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ABSTRACT  
 
The advent of a second civil GPS frequency heralds a new 
phase of GPS performance.  For single-frequency GPS 
users, the signal delay due to refraction through the 
ionosphere is the largest and most variable source of 
positioning error.  Dual-frequency users take advantage of 
the dispersive nature of the ionosphere, combining the 
GPS observables to eliminate most of this error, on the 
order of meters, introduced into the pseudoranges.  Thus 
it is with great anticipation that we await the improved 
accuracy afforded by L2, and for the aviation community, 
L5. 
 
However, with a second civil frequency, the ionospheric 
error will not disappear completely.  Current techniques 
for measurement and removal of ionosphere delay using 
L1 and semi-codeless tracking of L2 typically assume a 
first-order approximation of the index of refraction in the 
ionosphere.  This approximation results in a range delay 
inversely proportional to the square of the signal 
frequency, and equal and opposite to the phase advance.  
Once this correction is made, higher order terms are then 
the largest ionosphere error. 
 
This paper examines the magnitude of these higher order 
ionospheric error terms.  Previous analyses from the early 
1990s used simulations to show that typical higher-order 
terms should be “much less than 1% of the first order 
term at GPS frequencies” (Klobuchar 1996).  We verify 
such values with L1-L2 dual-frequency GPS data from 
the current solar cycle, made available by the Wide Area 
Augmentation System (WAAS) network.  We compare 
the magnitude of the second and third order terms. 
 
We assume the International Geomagnetic Reference 
Field IGRF-10 (10th generation, created 2005) and take its 
value at 350 km shell height.  For the third order term 
involving the square of the electron density, we use a 
technique from Hartmann and Leitinger (1984) to 
approximate the ionosphere vertical profile with a 
maximum density Nm and a shape factor.  We choose a 
shell model with 100 km thickness and compute the 
uniform density consistent with WAAS equivalent 

vertical delay measurements as Nm, giving a shape factor 
of one.   
 
We find that the Brunner & Gu (1991) model is the 
simplest one that neglects the sub-millimeter terms, and 
use this to compute the higher order group and phase 
errors that occur from the use of the observable that is 
ionosphere-free to first order (FOIF).  During the most 
active of these days, when ionospheric storms may 
introduce slant range delays at L1 as high as one hundred 
meters, the higher order group errors in the FOIF 
combination can be tens of centimeters.   
 
Moreover, the group and phase errors are no longer equal 
and opposite, so these errors accumulate in carrier 
smoothing of the FOIF code observable.  We show the 
errors in the carrier-smoothed code are due to higher 
order group errors and, to a lesser extent, to higher order 
phase rate errors. For many applications, this residual 
error is sufficiently small as to be neglected.  However, 
such errors can impact geodetic applications as well as the 
error budgets of Augmentation Systems providing 
Category III precision approach.   
 
INTRODUCTION  
 
The ionosphere is a weakly-ionized plasma layer of the 
upper atmosphere from about 60 – 1000 km.  As a 
dispersive medium, the ionosphere advances the phase 
and delays the code of the GPS ranging signals in a 
frequency-dependent way as they travel through it.  These 
result in errors in the code P1 and P2 and carrier phase 
measurements L1 and L2 made by the user: 
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Equation 1 

In these expressions, ρ includes the true range and all 
non-dispersive errors such as troposphere, satellite clock 
bias, and receiver clock bias.  The ionosphere errors are 



denoted I.  The carrier measurements are each ambiguous 
by an integer n number of wavelengths λ. The 
interfrequency biases are not shown.  The error I due to 
the signal passage through the ionosphere is: 

  

! 

I = (n "1)dl
rx

sv

#  

Equation 2 

The index of refraction n that is integrated in Equation 2 
is unique to each of the four GPS observables.  The 
following section introduces these indices. 
 
The phase index of refraction for the ionosphere is given 
by the Appleton-Hartree equation (shown in Equation 49 
of the Appendix).  By neglecting curvature and path 
differences for the L1 and L2 frequencies, we integrate 
Equation 2 along the line of sight (LOS) between the 
satellite sv and receiver rx.  The Appleton-Hartree 
equation is most commonly simplified to a first order 
approximation.  The first order model is inversely 
proportional to the square of the frequency and is 
proportional to the total electron content along the line of 
sight (see Appendix).  Terms with higher orders of 
frequency can be retained for higher accuracy, and 
various approximations have been made in the literature 
to arrive at the following expression: 
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Equation 3 

The definitions of the variables and derivation of the 
expression are provided in the Appendix.  Notably, Y is 
inversely proportional to the wave frequency f, and X is 
inversely proportional to the square of the frequency 
(Equation 50).  This implies that the second term goes as 
1/f2, the third term as 1/f3, and the last three terms as 1/f4.  
It is also worth pointing out that X is proportional to the 
electron density Ne, and that Y is proportional to the 
magnitude of the geomagnetic field B0.  The angle 
between the magnetic field and the wave propagation 
direction is θB. 
 
The first order model of the ionosphere, the one most 
commonly used by dual frequency users, includes the first 
two terms only.  Brunner and Gu (1991) retain the first 
four terms by order of magnitude considerations.  Tucker 
and Fannin (1968) retain the first five terms by making a 
quasi-longitudinal approximation (i.e. θ≈0).  Both Bassiri 
and Hajj (1993) and Hartmann and Leitinger (1984) show 
the full Equation 3.  However, Bassiri and Hajj (B&H) 
then reduce their model to the Brunner and Gu (B&G) 
model for the purposes of analysis.  The derivation of 

each of these models and the approximations made to 
arrive at them are provided in detail in the Appendix. 
 
The group index is related to the phase index of refraction 
(Jackson 1999): 
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n" = n# + f
dn#

df
 

Equation 4 

Substituting Equation 3 into Equation 4 gives group 
index: 
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Equation 5 

As with the phase index, the group index is frequency-
dependent through X and Y.  The expression for the 
group index, Equation 5, may be inserted into Equation 2 
to give the code range errors: 
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Equation 6 

The terms q, s, and r will be defined below.  Similar 
substitution of the phase index of refraction shown in 
Equation 3 into Equation 2 gives the phase errors at L1 
and L2: 
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Equation 7    

In these expressions, f1=1575.42 MHz is the L1 
frequency and f2=1227.60 MHz is the L2 frequency.  In 
Equation 6 and Equation 7 we have borrowed the notation 
of q, s, and r from Bassiri and Hajj (B&H).  The 
expressions for q and s can be defined in terms of the 
constants Cx and Cy that B&G use as follows: 
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The constants Cx and Cy will be defined below.  We 
subdivide the term B&H defined as “r” below, and define 
each part in terms of the constants Cx and Cy: 
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Equation 13 

In each of these expressions Ne is the electron density at a 
point in space, B0 is the magnitude of the geomagnetic 
field at that point, and cosθB is the angle between the 
propagation direction and the magnetic field direction. 
The B&G constants Cx and Cy come from the constants in 
the plasma frequency and gyro frequency (Appendix 
Equation 50 and Equation 51).  These are: 
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Equation 14 

The constants that appear in Equation 14 are defined in 
the Appendix.  Our analysis will isolate the effect that the 
higher order terms s, r1, r2, and r3 will have for a user 
forming the combination of the observables that are first-
order-ionosphere  free (FOIF), which removes only the q 
term: 
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Equation 15 
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Substituting Equation 1, Equation 6, Equation 7, and 
Equation 16 into Equation 15, we obtain: 
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Equation 17 

In this expression, the integer ambiguities have been 
absorbed into bias B.  Klobuchar (1996) observed that 
both B&G and B&H predicted that the higher order phase 
errors (i.e. the s and r terms in Equation 17) would be on 
the order of 0.1% of the first order error q/f1

2 term via 
simulation.  Since the typical ionosphere delay at L1 
frequency is on the order of 10 m, this would translate to 
higher order errors at the centimeter level.  As Klobuchar 
noted, the B&G model error estimates were more accurate 
but required more knowledge of the state of the 
ionosphere and geomagnetic field.  In particular they 
estimated curvature effects due to the signals not traveling 
along the straight line path, and moreover, not traveling 
on the same curved path.  B&H neglect curvature, treating 
the integration as taking place along the line of sight.  
They additionally consider the group index of refraction 
and the corresponding code errors, predicting them to be 
at the centimeter level. 
 
MAGNETIC FIELD MODEL 
 
In order to estimate the higher order errors using the dual 
frequency GPS observables P1, P2, L1, and L2, we make 
a number of simplifications to Equation 9 through 
Equation 13.  For s in Equation 9, r2 in Equation 12, and 
r3 in Equation 13, we need information about the 
magnetic field within the ionosphere.  For this we assume 
the international geomagnetic reference field IGRF-10 
(Macmillan 2005).  IGRF-10 is a spherical harmonic 
multipole expansion of the field, with 10th generation 
updated estimates of the coefficients from those used by 
Brunner and Gu (1991) and Bassiri and Hajj (1993).  The 
expression for the scalar potential V is (Walt 1994): 
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Equation 18 



In this expression RE = 6371.2 km is the radius of the 
earth.  The variables r, θ, and φ are the spherical 
geographic coordinates of a point in space.  The 
coefficients gn

m and hn
m are specified by the IGRF-10 

model. The expression Pn
m is the Schmidt normalization 

of the Legendre functions Pn,m, and δ0,m=1 for m=0 and 
zero otherwise.  The components of the magnetic field B 
are then obtained from the potential V as: 
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Equation 19 

In these expressions, Br is the upward component, Bθ is 
the southward component, and Bφ is the eastward 
component of the field.  Tsyganenko (2005) has made an 
implementation of the IGRF model publicly available as 
Fortran code, which we adapted for use in Matlab.  
 
The specification of a magnetic field B0 alone is not 
sufficient to allow for the calculation of the s, r2, and r3 
terms, since they must be integrated against the unknown 
electron density distribution Ne.  Since we use real data, 
particularly during ionospherically active times, we do not 
assume a Chapman function for the ionosphere, as B&G 
and B&H did.  Therefore, we will not integrate the 
product of Ne and B0.  Instead, we take as average 
magnetic field the value of B0 and cosθB at the point 
where the line of sight reaches 350 km altitude (the 
ionosphere pierce point, IPP).  This allows us to pull the 
B0cosθB term out of the integrals in Equation 9Equation 
12Equation 13.  This average value is conservative since 
the geomagnetic field is reduced by currents induced in 
the magnetosphere during ionospherically stormy times, 
as evidenced by negative Dst geomagnetic storm index.  
The use of the field value at the IPP is also conservative 
since evaluation at 350 km altitude treats the bulk of the 
electrons as being at that altitude, when in fact storm time 
plasma enhancements have been observed to occur at 
higher altitudes (Mannucci 2005), where the magnetic 
field is weaker. 
 
SIMPLIFICATION OF Ne 
 
To estimate the r1 term defined in Equation 11, which 
integrates the square of the electron density Ne along the 
line of sight, we use a technique introduced by Hartmann 
and Leitinger (1984).  This involves the definition of a 
shape factor η: 
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Equation 20 

 
In this expression Nm is the maximum density in the 
vertical density profile.  In the literature, since Chapman 
functions with specified Nm were assumed, it was found 
that eta was 0.66 nearly independently of elevation. 
 
Rather than use a Chapman function, we make an 
assumption that is both conservative and consistent with 
our data.  We assume the ionosphere is a shell of 
thickness 100 km.  Then we take our dual-frequency 
measurements of the first order delay IS, and convert them 
to equivalent vertical measurements IV using the obliquity 
factor M: 
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Equation 21 

The obliquity factor M is a function of the elevation el to 
one satellite.  The height of the ionosphere hiono is fixed at 
350 km.  The equivalent vertical delay IV is related to a 
slant delay IS as: 
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Equation 22 

Then Nm is given by: 
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Equation 23 

In other words, we compute the equivalent vertical first 
order delay from the slant, and then spread the electrons 
causing that delay evenly within a shell of thickness 
τ=100 km.  Substituting this model of electron density Ne 
and maximum density Nm into Equation 20, we find that 
η=1.  This gives a conservative value of η.  Compared to 
the international reference ionosphere (IRI) model, in 
which the vast majority of electrons are typically within a 
band of 150-200 km thickness, a narrow shell of 100 km 
thickness gives a more delta-like density function, i.e. a 
higher value of Nm.  Therefore, this assumption is 
conservative.  A cartoon, not to scale, depicting this 
simplification is shown in Figure 1.  It illustrates the 
variation of the electron density with height.  An IRI 
model (black curve) rises to a peak and tapers off with 
altitude.  A set of shells of varying thickness are shown as 
blue, green, and yellow rectangles.  Each one contains the 
same area (i.e. the same total electron content, TEC).  The 
blue rectangle represents a shell of thickness 100 km.  
This maximum density Nm associated with this choice of 
vertical profile is both higher than a Chapman function 
with the same TEC and gives a higher value of η than a 



Chapman function would.  Therefore, it can be used to 
bound the r1 error. 
 

 
Figure 1: Illustration of vertical density profile chosen 
for specification of Nm and, thus, η . 

 
HIGHER ORDER ERRORS FROM DATA 
 
The goal of this section is to demonstrate how to extract 
the higher order errors from the data.  We will show that, 
by differencing two iono-free models, each with different 
orders of accuracy, we can isolate those q, s, or r terms 
that are not common to both models. 
 
Dual-frequency measurements allow us to directly 
compute the q term, or TEC, in Equation 8.  The 
simplifications to s and r described in the previous two 
sections involve taking an average value of quantities 
inside the integrals of Equation 8-Equation 13, so that we 
may pull them out of the integral and express them in 
terms of the TEC.  Using the simplifications outlined in 
the two sections above and factoring out the TEC, we 
obtain slightly modified expressions for the q, s, and r of 
Equation 8-Equation 13: 
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Equation 24 

With this notation we bridge the gap between the q,s, and 
r notation that B&H use and the Ω notation of B&G: 
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Equation 25 

By substituting Equation 25 into Equation 7, we express 
the ionosphere phase errors as: 
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Equation 26 

From these phase errors appearing in the observables, 
B&G showed that an ionosphere-free phase observable 
LTOIF1 accurate through the first third-order-term r1 could 
be produced. The subscript TOIF1 is an acronym for 
“Third-Order-Ionosphere-Free through the r1 term”: 
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Equation 27 

The full expression for the B&G improved iono-free 
model included curvature terms, which we have omitted 
here.  Notice that Equation 27 is similar in form to the 
FOIF model in Equation 15, with Ω replacing ω. 
 
Brunner and Gu showed that the difference between the 
FOIF phase observable in Equation 15 and their higher 
order iono-free phase observable was a function of the 
difference between the phase measurements.  We detail 
that derivation here, starting with the definitions of the 
TOIF1 model in Equation 27 and the FOIF model in 
Equation 15: 
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Equation 28 

This can be rearranged to obtain: 

2
)1)(1(

)1()1(

1
)1)(1(

)1()1(
1

L

LLL
FOIFTOIF

!

!!

!

!

"

""

"

"

#$#

$###$
#

#$#

$###
=#

 

Equation 29 



Define Δω as: 
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Then we may continue the derivation from Equation 29: 
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Equation 31 

The final line in Equation 31 is the expression that B&G 
derive.  Notice that, to reach this form, the Δω term in the 
denominator must be discarded.  In practice this limits the 
accuracy to the 10-6 m level, which is sufficient for our 
purposes. Differencing between two different models is 
useful because the data we use provides not the L1 and L2 
observables separately, but the difference between them.   
 
Next we show that this difference in the two models is 
equal to the error due to the higher order terms.  We will 
show it for the comparison of the B&G model, TOIF1, to 
the FOIF model.  The same argument then applies to any 
other pair of models.  We begin by substituting the 
expressions for L1 and L2 from Equation 1 into Equation 
28: 
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Equation 32 

Then we substitute in the expressions for the ionosphere 
error from Equation 26 and rearrange: 
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Equation 33 

The range plus non-dispersive terms ρ cancel out.  Since 
Ωφ is simply the ratio of Ωφ1 and Ωφ2, the second term 
vanishes.  The difference between the integer ambiguity 
terms is very small since Ω - ω is small, so we neglect it.  
After substituting in Equation 7, we are left with: 
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Equation 34 

This shows that the difference between any two orders of 
models will depend on the terms that are included in one 
but not the other.  This works for any two orders of phase 
models, and it works for any two orders of group models. 
 
We extend this technique to isolate the effect of each 
individual term of the expansion.  Therefore, we must 
difference two models of consecutive orders of accuracy.  
For example, to estimate the error in an iono-free 
observable due to the 2nd order term (namely the s term 
in Equation 7) we form a second-order-iono-free (SOIF) 
observable following the same procedure as outlined for 
the B&G model in Equation 25-Equation 27.  The only 
difference is that we truncate Ωφi in Equation 25 to keep 
only the first and second order terms, q and s.  Equation 
15 is the FOIF observable. By differencing the two we 
isolate the contribution of the s term to the FOIF model 
phase error: 
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Equation 35 

In this expression the subscript on Ω indicates the highest 
order term included in the model.  By similar technique of 
differencing the TOIF1 model (which accounts for q, s, 
and r1) from the SOIF model (which includes only q and 
s), we isolate r1: 
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Equation 36 

Likewise, we form an observable that accounts for q, s, 
and the two third-order terms r1 and r2 in the expression 
for Ω in Equation 25.  This observable is iono-free up to 
the second third order term (TOIF2).  Differencing from 
the TOIF1 observable isolates the effect of r2: 
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Equation 37 

In the same way, the effect of r3 is given by: 
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Equation 38 

A similar technique may be applied to the group (i.e. 
code) errors.  However, it is simpler to extend the phase 
model results, as we will show.  The model of the range 
that is ionosphere-free to first order (FOIF) is: 
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Equation 39 

In this expression ω is given by Equation 16.  Notice that 
the s terms in Equation 17 and Equation 39 differ by a 

factor of -2.  This means that the errors due to the s term 
in the first-order-iono-free (FOIF) code observable will be 
the double those of the phase error shown in Equation 39, 
and opposite in sign.  Similarly, the r terms in those same 
equations differ by a factor of -3.  Therefore, errors in the 
FOIF code observable due to the r terms will be triple the 
magnitude (and opposite in sign) of the errors given by 
Equation 36-Equation 38.   
 
As a complement to the B&G carrier phase model of 
Equation 25 and Equation 27, we specify the 
corresponding code observable that is iono-free up to the 
first third-order term (TOIF1): 
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Equation 41 

The s term differs by a factor of 2, and the r1 term differs 
by a factor of 3.  The ionosphere error on the code 
(corresponding to the carrier error of Equation 26) is: 
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Equation 42 

 
DATA  
 
Given the observable L1-L2, we now have a method, 
shown in Equation 35-Equation 38, to isolate each of the 
error terms that will result from the use of the first-order-
iono-free (FOIF) expression.  We apply Equation 35-
Equation 38 to the FAA’s Wide Area Augmentation 
System (WAAS) network dual frequency measurements, 
known as supertruth data. 
 
WAAS supertruth data consists of post-processed dual-
frequency measurements of the first-order ionosphere 
delay, formed as: 
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Equation 43



 
Figure 2: First order phase advance (or group delay) q 
~ Ne/f2, quiet day. Y-axis scale: 0-120 m. 

 

  
Figure 3: Second order phase advance (a.k.a ½ group 
delay) s ~ NeB0cosθB/f3, quiet day.  Y-axis scale: 0-50 
mm. 

 

 
Figure 4: Third order phase advance (a.k.a 1/3 group 
delay) r1 ~ Ne2/f4, quiet day.  Y-axis scale: 0- 50 mm. 

 
Figure 5: First order phase advance (or group delay) q 
~ Ne/f2, active day. Y-axis scale: 0-120 m. 

 

 
Figure 6: Second order phase advance (a.k.a ½ group 
delay) s ~ NeB0cosθB/f3, active day.  Y-axis scale: 0-50 
mm. 
 

 
Figure 7: Third order phase advance (a.k.a 1/3 group 
delay) r1 ~ Ne2/f4, active day.  Y-axis scale: 0-50 mm. 



Figure 8: Third order phase advance (a.k.a 1/3 group 
delay) r2 ~ Ne(B0cosθB)2/f4, quiet day.  Y-axis scale: 0-
0.05 mm. 

 

Figure 9: Third order phase advance (a.k.a 1/3 group 
delay) r3 ~ NeB0

2/f4, quiet day.  Y-axis scale: 0-0.05 
mm. 

 

Figure 10: Total higher order phase advance, quiet 
day.  Y-axis scale: 0-20 cm. 

Figure 11: Third order phase advance (a.k.a 1/3 group 
delay) r2 ~ Ne(B0cosθB)2/f4, active day.  Y-axis scale: 0-
0.05 mm. 
 

 
Figure 12: Third order phase advance (a.k.a 1/3 group 
delay) r3 ~ NeB0

2/f4, active day.  Y-axis scale: 0-0.05 
mm. 

 

 
Figure 13: Total higher order phase advance, active 
day.  Y-axis scale: 0-20 cm. 



 
Figure 14: Total higher order group delay, quiet day.  
Y-axis scale: 0-20 cm. 

 
The constant γ is defined in Equation 16 and the mapping 
function M(el) is defined in Equation 21.  These dual-
frequency carrier measurements are leveled to the code 
measurements to remove the integer ambiguities.  The 
inter-frequency biases are estimated, and a voting system 
among the three receivers at each station checks for 
consistency between the receivers. 
 
From these measurements we can solve for the difference 
L1-L2 and then substitute the values of L1-L2 into 
Equation 35-Equation 38.  We choose to estimate the 
higher order errors on one ionospherically quiet day, 2 
July 2000, and one extremely active day, 29 October 
2003.  The results are shown in the figures. 
 
Figure 2 shows a two-dimensional histogram of the 
magnitude of the first order ionosphere error (identical for 
code and carrier) on a quiet day.  The delays are placed in 
bins according to elevation angle of the satellite in 
degrees (x-axis) and magnitude of the error in meters (y-
axis).  The color indicates the number of measurements 
that fall within a given elevation and error range.  Figure 
5 shows a corresponding histogram for an active day.  On 
both figures, the y-axis scale ranges from 0 to 120 m.  
This error corresponds to the q term in Equation 6-
Equation 7 and is removed by use of the dual frequency 
model of Equation 15.  On the quiet day, first order errors 
range from as much as 10 m at high elevation to 30 m at 
low elevation.  On the active day first order errors were 
observed to be 30 m at high elevation up to 110 m at low 
elevation.  In both cases the errors increase with 
decreasing elevation since low elevation lines-of-sight 
pass through more ionosphere to increase the total 
electron content along the path length. 
 
 

 
Figure 15: Total higher order group delay, active day.  
Y-axis scale: 0-20 cm. 

  
Figure 3 and Figure 6 are two-dimensional histograms of 
the second order phase error magnitude due to the 
ionosphere, given by Equation 35, which arises when 
using the first-order-iono-free model. The quiet day is 
shown in Figure 3, and the active day errors are in Figure 
6.  Notice that, unlike Figure 2 and Figure 5, the y-axis 
ranges from 0 to 50 mm.  On the quiet day the highest 
errors are 12 mm at low elevation, whereas on the active 
day they are as much as 45 mm.  The magnitude of the 
second order group error is twice the values shown in 
Figure 3 and Figure 6. 
 
The contribution of the r1 term, shown in Equation 36, to 
the phase error in the first-order-iono-free model is shown 
as a function of elevation for quiet and active days in 
Figure 4 and Figure 7, respectively.  As with Figure 3 and 
Figure 6 the scale on the y-axis ranges from 0 to 50 mm.  
On a quiet day the third order errors due to the r1 
(proportional to Ne2) are less than 0.5 cm even at low 
elevation.  However, on the active day the errors reach up 
to 3.5 cm at low elevation.  The magnitude of the r1 error 
is comparable to those of the s term errors.  The group 
error due to r1 is three times as large as the phase errors 
shown here. 
 
By contrast, the magnitude of the r2 and r3 errors is much 
much smaller, as is seen from Figure 8 and Figure 11, and 
Figure 9 and Figure 12, respectively.  Each is a two-
dimensional histogram of the error as a function of 
elevation.  The errors on quiet days are plotted on Figure 
8 (r2) and Figure 9 (r3).  Figure 11 (r2) and Figure 12 (r3) 
are the errors on the active day.  Notice that on all of 
these, the y-axis scale ranges up to only 0.05 mm.  The 
group delay errors due to r2 and r3 are three times as large 
as the magnitudes in these plots.  In both the group and 
phase cases, the r2 and r3 errors are sub-millimeter.  For 
this reason, we find that Brunner and Gu (B&G) were 



justified in keeping only the q, s, and r1 terms in their 
model of the index of refraction. 
 
Having estimated the magnitude of each of the higher 
order errors, up to the fourth power in signal frequency, 
we discard the sub-millimeter terms and adopt the B&G 
model for our subsequent analysis.  We plot the total 
phase error arising in the FOIF model when compared to 
the B&G model, as given in Equation 31 and Equation 34, 
for the quiet day and active day, as a function of 
elevation.  These are shown in Figure 10 and Figure 13, 
respectively.  The scale of the y-axis reaches up to 20 cm.  
The magnitudes of the errors shown in Figure 10 are the 
sums of the individual errors shown on Figure 3 and 
Figure 4.  On an active day, the higher order phase errors 
can reach up to 8 cm at low elevation, and a fraction of 
that on quiet days. 
 
The total higher order group errors, given by Equation 39 
in the FOIF model, are shown as a function of elevation 
for a quiet day in Figure 14 and for an active day in 
Figure 15.  The y-axis scale ranges from 0 to 20 cm.  
These figures indicate that, based on actual data and the 
assumptions we have made, on an active day, the higher 
order group errors can reach as high as 20 cm at low 
elevation.  On the quiet day, the errors are only about 1/6th 
those of the active day. 
 
One of the primary conclusions we draw from comparing 
the phase errors in Figure 10 and Figure 13 to the group 
errors in Figure 14 and Figure 15 is that they are no 
longer equal and opposite.  This will have an effect in 
smoothing of the FOIF code observable with the FOIF 
carrier observable. 
 
CARRIER SMOOTHING ERRORS 
 
In this section we examine how the higher order group 
and phase errors affect carrier smoothing of the code 
observable that is first-order-ionosphere-free (i.e. the q 
term has been eliminated).  For this analysis we reproduce 
the expressions in B&H for the carrier and code 1st-order-
iono-free observables, which were shown in Equation 17 
and Equation 39: 
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In these expressions the true range and non-dispersive 
range terms are grouped together in ρ, and the integer 
ambiguities at each frequency are absorbed into bias B.  

The code is recursively smoothed with the carrier by use 
of a filter: 
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Equation 46 

The value of k is equal to the product of the filter time 
constant and the data sample rate (in our case, 10 s).  The 
smoothed estimate for the ith epoch is P-hat.  It is an 
update of the previous estimate at epoch i-1 with a 
weighted combination of the current FOIF code 
observables PFOIF and the difference between the current 
and most recent carrier FOIF observables, LFOIF.  The 
error is the difference between the estimate P-hat, and the 
range ρ: 
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Equation 47 

The last lines of Equation 47 show that errors due to 
higher order terms arising in the smoothed estimate 
happen due to 1) large higher order group errors, and 2) 
large rates of change in the higher order phase errors.  To 
examine the effect of each of these, we select lines of 
sight from the active day that exhibited large magnitudes 
of group errors and phase error rates. 
 
The plots in Figure 16 illustrate the effect of higher order 
group errors in the carrier smoothed estimate error.  On 
29 October 2003, the higher order group errors on the line 
of sight (LOS) between the WAAS station in Fort Worth, 
Texas, and GPS SVN 32 built up to nearly 20 cm as the 
satellite rose and set in the sky.  This station-satellite pair 
produced some of the highest errors, seen at low 
elevation, shown as the points in the upper left region of 
Figure 15.  The top plot (a) of shows the higher order 
group errors as a function of UTC hour.  The y-axis scale 
ranges from 0 to 20 cm.  The middle plot (b) shows the 
satellite elevation versus time.  The satellite reaches 
nearly zenith around 18:15 UT.  The bottom plot (c) 
shows the smoothing error given by Equation 47 that 
arises as a result of the group errors in plot (a) for two 



different time constants that span a range of possible filter 
time constants for smoothing multipath.  The blue curve 
shows the error that accumulates for a filter time constant 
of 100 s.  The 100-second filter tracks the group errors in 
plot (a), reaching nearly 18 cm of error in the smoothed 
estimate.  For a much longer time constant of 2 hours, the 
errors over time are significantly smaller, at only a couple 
cm.  A longer time constant de-weights the FOIF group 
observable, and thus the errors associated with it, via to 
the 1/k term in Equation 47. 
 

 
Figure 16: (a) Higher order group errors vs. time for a 
line of sight with particularly high errors. (b) 
Elevation vs. time. (c) Carrier smoothing error of the 
FOIF observable for a 100-s time constant (blue) and a 
2-hour time constant (green). 

 
Figure 17: (a) Higher order group errors vs. time for a 
line of sight with particularly high phase rate of 
change. (b) Rate of higher order phase error vs. time. 
(c) Carrier smoothing error of the FOIF observable 
for a 100-s time constant (blue) and a 2-hour time 
constant (green). 

Rates of change in the FOIF phase observable also 
contribute to the smoothing error.  To examine the impact 
of these we choose a LOS between the WAAS station in 

Washington, D.C., and SVN 46.  Walter et al. (2004) 
showed this station-satellite pair exhibited extremely high 
rates of change in the first-order ionosphere group delay.  
Since the higher order errors are proportional to the first 
order errors, as we found earlier, high rates of change in 
the first order error imply high rates of changes in the 
higher order errors.  The plots in Figure 17 show the 
smoothing errors for this LOS.  The uppermost plot (a) 
shows the higher order group error as a function of UTC 
hour.  The scale ranges from 0 to 4 cm.  The rate of 
change of the higher order phase error is plotted in green 
on plot (b).  The largest magnitude phase error rate is 0.1 
mm/s.  Finally the smoothing error, given by Equation 47, 
is plotted versus UTC hour for two time constants on plot 
(c).  The smoothing error for a 100 s filter is shown in 
blue and for a 2-hour filter in dark green.   
 
The group error in (a) starts at its highest values, so both 
filters have almost 4 cm error in the earliest moments.  
The 100-s filter then decreases rapidly, tracking the group 
errors of plot (a).  The 2-hour filter decreases much more 
slowly.  In fact, the 2-hour filter does not reach steady 
state before a data outage at 23:40 UT causes the filter to 
reset and being smoothing a new track.  In both cases the 
anomaly in the ionosphere group error from 20:45 – 21:00 
UT is filtered in and appears in the result.  For the 100 s 
time constant, the smoothing error (plot (c) blue curve) 
basically tracks the group error of plot (a) but is opposite 
in sign.   
 
In the case of the 2-hour filter result, the anomaly enters 
the filtering process before a full two hours has even 
elapsed. In our implementation, the instantaneous filter 
constant tfilter,i at the ith epoch equals the minimum of 
either the target filter constant (e.g. tfilter_final = 2 hours) or 
the time elapsed since the first epoch: 
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t filter,i =min(t filter _ final ,ti " t0)  

Equation 48 

As a result, the filter constant increases with each epoch 
as the anomaly is filtered into the estimate.  For this 
reason the group anomaly appears in the smoothed 
estimate with an amplitude that is scaled by a different 
value at each epoch, giving the green curve in plot (c) a 
different shape with respect to the original group error 
shown in plot (a).  The phase error rate of change does not 
appear to have a significant impact on the error in either 
the 100-s or the 2-hour filtering cases. 
 
CONCLUSION  
 
We used WAAS supertruth data from the most recent 
solar maximum to compute the magnitude of each of the 
terms that appear in the literature, up to the negative 
fourth power of frequency.  We found that the Brunner & 
Gu model, which keeps the third power of frequency and 
only the fourth power term that is proportional to Ne2 is 



the simplest because it neglects sub-millimeter errors.  
We applied the Brunner and Gu model to data to show 
that the higher order group errors that remain after using 
the dual-frequency ionosphere correction model give 
phase errors of up to 8 cm and group errors of up to 20 cm 
at low elevation on days of extreme ionospheric activity.  
These values are 0.06% and 0.16%, respectively, of the 
first order error at L1 frequency.  Klobuchar (1996) 
pointed out that the commonly used dual frequency model 
is typically accurate to 0.1%.  Our estimate of the higher 
order group errors slightly exceeds those of the 
simulations in the literature.  We attribute this difference 
to the fact that, in computing the magnitude of the higher 
order errors, we deliberately chose the necessary 
simplifications such that they bounded the errors that may 
occur. 
 
We showed that the higher order errors appear in carrier 
smoothing of the first-order-ionosphere-free code 
observable.  The higher order group errors, and to a lesser 
extent the higher order phase error rates, contribute to the 
smoothing error.  For a 100 s time constant, a low-
elevation satellite with a 20 cm higher-order group delay 
will exhibit a 20 cm smoothing error.  This can be 
reduced to a few cm with a longer filter time constant, as 
we show for a 2-hour filter.  The higher order phase error 
rate showed no significant effects in either the 100-s or 2-
hour filter estimates. 
 
Higher order ionosphere errors of magnitude up to 20 cm 
may be bounded by dual-frequency augmentation systems 
to provide integrity in one of two ways.  The higher order 
errors may be estimated in methods similar to the one 
shown in this paper and removed.  Alternatively, the 
entire higher order error term may be bounded without 
removal.  Whether one of these methods is better suited to 
wide-area or local-area differential GPS systems has yet 
to be determined. 
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APPENDIX 
 
The Appleton-Hartree equation describes the phase index 
of refraction for a right hand circularly polarized wave 
(i.e. extraordinary mode) propagating through the 
ionosphere: 
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Equation 49 

The angle between the magnetic field and the propagation 
direction is θB, and X and Y are given by Equation 50: 
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Equation 50 

In Equation 50, the plasma frequency is fp, the gyro 
frequency is fg, and the wave frequency is f.  The plasma 
and gyro frequencies are defined as: 
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Equation 51 

The plasma frequency is proportional to the electron 
number density Ne, and the cyclotron frequency is 
proportional to the magnitude of the magnetic field in the 
plasma B.  The remaining terms are constants: electron 
charge e, electron mass me, and permittivity of free space 
ε0.   
 
The Appleton-Hartree equation is a beautiful closed-form 
expression of the dispersion relation in a cold, 
collisionless, magnetized plasma such as the ionosphere, 
but as a model for GPS ranging errors it is unwieldy.  For 
this reason simplifications are made through a variety of 
approximations and Taylor expansions.  The simplest is to 
treat the denominator of Equation 49 as equal to one: 
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Then by treating X as a small quantity α and Taylor 
expanding nφ about α=0 as: 
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Equation 53 

we arrive at the first order model for the phase index of 
refraction by truncating after the first two terms: 
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Equation 54 

The group index of refraction is related to the phase index 
of refraction by Equation 4, giving: 
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Equation 55 

Using each of Equation 54 and Equation 55 in Equation 1, 
we find that the ionosphere error on the phase Iφ is equal 
and opposite to the ionosphere error on the code Iρ, and 
that these errors are inversely proportional to the square 
of the signal frequency through X, given in Equation 50. 
 
This paper is concerned with using data to calculate the 
errors that arise by making this first order approximation.  
We review and reprint the main derivations of the higher 
order terms in the literature, since these produce exactly 
the quantities we use our data to compute. 
 
Tucker and Fannin (1968) begin with Equation 49 and 
make a quasi-longitudinal approximation.  This assumes 
that the magnetic field is nearly aligned with the 
propagation direction, such that sinθ≈0.  This gives: 
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Equation 56 

The denominator is very nearly 1 and can be Taylor 
expanded as a function g(ε): 
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Equation 57 

This gives an expression for index of refraction: 
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Equation 58 

By treating the second, third, and fourth terms as a small 
quantity α, we again make use of the expansion in 
Equation 53.  Keeping only the terms that are up to the 
fourth power in frequency f, we arrive at the Tucker and 
Fannin model: 
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Equation 59 

With slight modification this same derivation can be used 
to obtain the Brunner and Gu (1991) model.  Returning to 
Equation 57 and keep only the 0th and 1st order terms in ε, 
the expression for nφ becomes not Equation 58, but rather: 
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Equation 60 

As before, treating all of the terms in Equation 60 
containing X as small quantity α, we use Equation 53 and 
drop any term that is higher than fourth power in 
frequency to obtain: 
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Equation 61 

Although this is the Brunner and Gu (B&G) model, they 
point out that they derive this model without making the 
quasi-longitudinal approximation of Equation 56.  Their 
preferred route is to analyze the order of magnitude of the 
terms to derive the expression.  We summarize their 
argument here. 
 
B&G begin by multiplying the numerator and 
denominator in Equation 49 through by (1-X).  This gives 
a different form of the Appleton-Hartree equation: 
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Equation 62 

Defining everything other than the first term in the 
denominator as ε and using the expansion in Equation 57 
up to first order only, the refractive index becomes: 
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Equation 63 

By treating everything except the first term as quantity α, 
the expansion in Equation 53 can again be used.  
However, their consideration before applying Equation 53 
is that since nφ

2 ~  α in that equation, δα = 2δnφ.  Since 
mm accuracy is needed in the higher order terms, only the 
terms in the refractive index of accuracy up to 10-9 are 
needed.  Since X is on the order of 10-5 for GPS 
frequencies, the only terms inside the curly brackets that 
need to be kept are the ones of order 10-4.  Using the order 
of magnitude value of Y ~ 10-3, this gives: 
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Equation 64 

All of the terms in Equation 63 that were negligible by 
this argument are shown as zeros in Equation 64.  Notice 
that the final result is equivalent to Equation 60 and thus 
leads to the B&G model shown in Equation 61. 
 
Finally, we show the model for refractive index obtained 
by Bassiri and Hajj (1993).  Beginning from Equation 49 
and comparing the two terms within the square root, they 
use the argument that Y << 2|cosθB|(1-X)/(sin2θB) to 
neglect the first term in the square root: 
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Equation 65 

Again we treat everything except the first term in the 
denominator as ε and approximate the denominator with 
Equation 57, keeping only the terms up to the fourth 
power in frequency f.  This results in: 
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Equation 66 

Defining everything except the first term as α, we 
substitute this form of α into Equation 53, and again 
retain terms up through the fourth power in frequency: 
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Equation 67 

The final expression is the index of refraction 
approximation shown in Bassiri and Hajj (1993). 


