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ABSTRACT  

 

The frequency locked-loop (FLL) has received new 

attention for modern Global Navigation Satellite Systems 

(GNSS) receivers, especially for its performance under 

severe noise interference and high dynamic environments.  

It has been shown that an FLL is more robust to 

interference and dynamics than a phase locked-loop 

(PLL).  Therefore, it is beneficial to use an FLL as a 

fallback tracking loop when the primary PLL is unable to 

maintain carrier tracking in hostile environments.  Besides 

tracking, it is to also crucial to preserve the Bit Error Rate 

(BER) of the data demodulation and probability of losing 

locks when receivers operate an FLL.  These 

characteristics rely on the probability density function 

(PDF) of the frequency estimate made by the frequency 

discriminator in the FLL.  However, the PDF has not been 

determined as of yet.  The purpose of this paper is to 

solve the PDF and evaluate the stability region, which is 

essential for determining the statistics of loss of lock.  In 

this work, a nonlinear model was developed and the 

corresponding Fokker-Planck equation (FPE) for the 

cross-product FLL was derived.  The PDF of the 

frequency estimate was then solved by applying the 

Crank-Nicolson numerical method. 

 

 

I. INTRODUCTION  

 

The use of a frequency-locked loop (FLL) can be traced 

back to the 1930s [1], while an FLL used to be called an 

automatic frequency control (AFC) loop.  The function of 

an FLL in a GNSS receiver is to steer the frequency of the 

replica carrier close enough to the frequency of the 

received carrier such that a further data demodulation is 

applicable.  In stead of a coherent tracking, meaning that 

the signal phase is tracked by a phase-locked loop (PLL), 

an FLL performs a non-coherent tracking only. For 

example, only the frequency in the carrier is tracked while 

assuming that the phase is uniformly distributed over [0, 
2 ].  Thus, an FLL can pull in from a frequency error 

much larger than a PLL does.  It is believed that an FLL is 

more robust in the presence of noise interference under 

high dynamic environments than a PLL [2].  The 

applications of an FLL generally can be divided in two 

categories, in which an FLL can be used to improve the 

initial tracking of a PLL [4] or used as a backup tracking 

loop when the received signal power is weak during a 

short period [5].  Hence, investigating the performance of 

an FLL used in a GNSS receiver is significant and 

important. 

 

Research on the linear model analysis of various types of 

FLL’s has already been accomplished [2, 3].  The noise 

performance of the FLL in the presence of Gaussian noise 

has been given in [2, 3].  However, the probability density 

function (PDF) of an FLL has not been solved.  Obtaining 

the PDF is crucial to evaluate the bit error rate (BER) in 

the demodulation process.  Moreover, estimating the 

probability of losing lock also relies on the PDF of the 

FLL. 

 

The objective of the present paper is to develop the 

nonlinear model of the cross-product FLL, evaluate the 

nonlinear stability characteristics in the absence of noise, 

and solve for the PDF in the presence of noise. 

 

 

II. BASIC OPERATION OF THE CROSS-

PRODUCT FLL 

 



In this section, I would like to review the operation of the 

cross-product FLL without giving details of the 

mathematical derivation.  For the details, references [2, 3] 

are recommended.  Figure 1 shows the configuration of 

the cross-product FLL.  The essential characteristic of this 

FLL is the fact that it employs a cross-product frequency 

discriminator, which is a conventional FLL design in 

modern digital baseband implementation [2].  Except the 

cross-product discriminator, the functionality shown in 

Figure 1 is the well known Costas receiver [6].  The input 

signal, )(tVs , is assumed to be a carrier, at frequency 0 , 

modulated with differentially encoded data and pluses an 

additive white Gaussian noise with spectral density 2
0N .  

)(tVs  is then multiplied by the local replica carrier, at 

frequency 1 , generated by the numerically controlled 

oscillator (NCO).  The multiplications were performed by 

the in-phase and quadrature replica carrier to produce 

I and Q  channels, respectively.  The I and Q  channels 

are then passed through the integrate-and-dump filters to 

further reject the input noise prior to performing the 

frequency error determination in the following step.  

Before the details of the frequency discriminator, we 

define a complex signal composed by the outputs of the 

integrate-and-dump filters, kI and kQ , as the following 

form 
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Figure 1: Cross Product FLL  
 

 

The operation of the cross-product frequency 

discriminator is the cross product of the current sample of 

)(kVs  and the previous sample of )(kVs .  This operation 

is represented as [3] 
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where 

kd  is the data symbol at the k th integrate-and-dump step; 

A is signal amplitude; 

10   ; 

IT  is the period of the integration; 

x

x
x

)sin(
)(sinc  ; 

)(kN  is the noise term. 

 

Obviously, the sign of )(kV f  depends on the sign of the 

symbol product 1kkdd .  The sign changes can be 

removed by performing the dot product of current sample 

)(kVs  and the previous sample of )(kVs  [2, 3].  The 

output of the dot product is then used as a decision 

feedback to remove the sign changes in Eq. (2).  Here, we 

assume that the data has been wiped off by the means of 

dot product operation.  This assumption is reasonable 

since we are solving for the generic performance of a 

carrier tracking loop.  Without loss of generalities, one 

can further assume that the input signal is a pure 

sinusoidal carrier.  The plot of the frequency 

discriminator assuming noise free is shown in Figure 2.  

Note that the frequency error shown in Figure 2 has been 

normalized by multiplying f by the integration time IT . 
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Figure 2: Cross Product FLL discriminator curve
 

 

 

From Figure 2, we see that unlike the periodic property of 

the phase discriminator in a PLL [8], there is no exact 

periodicity in the frequency discriminator.  The main lock 

point is at the origin.  Once the frequency error deviates 

far away from the first zero crossing point, the loop likely 

starts to lose lock.  As can be seen in Figure 2, the 

characteristic of the discriminator is close to linear when 

the value ITf   is small.  A rule-of-thumb threshold to 

preserve this linearity assumption is when [7] 
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Although the input signal is corrupted by the Gaussian 

noise, )(kN  in Eq. (2), in fact, is not a Gaussian 

distributed noise because of the nonlinear process of the 

discriminator.  It is shown that )(kN  is zero mean and 

uncorrelated in successive samples [3].  To advance the 

model analysis, one usually assumes that )(kN  is 

Gaussian.  As a result, given that the noise at the input 

signal is white Gaussian noise with two-sided spectral 

density 2
0N  and the pre-detection baseband bandwidth 

IT
1 , one can obtain the mean, variance or the second 

moment, and power spectral density (PSD) of )(kN  as 

follows [3]. 
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where 
0N

C is the signal power to noise power density 

ratio. 

 

With the assumption of Eq. (3), a spectral analysis can be 

performed in the linear model of the FLL.  Thus, the 

normalized tracking error variance of the cross-product 

FLL is ([9], page 381) 
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where nB , in Hz, is the one-sided noise bandwidth of the 

closed loop FLL.   

 

 

III. NONLINEAR MODEL AND THE STABILITY 

OF THE FLL IN THE ABSENCE OF NOISE 

 

III-1. NONLINEAR MODEL 

 

Given the block diagram in Figure 1 and the characteristic 

of the cross-product discriminator in Eq. (2), the nonlinear 

model representing the cross-product FLL is shown in 

Figure 3.  The additive noise )(tN  has the properties 

described in Eqs. (4-6).   
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Figure 3: Nonlinear Model of the Cross Product FLL
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Figure 3: Nonlinear Model of the Cross Product FLL  
 

 

)(sF is the loop filter represented in the Laplace domain 

and AK is the loop gain.  Note that the carrier NCO in an 

FLL does not act as an integrator.  It is simply a means of 

converting a frequency number to sine and cosine of 

frequency ([9], page 384).  Therefore, the order of the 

closed-loop is the same as the order of the loop filter. 

 

For a nonlinear analysis, investigating the performance of 

the first order loop suffices the required characteristics of 

the FLL.  Therefore, in the first order loop, ssF 1)(  .  

We can obtain the following state equation describing the 

closed loop shown in Figure 3 as the following equation. 
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We consider primarily frequency-ramp sinusoidal inputs, 

so that  dt
td )(0 , which is a constant in units of 2sec

rad . 

If  is zero, we say that loop is unstressed.  In the 

unstressed case, the distribution of the tracking error 

would be zero mean.  If   is nonzero, the FLL is 

dynamically stressed and the mean of the tracking error 

would be biased from zero.  Let ITfz   and we have  
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Perform the change of variables in   and z  for Eq. (8), 

we have the following governing equation of the cross-

product FLL in the domain of the normalized frequency 

error. 
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Eq. (9) is a stochastic first order ordinary differential 

equation which fully describes the behavior of the cross-

product FLL.  The solution of )(tz  in Eq. (9) is of interest.  

In the next section, we will show the statistical solution to 



Eq. (9).  In the rest of this section, I would like to discuss 

the stability performance in the absence of noise, which is 

essential to obtain the boundary of z  where the FLL loses 

lock. 

 

 

III-2. THE STABILITY OF THE FLL IN THE 

ABSENCE OF NOISE 

 

I investigate the system trajectory described in Eq. (9) 

without considering the noise term )(tN .  For the first 

order loop, the loop noise bandwidth is [9] 
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The input frequency ramp can be written as  

 


 if 2 ,     (11) 

 

where 


 if is the frequency ramp input in sec
Hz . 

 

Substitute Eqs. (10) and (11) into Eq. (9) with ignoring 

the noise term, we have 
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The system trajectory of Eq. (12) is shown in Figure 4 for 

the case of an unstressed FLL.  One can find that the 

system is stable when it reaches a value of z for 

which 0dt
dz .  There are multiple stable points for the 

system.  However, the FLL is allowed to be locked only 

within the main lobe for a physical means of tracking.  

One can find that the system moves toward the right when 

0dt
dz  and vice versa.  Therefore, there are dynamically 

stable points for z = …-1,0,1,2…, where the system will 

return to the stable points after any perturbation of z in 

either direction.  However, for other stables points, any 

perturbation of z in either direction will cause the system 

to move until it reaches the next dynamically stable point. 
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Figure 4: System Trajectory, Non-stressed
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We call the dynamically stable point in the main lobe 

lockz  and the next non-dynamically stable point lossz .  

Once z is larger than lossz , the system moves farther away 

from the main lobe and stops when it reaches the next 

stable point.  However, when the system is dynamically 

stressed, there may be no stable points beyond lossz .  

Figure 5 illustrates the issue of having only two stable 

points.   
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With a positive frequency ramp input, one can find that 

once losszz  , the system will migrate toward infinity and 

never returns to any stable points.  Thus lossz is the 

threshold where the FLL starts to lose lock.  If the input 

frequency ramp increases again, the whole curve shifts 

upward such that lockz and lossz move further toward each 

other.  This means that the FLL is more likely to lose lock 

under stronger dynamics.  The frequency ramp for the 



case that lockz and lossz  coincide is the maximum 

allowable frequency ramp for the first order FLL.  Any 

input beyond the maximum allowable ramp frequency 

will cause the FLL to be unstable.  

 

Knowing the values of lossz is crucial for evaluating the 

probability of loss of lock in the presence of noise.  The 

probability of loss of lock is defined as 
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Determining the value of Eq. (13) relies on the PDF of z , 

which will be provided in the next section. 

 

IV. THE FOKKER-PLANCK EQUATION AND THE 

PDF OF THE CROSS-PRODUCT FLL 

 

In this section, a statistical approach to Eq. (9) will be 

discussed.  Eq. (9) is a stochastic ordinary differential 

equation driven by a Gaussian noise )(tN .  Therefore, 

given )(tz , the PDF of dt
dz  is Gaussian too.  As a result, 

the complete solution of )(tz  is determined by its PDF. 

 

Since )(tN is Gaussian, the process described in Eq. (9) is 

a Markov process and the relations governing a PDF of a 

Markov process is given by [8] 

 

 












1

),()(
!

)1(),(

n

nn

nn

tzpzA
znt

tzp
  (14) 

 

with initial condition 

 

)()0,( 0zzzp   , 

 

where  

 

),( tzp  is the PDF of )(tz ; 

)(zAn = the limit of the nth moment of the increment of 

the process z , given that it started at some value z at 

time t, normalized by the time increment t as the latter 

approaches zero; 

)( 0zz  is Dirac delta function. 

 

It is known that for a first-order stochastic ordinary 

differential equation with a white Gaussian driving 

function, the quantities )(zAn  vanish for n  greater than 2 

[8].  Accordingly, Eq. (14) becomes the well known 

Fokker-Planck equation (FPE) as follows 
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In order to obtain the corresponding FPE for the cross-

product FLL, we must determine the quantities )(1 zA and 

)(2 zA according to Eq. (9).  The derivation is given in the 

Appendix A and, )(1 zA and )(2 zA  are given in Eqs. (A-3) 

and (A-4), respectively.  In addition to the initial 

condition given in Eq. (15), solving the FPE needs two 

boundary conditions.  We know that the total area under a 

PDF should be 1 and accordingly the two tails of the PDF 

approach zero as the independent variable approaches 

plus and minus infinities.  The two boundary conditions 

are then defined as follows. 

 

The normalization condition is  

 

1),( 



dztzp , and    (16) 

 

the symmetric condition is 

 

0),(),(  tptp , for all t .   (17) 

 

Note that the symmetric condition is a heritage of the 

normalized condition since the total area has to be finite 

and therefore the two tails have to vanish at infinities. 

 

To further advance the solution of the FPE, we would like 

to parameterize the FPE in terms of nB , 
0N

C , IT , 

normalized initial frequency offset IiTf , and normalized 

frequency ramp input Ii Tf


 .  Eq. (18) gives the 

expression of the final FPE to be solved.  The details for 

obtaining Eq. (18) are given in Appendix B. 
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where 

ITfz  , the normalized frequency error; 

),( tzp the PDF of the FLL in the domain of the 

normalized frequency error; 
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 , the dimensionless dynamic stress; 

Ii Tfz 0 , the normalized initial frequency offset. 

 

Because of the nonlinearity of the discriminator (shown in 

the term )(zD ), the closed form representation of the 

steady state PDF is not achievable yet.  A numerical 

method to solve the FPE will be discussed in the next 

section. 

 

 

V. NUMERICAL RESULTS BY THE CRANK-

NICOLSON METHOD 

 

To solve the partial differential equation of Eq. (18), I 

conducted the Crank-Nicolson method [10].  The 

corresponding difference equation to Eq. (18) is therefore 
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where the subscripts, i ,denote spatial domain of z and 

the superscripts, j , denote time.  Note that )(zD  is time 

independent and there is no superscript for )(zD .  Figure 

6 shows the time and spatial meshes for Eq. (19).  Given 

),( ji tzp  at time jt , solving Eq. (19) will give the PDF at 

time 1jt for all jz .  The initial condition for the numerical 

solution is the Kronecker delta function, which satisfies 

both of the normalized condition and the boundary 

conditions at the initial state.  The symmetric boundary 

condition is approximated by using an absorbing 

boundary condition.  It is reasonable to assume that the 

tails of the PDF approach zero within a finite range of z .  

Once the accuracy of the solution is met given an 

absorbing boundary condition, the solution was claimed 

to be valid.  The aforementioned accuracy was calculated 

from the difference of the total area under the solved PDF 

to 1.  In other words, the normalized boundary condition 

is used as a metric for claiming a successful solution.  In 

this paper, the accuracy requirement was set to be 1e-12.  

The number of the grids in z direction was 7000 or more.  

Intuitively, as more grids used for the mesh, more 

accurate results will be.  However, the amount of memory 

on the computer limits the grid number.  The required 

number of grids also depends on 
0N

C .  As expected, the 

PDF for a lower 
0N

C  has a wider range in z direction.  

Therefore, to preserve the required accuracy, more grids 

are needed to cover the wider range of z.  The time step 

size also depends on the grid size in z.  The details of the 

trade off between the grid size in z and the time step size 

are given in [10].   

 

For calculations of )(zD , one should know that the 

definition of the sinc function in Matlab differs from what 

was defined in Eq. (2).  In Matlab, the sinc function is 

defined 
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 )sin(
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Figure 7 shows one example of the PDF solution.  In 

Figure 7, there is an initial frequency offset assumed.  The 

initial impulse is at 05.0z .  The green curve represents 

the PDF at the half of the evolving time and the red curve 

is the PDF at the end of the evolving time.  The 

coinciding of the green and red curves shows that the FLL 

has reached the steady state.  Figure 7 also shows that the 

steady state error is zero as expected for the performance 

of a first order loop with an initial impulse input. 

 

Figure 8 shows another example for the case that the PDF 

is dynamically stressed.  The final PDF is centered at the 

steady state value of the frequency error.   
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Figure 7: PDF of the FLL, Non-stressed
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Figure 8: PDF of the FLL, Dynamically-stressed

HzTfTfHzBHzdBNC IiIin 3,05.0,10,20/ 0 
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VI. DISCUSSIONS 

 

One may not obviously see the correlation between the 

system trajectory, shown in Figure 4, and the PDF, shown 

in Figure 7.  To illustrate this correlation, a PDF with 

0N
C = 0 dB-Hz is plotted in Figure 9.  From the case of 

weak signal shown in Figure 9, we see two deeps in the 

PDF for z  = 0.5.  This, again, reveals the fact that the 

lossz  points in Figure 4 are not dynamically stable points.  

The system has the lowest possibility to stay at these two 

points.  The wavelet behavior in Figure 9 also represents 

the same behavior in Figure 4.  The system has relative 

lower possibilities, comparing to its adjacent points, to 

stay at those non-dynamically stable points.   

 

Figure 9: PDF of the FLL, Weak Signal

HzTfTfHzBHzdBNC IiIin 0,0,10,0/ 0 
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Since there is a steady state solution of the PDF for the 

FLL, we can eliminate the time dependence of the PDF in 

Eq. (18).  On the other hand, the left hand side of Eq. (18) 

becomes zero and the PDF on the right hand side of Eq. 

(18) does not have the variable t .  As a result, Eq. (18) 

becomes a second order nonlinear ordinary differential 

equation (ODE) shown in Eq. (20). 

 

 

0)()(

;1)(

);(
2

1
)()(0

2

2




















pp

dzzp

zp
z

zpzD
z

          (20) 

 

The solution of Eq. (20) is the final snapshot of the time-

dependent solutions obtained from solving Eq. (18).  A 

simple finite difference method was applied to solve Eq. 

(20) for the steady state PDF.  Figure 10 shows the 

solutions from both of the ODE (Eq.(20)) and the PDE 

(Eq.(18)).  The solution of the ODE further verified the 

solution of the PDE.  Therefore, it is true that the steady 

state PDF of the FLL can be directly solved from the 

ODE in Eq. (20) without solving the PDE in Eq. (18) by 

the Crank-Nicolson method.  However, without the 

process of investigating the solution of the PDE, we can 

not conclude the fact that the steady state solution exists.  

If one is interested in the steady state PDF of the FLL, 

one can directly solve the ODE in Eq. (20).  However, if 

the transient properties are of interest, solving the PDE is 

necessary.   
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Once the PDF of the FLL is available, one can, for 

example, estimate the probability of exceeding the linear 

threshold given in Eq. (3).  Figure 11 shows the curve of 

this probability versus different 
0N

C  with fixed noise 

bandwidth and the integration time.  The curve was 

obtained by calculating the tail area of the PDF beyond 

the linear threshold defined in Eq. (3) for the FLL.  Figure 

11 also shows the probability for a Costas PLL.  Since the 

PDF of the PLL has been solved [8, 11], this probability 

can be evaluated by using the closed form solution.  Note 

that the PDF of the PLL given in [8, 11] must be modified 

to account for the use of a Costas loop.  The modified 

PDF of the PLL can be found in [5] or ([12], page 274).  

The linear threshold of the PLL was set to be 15 degrees 

[7].  Therefore, the red curve in Figure 11 was the tail 

area beyond the 15 degree threshold.  Note that the phase 

error variance used in the PDF of the PLL considered 

only the thermal noise without a squaring loss term ([13], 

page 290) but not considered the phase error variance 

with the squaring loss term ([9], page 371). 

 

As seen in Figure 11, the probability of exceeding the 

linear threshold for the FLL is smaller than that for the 

Costas PLL.  Figure 11 suggests that if the PLL does not 

maintain lock due to low
0N

C , one may switch to use FLL 

with accuracy degradations in carrier measurements.  

Figure 11 emphasizes the relative difference between the 

two tracking loops but not the absolute values read from 

the figure.  The reason is that the curves in Figure 11 

considered tracking error due to thermal noise only.  

However, the tracking error is also affected by receiver 

clock dynamics, satellite clock dynamics, platform 

vibration impacts on the local oscillator and the 

acceleration sensitivity of the local oscillator [5].  With 

considering all of the above error sources given the same 

noise bandwidth, integration time and
0N

C , the actual 

probability of exceeding the linear threshold would be 

larger than what it is shown in Figure 11. 

 

Figure 11: Probability of Exceeding the Linear Threshold
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VII. CONCLUSIONS 

 

The nonlinear model of the cross-product FLL has been 

developed and the stability analysis as well as the PDF for 

the FLL has been solved for the first time.  The PDF of 

the FLL was solved numerically in both PDE and ODE 

approaches.  With the PDF, one can estimate a more 

accurate Bit Error Rate (BER) due to imperfect frequency 

estimating of the FLL. Given the system trajectories of 

lockz and lossz shown in Figure 4, 5 and the solution of the 

Fokker-Planck equation, one can estimate the probability 

of loss of lock defined in Eq. (13). 

 

In conclusion, this paper successfully solves the 

probability density function of the cross-product FLL and 

provides the stability analysis for evaluating the 

probability of loss of lock for a GNSS receiver using the 

FLL. 
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APPENDIX A 

 

From the definition of )(zAn in Eq. (14), the expression 

of )(zAn  can be written as [8] 
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By integrating both sides of Eq. (9) over the infinitesimal 

interval from t  to tt  , we have 
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Recalling that )(tN is white Gaussian noise of zero mean 

and the two-sided spectral density given in Eq. (6), we 

find that the first two normalized moments of Eq. (A-1) 

are 
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APPENDIX B 

 

Rewrite Eq. (15)  
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where )(1 zA and )(2 zA are given in Eqs. (A-3) and (A-4). 

 

Let )(2 zA . Given the one-sided noise bandwidth in 

Eq. (10) and the variance of the normalized frequency 

error in Eq. (7), we can find that 
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Eq. (B-1), then, can be written as 
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For the first order FLL here, the dimensionless dynamic 

stress can be written as ([9], page 389) 
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With z  defined in Eq. (B-4) and 2

IfT  in Eq. (7),   

and   can be further represented as 
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Finally, Eqs. (B-3), (B-4), (B-5), (B-6), and (7) 

completely define the FPE for the cross-product FLL in 

the domain of the normalized frequency error. 

Furthermore, the FPE is in terms of nB , 
0N

C , IT , 

normalized initial frequency offset IiTf , and normalized 

frequency ramp input Ii Tf


 . 

 

 



REFERENCES 

 

1. Travis, C., “Automatic Frequency Control,” Proc. 

The Institute of Radio Engineers, Vol. 23, No. 10, 

Oct., 1935. 

2. Natali, F.D., “AFC Tracking Algorithms,” IEEE 

Transactions Communications, Vol. COM-32, No. 8, 

pp. 935-947, August 1984. 

3. Natali, F.D., “Noise Performance of a Cross-Product 

AFC with Decision Feedback for DPSK Signals,” 

IEEE Transactions Communications, Vol. COM-34, 

No. 3, pp. 303-307, March 1986. 

4. Cahn, C.R., “Improving Frequency Acquisition of a 

Costas Loop,” IEEE Transactions Communications, 

Vol. COM-25, No. 12, pp. 1453-1459, December 

1977. 

5. Chiou, T.Y., Gebre-Egziabher, D. and et al, “Model 

Analysis on the Performance for an Inertial Aided 

FLL-Assisted-PLL Carrier-Tracking Loop in the 

Presence of Ionospheric Scintillation,” Proc. ION 

NTM 2007. 

6. Haykin, S., Communication Systems, 4th Edition, 

John Wiley & Sons, Inc., 2001. 

7. Ward, P.W., “Satellite Signal Acquisition, Tracking, 

and Data Demodulation,” in Understanding GPS 

Principles and Applications, Second Edition, Artech 

House, Washington, DC, 2006, pp. 153-241. 

8. Viterbi, A.J., Principles of Coherent Communication, 

McGraw-Hill Inc., 1966 

9. Van Dierendonck, A.J., “GPS Receivers,” in Global 

Positioning System: Theory and Applications, Vol. 1, 

AIAA, Washington, DC, 1996, pp. 330-433. 

10. Gerald, C.F., and Wheatley, P.O., Applied Numerical 

Analysis, 5th edition, Addison-Wesley, pp. 628-650, 

1994. 

11. Tikhonov, V.I., “The Operation of Phase and 

Automatic Frequency Control in the Presence of 

Noise,” Automation and Remote Control, Vol. 21, 

No.3, AIAA, 1960, pp. 209-214. 

12. Holmes, J.K., Coherent Spread Spectrum Systems, 

John Wiley & Sons, Inc., 1982. 

13. Holmes, J.K., Spread Spectrum Systems for GNSS 

and Wireless Communications, Artech House, 2007. 


