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ABSTRACT  
 
This paper demonstrates a real-time software receiver 
supporting GPS L1 C/A controlled reception pattern 
antenna (CRPA) processing.  The software receiver is 
implemented on a widely-available recent generation 
multi-core processor and is capable of processing array 
signals from either radio frequency (RF) front-end 
modules or collected datasets.  Most importantly, the 
receiver allocates dedicated satellite-tracking antenna 
patterns for each baseband receiver channel.  
 
The architecture of such a software receiver needs to be 
carefully developed so that it can process signals from 
each individual antenna, calculate the appropriate beam 
formed composite signals (one for each satellite/receiver 
channel) and then process those signals.  Multitasking and 
synchronization mechanisms were developed to support 



the tracking of multiple channels in real time.  To achieve 
real-time capability, parallel operations are necessary to 
reduce computation complexity. Bit-wise operations are 
exploited and implemented in the correlator. Additionally, 
Single Instruction Multiple Data (SIMD) instructions are 
used to efficiently calculate the covariance matrix for the 
beam steering algorithm.  The architecture supports at 
least eighty tracking channels (ten channels from each of 
seven antennas plus ten composite beam formed signals) 
in real time.   
 
The CRPA software receiver was architected to operate 
without extensive set up and pre-calibration enhancing its 
suitability for commercial users.  The algorithm design 
was architected to aid ease of set up.  While conventional 
antenna array system receivers are used with the geometry 
of antennas and cable lengths known in advance, the 
algorithm implemented allows for operation without such 
a priori knowledge. 
 
Two beam steering techniques were tested.  First is 
deterministic beam steering.  An adaptive algorithm, 
Minimum Variance Distortion Response (MVDR) 
algorithm, was implemented to adaptively maximize 
signal power.  The architecture determines of the carrier 
phase difference between signals from different antennas 
for a single satellite in order to build the steering vector. 
An experiment was conducted to show the enhanced 
C/No and controlled reception patterns through directing 
the CRPA toward the direction of satellite of interest. For 
evaluating interference rejection, a LI GPS simulator is 
used to build an environment with CDMA and CW 
interferences. The result shows that the MVDR algorithm 
has reliable performance than non beam steered and 
deterministic beam steering under the both type of 
interferences.   
 

INTRODUCTION  
 
GPS provides 24 hour all-weather position, navigation, 
and timing (PNT) services worldwide. However, GPS and 
GNSS signals are relatively weak and thus vulnerable to 
deliberate and unintentional interference.  An 
electronically-steered antenna array system provides an 
effective approach to mitigating interference by 
controlling the reception pattern and steering beams/nulls.  
As a result, so called controlled reception pattern antenna 
(CRPA) array have been deployed by organizations such 
as the US military which seek high levels of anti-jam 
performance.  However, there is a tradeoff in increased 
cost and computational complexity which to-date has not 
been acceptable to commercial GNSS users.  The research 
conducted in this paper brings the directive gains and 
interference rejection benefits of electronically-steered 
antennas closer to commercial users by implementing 
CRPA processing on software receivers. 
 

A software receiver was developed for study a civil use of 
GNSS beam steering.  It uses a 7-element antenna array 
with one RF front-end per antenna to collect the desired 
signals. The digitalized signals are then transferred to PC 
by a USB microcontroller board. The signal processing, 
positioning, and beamforming are accomplished by 
software [3][4].  
 
Conventionally, antenna array system receivers perform 
CRPA with the geometry of the antennas and cable 
lengths known in advance. In the developed software 
receiver, the algorithm implemented allows for operation 
without such a priori knowledge. As the carrier phase 
difference is related to geometry of antenna as well as line 
biases of the cables, this can be used as weights for 
deterministic beamforming or constraints for adaptive 
beamforming. 
 
The software receiver contains ten channels per antenna 
for assessing the carrier phase. . So for seven antennas 
without beamforming we have seventy independent 
channels.  This results in high computational complexity. 
In order to achieve real-time capability, single instruction 
multiple data (SIMD) instructions [5] and assembly 
programming is used to accelerate the operation. 
Additionally, multi-threading programming is adopted to 
fully exploit the multi-core resources of the processor.   
 
An experiment was conducted to demonstrate that the 
carrier to noise ratio (C/No) is enhanced by array 
processing. With an injected interference, the developed 
software receiver is also tested with low power CW and 
CDMA interferences. Comparisons are made between a 
single antenna, CRPA by deterministic beamforming and 
MVDR adaptive beamforming. 
 
The paper is organized as follows. First, the algorithms of 
the CRPA are introduced. Then, the implementation of 
the CRPA in our developed software receiver is described. 
The architecture of the software receiver , including 
hardware and software components, is explained in detail. 
For verifying the real-time capability, the software 
analyses, including thread activities and timing, are 
shown. A calibration procedure by carrier phase precise 
positioning is implemented for calculating the controlled 
pattern results. The experiments for enhancing C/No and 
interference rejection are described and results show the 
performance of the CRPA software receiver. Finally, 
some concluding remarks are made. 
 

ALGORITHMS OF THE CONTROLLED 
RECEPTION PATTERN ANTENNA  
 
The primary goal of a controller reception pattern antenna 
is to enhance the carrier-to-noise ratio of a selected 
satellite and reject interference [1]. The basic algorithm is 
deterministic beamforming which combines the signal of 



antennas, multiplied by complex weights and then 
summed over all antennas as shown in equation (1). 
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where )(tsi  is the signal from ith antenna and iw is the 
weight associated to the ith antenna. Traditionally, the 
signal of one of the antennas is set as a reference and its 
weight is set to 1. The other weights are set as phase shifts 
relative to the reference antenna represented in equation 
(2). 
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geometry and the direction of desired satellite. iLδ is the 
phase difference resulting from the cable length 
difference and phase center inaccuracy.  l
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where ip
r

is the baseline vector of the ith antenna and 

),(ˆ θφlr  is the unit vector to satellite l as shown in the 
figure 1. 
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Figure 1. The antenna geometry and direction of satellite 

showing calculation of l
iϕ∆  

 
Because ip

r
is a known prior and ),(ˆ θφlr  can be 

calculated after positioning, l
iϕ∆ can be obtained. 

However, iγ∆ is needed to be re-calibrated whenever any 
part of antenna array hardware is changed.  
 
Compared to deterministic beamforming, the adaptive 
scheme uses feedback to find the optimal weights for the 
beam. The MVDR algorithm [2] uses weights of the 
deterministic beamforming as the steering vector to 
constraint the gain of the desired direction to unity while 
steering the nulls to reject any interference.  The null 
steering is accomplished by calculating the appropriate 
weights iteratively.  The implementable updating 
equations of MVDR is written as 

 [ ] TWRIW nn +−=+ µγ1  (4) 
where R is the covariance matrix and T is the steering 
vector. Then, in order to keep the magnitude of weight of 
the reference signal as unity, the weight vector is 
normalized as shown in equation (5). 
 1,11 +++ = nrnn wWW  (5) 

 

IMPLEMENTATION OF A CRPA IN A 
SOFTWARE RECEIVER 
 
For deterministic beamforming and the adaptive MVDR 
scheme, obtaining the steering vector is the key to 
implementing a CRPA. However, as mentioned in the 
previous section, parameters of the steering vector are 
obtained through calibration. A software receiver has the 
flexibility of implementing channels to process multi-
antenna signals. A set of channels with the same PRN 
assignment are configured to process the signal of an 
individual antenna, respectively. The measurement of the 
phase locked loop is integrated carrier phase (ICP) which 
integrates carrier phase throughout tracking. The ICP is 
often used to smooth code pseudorange for improving 
accuracy of positioning. In our software receiver, ICP 
differences between different antennas are taken to build 
the steering vector. Without any calibration prior to 
execution, the software receiver uses ICP differences to 
perform CRPA instead of the azimuth/elevation to the 
satellites and baseline vectors of antennas. Figure 2 shows 
the block diagram of the implementation of the CRPA in 
our software receiver.  
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Figure 2. Block diagram of the implementation of CRPA 

in a software receiver 
 
Once all of the channels assigned to a given satellite are 
tracking, the ICPs are needed to re-initialize according to 
in-phase and quadrature-phase of individual correlator 
output. It takes several milliseconds to average the phase. 
Then, the ICPs are continuously integrated and the phase 
difference between the reference antenna and others are 
computed at runtime. Any of the tracked satellite can be 
selected by the operator and then the ICP difference is 
utilized to calculate the steering vector. For deterministic 



beamforming, the weight vector is equal to steering vector. 
For the MVDR algorithm, it is obtained through an 
adaptive procedure as expressed in equations (4) and (5) 
every millisecond. The beam formed signal is calculated 
by multiplied weights with signals and then sum over all 
antennas.   
 

ARCHITECTURE OF SOFTWARE RECEIVER 
 
The developed CRPA real-time software receiver runs on 
a PC platform and uses USB for data input. It currently 
operates on GPS L1 C/A signal. There are a total of 80 
channels of which ten are allocated to process real data 
for each antenna as well as ten tracking channels to 
process complex data for the beam formed composite 
signal. ICP measurements from each channel assigned to 
track the same satellite are collected to build the steering 
vector. Only one satellite is selected for beam steering 
(signal beam). The weight updating rate of MVDR 
algorithm is 1 KHz. Moreover, positioning is dedicated to 
a beam formed composite signal. There is a GUI to show 
ICP differences, weights and C/No of all channels to 
illustrate the beamforming performance as well as the 
positioning result.  
 

A. HARDWARE 
 
The 7-element antenna elements are arranged in circle 
with one wavelength between the each on a circular plane 
of aluminum. In the RF front-end, the L1 signal is down-
convertered to a 4.1304 MHz intermediate frequency and 
sampled at 16.3676 MHz. The front-end outputs 2-bit real 
IF data. The clocks of the front-ends must be perfectly 
synchronized for array signal processing. A function 
generator set as sinusoidal wave output at 16.3676 MHz. 
It is divided to two branches by a 1-to-2 splitter. One is 
used the drive the clock input of USB microcontroller. 
The other one is further divided by a 1-to-8 splitter to 
eight branches which are used as reference clock for each 
front-end. The USB microcontroller serves as a bridge 
from RF front-end to PC. Its 16-bit parallel digital 
interface I/O is connected to seven 2-bit RF front-ends 
outputs.  The resulting data rate is 32 MByte/s close to the 
limit of USB 2.0 data rate of 40 MByte/s. It is necessary 
to have an efficient strategy to reach such a high data rate. 
The hardware including antenna array, RF front-end and 
USB microcontroller board was developed in [6]. Since 
the developed software receiver implements as many as 
80 channels, it required a multi-core processor with multi-
thread support. Further, the processor needs to support 
single instruction multiple data (SIMD) instructions to 
account for the high computational complexity. The 
implementation of SIMD instructions for Intel is called as 
MMX/SSE/SSE2 [7]. The 128-bit register of SSE can be 
divided to several items in terms of bytes, words, or 
double words and perform parallel mathematical and 

comparative operations. The used processor is the quad-
core Intel Core i7 which runs eight threads at a time and 
supports SIMD instructions sets including MMX and SSE 
(1, 2, 3, 4, 4.1, 4.2). The hardware set-up of the CRPA 
software receiver is depicted in the figure 3.  
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Figure 3. Diagram of hardware set-up of CRPA software 

receiver 
 

B. SOFTWARE 
 
The software is developed with Visual Studio under 32-
bit version of Microsoft Windows XP. Most of source 
code is programmed using C++. The functions with high 
computational complexity are programmed by inline 
assembly such as correlation operation and covariance 
matrix calculation. The components used are listed in the 
Table 1. 
 

Table 1. Components list of software architecture 
Component Description 
USB driver 
USB C++ library 

Provided by chip manufacturer. 
 

Software correlator 
 

Hand-coded inline assembly using 
SSE instruction set based on bit-
wise parallel algorithm [8].  

Tracking  
Positioning 
 

Use GPL-GPS [9] open source 
codeand modify interface to 
software correlator [10].  

MVDR adaptive 
beamforming 
-Covariance 
Calculation 
-Weight Update 

Hand-coded inline assembly using 
SSE instruction set for calculating 
covariance. 
Hand-coded C++ code for weight 
update 

Weight-and-Sum 
and quantization of 
composite signal  

Hand-coded inline assembly using 
SSE instruction set. 

System Program Arrange threads to achieve real-
time capability 

 
The IF data transfer uses the C++ library provided by chip 
manufacturer for communicating with USB driver. The 
procedure of the IF data transfer is depicted in the figure 4. 



The width of data transfer for one sample is 16-bits for 
the entire IF data stream from all antennas. The data is 
further separated into a circular queue of individual 
antennas. The size of the entry of the queue is C/A code 
period (one msec). New IF data is stored into the rear 
index of the queue and the processing of the data is 
started from front index of queue. 
 

 
Figure 4. Procedure of IF data transfer from the USB 

interface to the circular queues 
  

To fully exploit the resources of Intel Core i7 CPU, 
multiple threads are created and arranged in a way such 
that at most 8 threads need be executed. Figure 5 shows 
the flowchart of the threads.  
 

} } }

Figure 5. Flowchart of threads every msec 
 
The main thread controls all the working threads. At first, 
seven receiver threads process the IF data obtained from 
the individual queue of antennas. Software correlation and 

acquisition/tracking are performed within each receiver 
thread. Next, the weight-and-sum operations for beam 
forming are separated into 8 threads and run 
simultaneously. The combined data is further quantized to 
complex 2-bit outputs, and then processed within a 
composite antenna receiver thread. In the composite 
receiver thread, not only is software correlation, 
acquisition and tracking performed, but the position 
solution is also calculated.  In parallel, the covariance 
matrix is calculated by averaging over one msec within N 
threads where N depends on the number of elements in 
the covariance matrix. In addition, the MVDR weight 
update is performed in another thread. The whole 
procedure must be finished within one msec to achieve 
real-time capability.  
 

CODING EXAMPLES TO ENABLE REAL-TIME  
 
The bit-wise parallel algorithm [8] represents an incoming 
signal as a bit of a variable or register, and then performs 
a parallel logic operation instead of multiplication. In the 
software receiver, the algorithm is implemented using the 
SIMD instructions. 128 samples can be processed at a 
time using the 128-bit XMM registers. After the bit-wise 
operation, the results are stored within the bits of the 
register and an accumulation (counting the number of bit 
set to one) is required. Conventionally, this operation is 
performed by addressing a look-up table in the memory. 
The memory size for 16-bit table is 64KB [8]. However, 
with a CPU with SSE 4.2 can use POPCNT instruction 
[11] which can count the number of bits set to one for a 
32-bit register in a 32-bit operating system. An example 
of counting the number of correlation results being six 
using SSE instructions shows in the figure 6. 
 

 
Figure 6. Example of counting the number of correlation 

results being using SSE instructions 



As mentioned in the previous section, the weight-and-sum 
operation is to combine the IF data by multiplying the 
complex weights and summing over all antennas.  This 
operation can be performed in parallel using SSE 
instructions. Figure 7 shows implementation of the 
weight-and-sum operation using SSE instruction. At first, 
the real inputs and complex weights are loaded into the 
XMM registers in terms of bytes. Then, the multiply 
packed signed integers and store low (PMULLW) 
instruction is performed to multiply real inputs with 
complex weights in parallel. Finally, a parallel addition is 
performed three times to obtain the summations of real 
and imagery components.  
 

 
Figure 7. Example of the weight-and-sum operation using 

SSE instructions 
 

CALIBRATION OF THE ANTENNA ARRAY BY 
CARRIER PHASE PRECISE POSITIONING  
 
Although the software receiver can act as a CRPA in real-
time without any prior knowledge, the calibration of the 
antenna array in the post-processing mode will aid in 
examining the CRPA performance of receiver. The gain 
pattern of the composite antenna is critical to show the 
performance of CRPA. The gain is calculated using 
relative positions of antennas and weights as shown in 
equation (6).  
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where baseline vector ip
r  and cable length differences 

iγ∆ are obtained through calibration. Figure 8 shows the 
used calibration procedure of the antenna array. In the 
CRPA software receiver, the ICP measurements are 
collected from the channels of the individual antennas for 
one minute. The azimuth/elevation of satellites are also 
obtained using the beam formed composite signal. The 

single difference ICP between signals of antennas and 
reference antenna j is represented as [12]: 
 k

ij
k
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k
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k
ij NLr εδλϕ +++= −1  (7) 

where ijr is differential range toward the k satellite 

between  ith and jth antenna, k
ijN is the integer associated 

to k
ijϕ , k

ijε is the phase error. The double difference ICP 
between satellites and reference satellite l is represented 
as: 
 kl
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ij Nr ελϕ ++= −1  (8) 

The cable length difference term is subtracted in the 
double difference. Based on the distance of the antenna 
position close to one wavelength, equation (8) can be 
written as: 
 ( )( ) kl

ij
kl
ijij

lkkl
ij Nprr ελϕ ++−−−= − ˆˆ1  (9) 

where kr̂ is the unit vector to satellite k, ijp  is baseline 
vector between ith and jth antenna. By combining all the 
double difference measurements of the pair ijth antennas, 
the observations equation is represented as: 
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From the positioning results of composite channels, the 
azimuth and elevation of satellites are used to manipulate 
matrix G. Before solving the relative antenna positions, 
the integer vector N needs to be resolved. The LAMBDA 
method, specified in reference [13], is used. By 
substituting the solutions of N and ijp into the equation 
(7), the cable length differences are calculated after 
filtering the noise term.  
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Figure 8. Block diagram of the calibration procedure of 

antenna array  
 



ANALYSIS OF THE THREAD ACTIVITIES AND 
TIMING PERFORMANCE 
 
In order to analyze the activities of the threads of the 
CRPA real-time software receiver, the Intel Thread 
Profiler collector program is utilized.  This is a thread 
analyzer application to understand the threading patterns 
in multi-threaded software.  This collector program is 
executed with our software receiver and outputs a 
timeline diagram containing execution flow of all the 
threads as shown in the figure 9. The resulting execution 
flow exactly follows the designed flow shown in figure 5.  
 

Figure 9. Execution flow of the threads of the CRPA real-
time software receiver collected from the Intel Thread 

Profiler collector program 
 

The execution time of the threads is measured by 
counting the clock cycles of CPU.  The threads needed to 
execute in one msec are divided into three parts and 
execution times is measured 1000 trials. The results are 
represented as a box plot in the figure 10. The mean 
execution times of each part are listed in the table 2. The 
total mean execution time is less than one msec and 
shows that the CRPA software receiver can achieve real-
time capability.  

0

200

400

600

800

1000

1200

Antenna_1_7 Weight_n_Sum Composite_n_MVDR Total

Execution Time of Threads for one msec Data

Ti
m

e 
( µ

se
c)

 
Figure 10. Box plot of the execution time illustrating the 

real time capability of the CRPA 

 
Table 2. Execution time of threads 

Thread Name Mean  Execution Time (µsec) 
Process IF Data of 
Antenna #1 ~ #7 

572.93 

Weight and Sum 75.23 
Composite Receiver 
and MVDR weight 
update 

345.81 

Total 993.98 
 

EXPERIMENT FOR ENHANCING THE C/NO 
 
An experiment is conducted in open field (low multipath 
environment) to examine the performance of CRPA. 
Figure 11 shows the hardware set-up of the software 
receiver. 
 

 
Figure 11. Hardware set-up of the software receiver 

 
To determine the beam formed antenna gain pattern for 
each satellite in view, the software receiver runs in post-
processing mode.  In each run, the receiver performs 
CRPA by MVDR adaptive beamforming toward one of 
satellites. Figure 12 shows the filtered C/No of all 
satellites in view.  The CRPA begins to perform from 30th 
second. There is more than 6dB gain through the CRPA 
for all satellites tested.  
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Figure 12. The filtered C/No of the software receiver with 

and w/o CRPA beam steering 
 
The ICP measurements and azimuth/elevation of satellites 
are recorded for 60 seconds. Then, the calibration of 
antenna array using carrier phase precise positioning is 
performed and the result is shown in the figure 13. It is 
close to the physical antenna array geometry. Moreover, 
with relative antenna positions and weights from CRPA, 
the gain patterns of composite antenna after CRPA toward 
one satellite are calculated by equation (6). Figure 14 
shows the resulting gain patterns toward the selected 
satellite.  The corresponding sky plot is shown in the 
center of the figure. . There is a high gain in the direction 
of satellite which is the basis as to why the C/No is 
enhanced by the CRPA processing. 
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Figure 13.  Relative position of the antennas from the 

carrier phase precise positioning   
 

 
Figure 14. The gain patterns of the composite antennas by 

the CRPA toward the specified satellite in a sky plot 
format 

 

EXPERIMENT FOR INTERFERENCE 
REJECTION 
 
In order to examine the interference rejection 
performance of the CRPA software receiver, a single 
channel GPS simulator provides injected, via splitters, 
interference which is combines with received signal from 
four elements of the antenna array. The hardware set-up is 
depicted in figure 15. The GPS simulator generates two 
types of interference. One is CDMA interference obtained 
by setting a PRN number which is currently unallocated. 
The other is CW interference by turning off C/A code 
spreading. Figure 16 shows the power spectral density of 
IF signal for three cases: w/o interference, with CDMA 
interference, and with CW interference. The spectrum of 
the signal with CDMA interference has a higher power 
lobe within 2 MHz bandwidth than no interference case. 
The spectrum of signal with CW interference has a peak 
in the center frequency of IF.  

 
Figure 15. Diagram of the hardware set-up of the CRPA 

software receiver with the interference using GPS 
simulator 
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Figure 16. Power spectral density of IF signal with and 

without interference   
 

The CRPA software receiver processes these signals in 
the post-processing mode and only combines the four 
signals antennas which are subject to the interference. 
Figure 17 shows filtered C/No of the PRN2 in the 
presence of CDMA and CW interferences. In both cases, 
the interference starts 30 seconds into the run.  Without 
CRPA, the software receiver will lose lock on the PRN 2 
signal when interference is present. The software receiver 
performs implements the CRPA at 10th second and 
contributes over 5 dB gain on C/No. When interference is 
not present, the performance of MVDR is close to 
deterministic beamforming. However, after interference is 
present, MVDR has gain about 0.5 dB higher than 
deterministic beamforming. It should be noted that these 
are really simple tests of null steering and meant to verify 
that the algorithms performing correctly.  
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Figure 17. Filtered C/No of the software receiver 
performing CRPA by MVDR and deterministic 
beamforming in the cases with CDMA and CW 

interference 
 
 
 

CONCLUSIONS 
 
We implemented a real-time CRPA software receiver for 
GPS L1 C/A in a PC with a modern processor to 
demonstrate the feasibility of CRPA technology for civil 
applications. The developed algorithms implement a 
complete CRPA without any a prior. The result of 
experiments shows its performance of enhancing C/No as 
well as interference rejection. The software receiver can 
be extended to a GPS L5 by replacing RF hardware 
components with minimal changes to the software 
architecture. The Federal Aviation Administration 
Alternate Position Navigation and Time study is 
interested in the use of the CRPA with the L5 signal for 
robust time [14]. 
 
Other future work includes leveraging a GPU, which is 
well known for its parallel structure, to implement all-in-
view beamforming implementation and process higher 
resolution data. The current 2 bit resolution does not 
provide significant interference rejection as high power 
interference can saturate the analog to digital converter.  
Hence processing higher resolution data is needed for 
robust interference rejection.   We are also interested in 
reducing the number of channel and implementing CRPA 
software receiver in a single-core processor for mobile 
device are planned as future activities. This may be useful 
for allowing CRPA technology to filter into lower cost 
civil applications. 
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