot of the execution time illustrating the

real time capability of the CRPA

Table 2. Execution time of threads

Thread Name Mean Execution Time (µsec)
Process IF Data of
Antenna #1 ~ #7

572.93

Weight and Sum 75.23
Composite Receiver
and MVDR weight
update

345.81

Total 993.98

EXPERIMENT FOR ENHANCING THE C/NO

An experiment is conducted in open field (low multipath
environment) to examine the performance of CRPA.
Figure 11 shows the hardware set-up of the software
receiver.

Figure 11. Hardware set-up of the software receiver

To determine the beam formed antenna gain pattern for
each satellite in view, the software receiver runs in post-
processing mode. In each run, the receiver performs
CRPA by MVDR adaptive beamforming toward one of
satellites. Figure 12 shows the filtered C/No of all
satellites in view. The CRPA begins to perform from 30th
second. There is more than 6dB gain through the CRPA
for all satellites tested.

0 10 20 30 40 50 60
35

40

45

50

55

Time (sec)

C
/N

o
(d

B
-H

z)

Filtered C/No

PRN 2
PRN 5
PRN 10
PRN 12
PRN 25
PRN 29
PRN 30
PRN 31

Figure 12. The filtered C/No of the software receiver with

and w/o CRPA beam steering

The ICP measurements and azimuth/elevation of satellites
are recorded for 60 seconds. Then, the calibration of
antenna array using carrier phase precise positioning is
performed and the result is shown in the figure 13. It is
close to the physical antenna array geometry. Moreover,
with relative antenna positions and weights from CRPA,
the gain patterns of composite antenna after CRPA toward
one satellite are calculated by equation (6). Figure 14
shows the resulting gain patterns toward the selected
satellite. The corresponding sky plot is shown in the
center of the figure. . There is a high gain in the direction
of satellite which is the basis as to why the C/No is
enhanced by the CRPA processing.

-1 -0.5 0 0.5 1
-0.5

0

0.5

1

1.5

Ant#4 Ant#5

Ant#7

Ant#1

Ant#2

Ant#6

Ant#3

E (λ)

N
 (λ

)

Relative Position of Antennas

Figure 13. Relative position of the antennas from the

carrier phase precise positioning

Figure 14. The gain patterns of the composite antennas by

the CRPA toward the specified satellite in a sky plot
format

EXPERIMENT FOR INTERFERENCE
REJECTION

In order to examine the interference rejection
performance of the CRPA software receiver, a single
channel GPS simulator provides injected, via splitters,
interference which is combines with received signal from
four elements of the antenna array. The hardware set-up is
depicted in figure 15. The GPS simulator generates two
types of interference. One is CDMA interference obtained
by setting a PRN number which is currently unallocated.
The other is CW interference by turning off C/A code
spreading. Figure 16 shows the power spectral density of
IF signal for three cases: w/o interference, with CDMA
interference, and with CW interference. The spectrum of
the signal with CDMA interference has a higher power
lobe within 2 MHz bandwidth than no interference case.
The spectrum of signal with CW interference has a peak
in the center frequency of IF.

Figure 15. Diagram of the hardware set-up of the CRPA

software receiver with the interference using GPS
simulator

0

30

330

60

300

 1.4
 1.2
 1
 0.8
 0.6
 0.4
 0.2

90

270

PRN31

240

120

210

150

180 0

30

330

60

300

 1.4
 1.2
 1
 0.8
 0.6
 0.4
 0.2

90

270

PRN29

240

120

210

150

180 0

30

330

60

300

 1.4
 1.2
 1
 0.8
 0.6
 0.4
 0.2

90

270

PRN2

240

120

210

150

180

0

30

330

60

300

 1.4
 1.2
 1
 0.8
 0.6
 0.4
 0.2

90

270

PRN30

240

120

210

150

180

30

210

60

240

90

270

120

300

150

330

180 0

Skyplot

2

5

10

12

25

29

30

31

0

30

330

60

300

 1.4
 1.2
 1
 0.8
 0.6
 0.4
 0.2

90

270

PRN10

240

120

210

150

180

0

30

330

60

300

 1.4
 1.2
 1
 0.8
 0.6
 0.4
 0.2

90

270

PRN25

240

120

210

150

180 0

30

330

60

300

 1.4
 1.2
 1
 0.8
 0.6
 0.4
 0.2

90

270

PRN12

240

120

210

150

180 0

30

330

60

300

 1.4
 1.2
 1
 0.8
 0.6
 0.4
 0.2

90

270

PRN5

240

120

210

150

180

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8

x 106

-150

-140

-130

-120

-110

-100

-90

-80

-70

Frequency (Hz)

P
ow

er
 S

pe
ct

ru
m

 (d
B

)
Power Spectral Density of IF Signal

w/o Interference
w/ CDMA Interference
w/ CW Interference

Figure 16. Power spectral density of IF signal with and

without interference

The CRPA software receiver processes these signals in
the post-processing mode and only combines the four
signals antennas which are subject to the interference.
Figure 17 shows filtered C/No of the PRN2 in the
presence of CDMA and CW interferences. In both cases,
the interference starts 30 seconds into the run. Without
CRPA, the software receiver will lose lock on the PRN 2
signal when interference is present. The software receiver
performs implements the CRPA at 10th second and
contributes over 5 dB gain on C/No. When interference is
not present, the performance of MVDR is close to
deterministic beamforming. However, after interference is
present, MVDR has gain about 0.5 dB higher than
deterministic beamforming. It should be noted that these
are really simple tests of null steering and meant to verify
that the algorithms performing correctly.

0 10 20 30 40 50
35

40

45

50

Time (sec)

C
/N

o
(d

B
-H

z)

PRN 2 Filtered C/No with CDMA Interference @30s

w/o CRPA
MVDR @10s
Deterministic @10s

0 10 20 30 40 50
35

40

45

50

Time (sec)

C
/N

o
(d

B
-H

z)

PRN 2 Filtered C/No with CW Interference @30s

w/o CRPA
MVDR @10s
Deterministic @10s

Figure 17. Filtered C/No of the software receiver
performing CRPA by MVDR and deterministic
beamforming in the cases with CDMA and CW

interference

CONCLUSIONS

We implemented a real-time CRPA software receiver for
GPS L1 C/A in a PC with a modern processor to
demonstrate the feasibility of CRPA technology for civil
applications. The developed algorithms implement a
complete CRPA without any a prior. The result of
experiments shows its performance of enhancing C/No as
well as interference rejection. The software receiver can
be extended to a GPS L5 by replacing RF hardware
components with minimal changes to the software
architecture. The Federal Aviation Administration
Alternate Position Navigation and Time study is
interested in the use of the CRPA with the L5 signal for
robust time [14].

Other future work includes leveraging a GPU, which is
well known for its parallel structure, to implement all-in-
view beamforming implementation and process higher
resolution data. The current 2 bit resolution does not
provide significant interference rejection as high power
interference can saturate the analog to digital converter.
Hence processing higher resolution data is needed for
robust interference rejection. We are also interested in
reducing the number of channel and implementing CRPA
software receiver in a single-core processor for mobile
device are planned as future activities. This may be useful
for allowing CRPA technology to filter into lower cost
civil applications.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the invaluable
hardware provision of Staffan Backén for antenna array.
The authors also acknowledge the electronic assistance of
Doug Archdeacon for setting up PC and RF devices. This
work has been supported by Federal Aviation
Administration and National Science Council, Taiwan
under contract NSC98-2917-I-006-106.

REFERENCES

[1] D.S. De Lorenzo, “Navigation Accuracy and
Interference Rejection for GPS Adaptive Antenna
Arrays,” PhD thesis, Stanford University, 2007

[2] S.P. Applebaum, “Adaptive Arrays,” IEEE
Transactions on Antennas and Propagation, vol. 24, no. 5,
pp. 585-598, 1976

[3] K. Borre, D.M. Akos, N. Bertelsen, P. Rinder, and S.H.
Jensen, A Software-defined GPS and Galileo Receiver: A
Single-Frequency Approach, Birkhäuser Boston, 2007.

[4] D.M. Akos, “A Software Radio Approach to Global

Navigation Satellite System Receiver Design,” PhD thesis,
Ohio University, 1997

[5] G.W. Heckler and J.L. Garrison, “SIMD correlator
library for GNSS software receivers,” GPS Solutions
Volume 10, Number 4, pp. 269-276, 2006

[6] S. Backén, D.M. Akos and M.L. Nordenvaad, “Post-
processing dynamic GNSS antenna array calibration and
deterministic beamforming,” Proceedings of ION GNSS
2008, pp. 1311-1319, 2008

[7] Intel Corporation, “Basic Architecture,” Intel® 64 and
IA-32 Architectures Software Developer’s Manual,
Volume 1, 2010

[8] B.M. Ledvina, A.P. Cerruti, M.L. Psiaki, S.P. Powell,
P.M. Kintner, “A 12-Channel Real-Time GPS L1
Software Receiver,” Proceedings of ION NTM 2003, pp.
679-688, 2003

[9] A. Greenberg and T. Ebinuma, “Open Source
Software for Commercial Off-the-Shelf GPS Receivers,”
Proceedings of ION NTM 2005, pp. 2820-2829, 2005

[10] J-C Juang and Y-H Chen, “Accounting for data
intermittency in a software GNSS receiver,” IEEE
Transactions on Consumer Electronics, Volume 55, Issue
2, pp. 327-333, 2009

[11] Intel Corporation, “System Programming Guide, Part
2,” Intel® 64 and IA-32 Architectures Software
Developer’s Manual, Volume 3B, 2010

[12] P. Misra and P. Enge, Global Positioning System:
Signals, Measurement, and Performance, 2nd Edition,
Ganga-Jamuna Press, Lincoln, MA. , 2006

[13] P. de Jonge and C. Tiberius, “The LAMBDA method
for integer ambiguity estimation: implementation
aspects,” Publications of the Delft Geodetic Computing
Centre, 1996

[14] D.S. De Lorenzo, S.C. Lo, J. Seo, Y-H Chen and P.
Enge “The WAAS/L5 signal for robust time transfer,”
Proceedings of ION GNSS 2010, 2010

