
Design and Performance of a Minimum- 
Variance Hybrid Location Algorithm 
Utilizing GPS and Cellular Received 

Signal Strength for Positioning in 
Dense Urban Environments 

 
 

David S. De Lorenzo, Stanford University 
Sherman C. Lo, Stanford University 

Per K. Enge, Stanford University 
Marty Feuerstein, Polaris Wireless 

Tarun K. Bhattacharya, Polaris Wireless 
Steve Spain, Polaris Wireless 

Zhengjiu Kang, Polaris Wireless 
 
 
 
BIOGRAPHY 
 
Dr. David De Lorenzo received the Ph.D. degree in 
Aeronautics and Astronautics from Stanford University, 
where he works as a researcher in the GPS Laboratory.  
His current research is in GNSS software receivers, 
adaptive beamsteering antenna arrays, indoor and urban 
reception of radio signals, and navigation system security 
and integrity. 
 
Dr. Sherman Lo is a research associate at the Stanford 
University GPS Laboratory, where he is the Associate 
Investigator for Stanford University efforts on the 
technical evaluation of Loran. 
 
Dr. Per Enge is a Professor of Aeronautics and 
Astronautics at Stanford University, where he is the 
Kleiner-Perkins, Mayfield, Sequoia Capital Professor in 
the School of Engineering.  He directs the Stanford 
University GPS Research Laboratory. 
 
Dr. Marty Feuerstein has more than 20 years experience 
in research, development, and deployment of wireless 
products, including work at Northern Telecom, AirTouch, 
Lucent Technologies, Bell Laboratories, and Metawave 
Communications.  Dr. Feuerstein earned the Ph.D. degree 
in Electrical Engineering from Virginia Tech. 
 
Dr. Tarun K. Bhattacharya has over 15 years experience 
in the design and development of advanced signal 
processing systems for commercial and military 

applications.  Dr. Bhattacharya’s areas of expertise 
include spatio-temporal filtering, neural networks, pattern 
recognition, time-frequency distributions, geolocation, 
and multi-target tracking with data fusion. 
 
Dr. Steve Spain serves as Chief Technology Architect of 
Polaris Wireless.  Dr. Spain has more than 25 years of 
experience in the development of estimation, control, and 
signal processing applications for defense and commercial 
customers, including work at Tera Research, Integrated 
Systems, Inc., Advanced Decision Systems, ESL Inc., and 
Systems Control Inc.  Dr. Spain earned the Ph.D. degree 
in Electrical Engineering from Stanford University. 
 
Dr. Zhengjiu Kang has been a principal algorithm 
engineer at Polaris Wireless since 2005, where his major 
responsibility has been focusing on Location Based 
Services (LBS) algorithm and system R&D.  Before he 
joined Polaris Wireless, he worked at UtopiaCompression 
Corp. as a senior R&D scientist.  Dr. Kang received his 
Ph.D. degree in Electrical Engineering from the 
University of California at Los Angeles in 2004. 
 
ABSTRACT 
 
This paper shows how the complementary advantages of 
GPS and cellular received signal strength (RSS) 
positioning methods improves hybrid location estimation 
performance in dense urban environments.  In general, 
GPS techniques work best in rural or suburban 
environments where there is only moderate building or 



landscape clutter to interrupt sky visibility or to introduce 
multipath errors from reflected satellite signals.  In 
contrast, cellular techniques work best in urban 
environments where the density and geometry of cell 
towers is favorable. 
 
Test results show that cellular-RSS effectively can be 
used to eliminate GPS outliers (location errors > 1 km, 
such as those associated with cell-ID fallback mode), 
while GPS can improve the accuracy of the combined 
solution.  Based on field trial data, the accuracy of the 
Minimum-Variance Hybrid Algorithm (in dense urban 
environments) is approximately 45m for 67% of E911 
calls and 110m for 95% of E911 calls. 
 
INTRODUCTION 
 
Ubiquitous positioning – locating a user or a device 
anywhere and at any time – is the ultimate goal for 
navigation engineers.  This effort is driven not only by 
consumer acceptance and market uptake of Location 
Based Services (LBS), but also by government directives 
such as the FCC’s E911 mandate.  The FCC wireless 
Enhanced 911 standard requires cellular network carriers 
to estimate the location of a mobile handset making a 911 
emergency call, and to provide this information to the 
dispatcher in a timely manner [1].  Phase II of the 
standard specifies accuracy targets generally to within 50 
to 300 meters over a selected geographic region. 
 
The Global Positioning System (GPS) is the preferred 
solution for low-cost commercial positioning, as seen in 
personal navigation devices and mobile handsets.  
However, the performance of GPS in mobile handsets is 
problematic in meeting the guidelines of the E911 
standard for several reasons.  First, mobile handset 
operation during 911 emergency calls frequently occurs in 
urban, dense urban, or indoor environments [2].  Second, 
as navigation is not the primary purpose of a mobile 
handset, the design and placement of the L-band antenna 
is non-ideal leading to further performance degradation 
[3, 4]. 
 
Many technologies have been developed to meet the 
challenges of urban navigation, particularly as applied to 
E911 mobile handset location.  Assisted-GPS (A-GPS) 
increases acquisition sensitivity and decreases time-to-
first-fix (TTFF) [5].  Other techniques leverage 
information measured by the handset and reported to the 
network during the course of active and/or standby modes 
of operation.  These techniques include estimating the 
location of the handset based on the coordinates of the 
serving cell tower [6], using timing information to 
trilaterate handset location [7], and pattern-matching to 
the received signal strength (RSS) measurements of the 
serving cell tower and of neighbor cell towers [8, 9]. 
 

This paper shows how the complementary advantages of 
GPS-based and cellular-RSS-based positioning methods 
improves hybrid location estimation performance in dense 
urban environments.  In general, GPS techniques work 
best in rural or suburban environments where there is only 
moderate building or landscape clutter to interrupt sky 
visibility or to introduce multipath errors from reflected 
satellite signals.  In contrast, cellular techniques work best 
in urban environments where the density and geometry of 
cell towers is favorable. 
 
First, this paper derives a method of combining GPS and 
cellular-RSS location estimates.  This method utilizes 
quality-of-fix attributes reported by the GPS and RSS-
based algorithms to minimize the error variance of the 
hybrid location estimate, and incorporates cross-checking 
between GPS and cellular-RSS estimates for outlier 
exclusion to avoid contaminating the position solution.  
The algorithm operates in the position domain, 
simplifying vendor- and hardware-specific 
implementation issues.  This minimum-variance combiner 
represents an optimal use of the GPS and cellular-RSS 
location and uncertainty estimates to calculate handset 
location. 
 
Second, this hybrid location technique is verified with 
field trial data from several dense urban markets in the 
U.S., Canada, and Japan.  This field trial data allows 
demonstration of the procedures for determining 
algorithm parameters, and enables performance 
comparison between GPS, cellular-RSS, and hybrid 
GPS/RSS methods.  The implementation procedure 
involves multiple steps to align various information 
inputs, to detect and to filter outliers, and to develop the 
optimal solution.  One major step is to develop 
correspondence between the uncertainty values output by 
the GPS and by the cellular-RSS positioning engines; for 
example, as different GPS chipset vendors have different 
means and metrics to report uncertainties, the algorithm 
accounts for these differences and aligns them with those 
reported by the cellular-RSS location engine.  Test results 
show that cellular-RSS effectively can be used to 
eliminate GPS outliers (location errors > 1 km), while 
GPS can improve the accuracy of the combined solution.  
Based on field trial data, the accuracy of the Minimum-
Variance Hybrid Algorithm (in dense urban outdoor 
environments) is approximately 45m for 67% of E911 
calls and 110m for 95% of E911 calls. 
 
OVERVIEW OF WLS/GPS MINIMUM-VARIANCE 
HYBRID ALGORITHM 
 
Wireless Location Signatures (WLS) uses received signal 
strength and network timing measurements from the 
serving cell tower and from neighboring cell towers to 
estimate handset location.  GPS processing uses 
pseudorange measurements to several GPS satellites to 



Figure 1.  WLS & GPS location estimation accuracy. 
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estimate handset location.  In cases where GPS time-to-
fix exceeds the limits established for the E911 call flow, a 
fallback position estimate derived from the location of the 
serving cell tower (and antenna sector) is presented 
instead (fallback to cell-ID positioning mode may or may 
not be reported back through the network).  Figure 1 
shows WLS and GPS location estimation accuracy from 
field trials of simulated E911 calls in two dense urban test 
markets.  Note particularly that 1-σ accuracy in these field 
trials is roughly comparable between WLS and GPS, but 
also that the GPS error distributions have long tails 
(especially for test market #1) which is associated with 
severe urban multipath and cell-ID fallback inaccuracy. 
 
The Minimum-Variance Hybrid Algorithm represents an 
optimal use of WLS and GPS location and uncertainty 
estimates to calculate handset location.  Namely, if it were 
known a priori which estimate were better (WLS or 
GPS), then more weight could be applied to that estimate 
in the final positioning report.  Furthermore, if there were 
a method to detect outliers, those estimates which are 
likely to deviate significantly from the core of the error 
distributions, then the contribution from those estimates 
also could be excluded from the final positioning report.  
Specifically, a minimum-variance estimator seeks an 
optimal method for combining estimates, in this case 
estimates taken from two error populations associated 
with WLS and with GPS, and then combining those 

estimates in a ratio determined from their respective 
population variances. 
 
In other words, we seek an estimator which utilizes data 
from more than one source and combines that data using 
weighting coefficients which minimize the error variance 
of the final result (see Appendix A for a derivation).  For 
WLS and GPS location estimates  and WLSpr GPSpr , of 

known or estimated error variance  and , the 

hybrid location estimate 

2
WLSσ 2

GPSσ

hybridpr  is calculated as follows: 
 

 hybridGPSGPSWLSWLS ppwpw rrr
=+  (1) 

 
To minimize location error variance under the constraint 
that 1=+ GPSWLS ww , the weighting coefficients are 
calculated as follows (see Appendix A): 
 

 

WLSGPS

GPSWLS

GPS
WLS

ww

w

−=
+

=
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22

2

σσ
σ

 (2) 

 
To summarize, the minimum-variance hybrid algorithm 
blends WLS and GPS estimates to improve accuracy, by 



Figure 2.  Minimum-variance WLS/GPS hybrid algorithm. 
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leveraging complementary features of WLS and GPS and 
by seeking to eliminate large errors and outliers.  The 
weighting coefficients in the hybrid algorithm depend on 
WLS and GPS estimation uncertainties although, as will 
be discussed below, GPS uncertainty reporting can be 
problematic as it not standardized by chipset vendor or 
handset implementation.  Finally, this is a position-
domain hybrid algorithm, meaning that it does not need to 
access (nor can it modify) the intermediate location 
processing steps – in other words, it consider GPS and 
WLS to be location “black boxes” (see Figure 2). 
 
When the minimum-variance estimator is applied for the 
purpose of combining WLS and GPS location estimates, 
then there are several factors of which to be aware. 
 

1. The estimation of 2-D location on the surface of 
the Earth often can be decomposed into 
independent and orthogonal estimates of 
North/South location (latitude) and East/West 
location (longitude) – this de-coupling 
characteristic applies (on average) to location 
estimates from WLS and from GPS.  This means 
that the hybrid location estimation problem can be 
broken down into separate problems of 
determining latitude and longitude using WLS and 
GPS estimates.  It follows from this that the total 
positioning error of the minimum-variance hybrid 
estimate can be calculated from the square root of 
the sum of the squares of the North/South error and 
of the East/West error. 

 
2. The WLS and GPS location estimates are mutually 

independent (the error variances may or may not be 

mutually independent, but the minimum-variance 
algorithm does not require variance independence, 
so this distinction will not be further discussed).  
This means that the error magnitude for one of the 
estimates does not correlate with the error 
magnitude of the other estimate. 

 
3. When expressed in units of meters, the latitude and 

longitude estimation errors for either method (WLS 
or GPS) have equal variance.  (This may not be 
true either for WLS or for GPS.  Currently the 
Polaris Location Engine reports only one value of 
“uncertainty”.  Some GPS applications report 
elliptical error estimates, but to date these neither 
have proven well-matched to the field trial data nor 
have been useful in characterizing the estimation 
errors.  If this circumstance no longer holds for 
newly tested markets, either for WLS or for GPS, 
then this assertion can be re-visited.)  This means 
that each calculation of hybrid location will rely on 
one measure of estimation variance for WLS and 
one measure of estimation variance for GPS; each 
of these variances will apply both to the 
North/South estimate as well as to the East/West 
estimate for their respective positioning methods. 

 
4. The WLS and GPS location estimates are zero-

mean (unbiased) and approximately normally 
distributed (Gaussian).  (The normality 
requirement is weak, due to the Central Limit 
Theorem.)  This means that the minimum-variance 
estimator derived in Appendix A applies to the 
problem of combining WLS and GPS location 
estimates, assuming some mechanism exists to 



Figure 3.  Minimum-variance WLS/GPS location estimation accuracy. 
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estimate the WLS and GPS location error 
variances. 

 
5. In cases where either WLS-based or GPS-based 

estimation suffers a gross failure, then there should 
be a mechanism for detecting and then excluding 
these outliers.  The heuristic tools to detect and to 
exclude outliers, as is to be expected, are market 
dependent and will be discussed further below. 

 
6. There is a relationship between the “uncertainty” 

reported by the WLS and GPS positioning 
applications and the error variance of the 
North/South and East/West estimates.  (It is not 
clear that this must or even should be the case in 
theory without delving into the core of the WLS 
and/or GPS applications; it only is necessary to 
show that this is the case in practice.)  This means 
that there will be functions to map “uncertainty” 
(however it is derived and in whatever units it is 
reported) to error variance (in meters-squared) both 
for WLS and for GPS. 
 
This final requirement is the most stringent to 
consider in developing the Minimum-Variance 
Hybrid Estimator, as it is likely that the 

relationship between reported “uncertainty” and 
error variance will be handset dependent – 
certainly so for GPS as the calculation of 
“uncertainty” depends on the implementation of 
the chipset vendor, and possibly so for WLS if 
there are dependencies on antenna gain pattern, 
analog hardware design, signal power estimation 
algorithms, etc.  The possible requirement to 
develop a handset-specific Minimum-Variance 
Hybrid Algorithm is beyond the scope of this note, 
and is not discussed further here. 

 
APPLYING THE WLS/GPS MINIMUM-VARIANCE 
HYBRID ALGORITHM 
 
The following is an overview of the steps involved in 
executing the WLS/GPS Minimum-Variance Hybrid 
Algorithm (accuracy results summarized in Figure 3).  
The first steps check the validity of the assertions required 
to combine the WLS and the GPS location estimates in a 
minimum-variance fashion.  The next steps are designed 
to fix the algorithm parameters (i.e., determine the 
functions that map “uncertainty” to error variance and 
develop the WLS and GPS outlier exclusion criteria).  
The final steps invoke the algorithm on WLS and GPS 
location estimates – these final steps are those that would 
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Figure 4.  Plotting WLS and GPS “uncertainty” vs. standard deviation. 
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be deployed in an operational minimum-variance hybrid 
system. 
 
The first steps evaluate error characteristics:  
independence of latitude vs. longitude, independence of 
WLS vs. GPS, normality of WLS and GPS. 
 

1. Plot latitude vs. longitude errors for WLS and for 
GPS; plot WLS vs. GPS latitude errors; plot 
WLS vs. GPS longitude errors; calculate R2 
value (also called ‘coefficient of determination’) 
between errors (but only for total errors less than 
some threshold, e.g., 500m); verify that R2 value 
is suitably low (i.e., << 0.25). 

 
2. Plot histograms of latitude and longitude errors 

for WLS and for GPS; confirm zero-mean and 

nominally “Gaussian” in appearance (may have 
long tails due to outliers); calculate standard 
deviations of WLS and GPS latitude and 
longitude errors. 

 
The next steps fix the algorithm parameters mapping 
“uncertainty” to standard deviation and determine outlier 
exclusion criteria. 
 

1. Plot reported “uncertainty” vs. error standard 
deviation by binning data in suitable ranges (see 
Figure 4).  Note that the proprietary WLS 
Location Engine enables consistent uncertainty 
reporting across several markets, while the GPS 
uncertainty reporting is not standardized across 
different handsets. 

 



Figure 5.  Mapping WLS and GPS “uncertainty” to standard deviation. 
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2. Determine mapping functions between 
“uncertainty” and latitude and longitude standard 
deviation (see Figure 5). 

 
3. Establish outlier exclusion criteria, e.g.: 

a. scatter plot WLS and GPS error 
magnitudes vs. reported “uncertainty” to 
estimate reported “uncertainty” threshold 
above which WLS and GPS estimates 
may be considered outliers 

b. plot WLS and GPS errors vs. WLS-to-
GPS separation to identify separation 
threshold above which GPS estimates may 
be considered outliers 

For the field trial data analyzed to date, if the 
WLS-to-GPS position estimates were separated 
by more than 500m, then hybrid positioning 
errors were reduced by defaulting to the WLS 
position estimate (i.e., considering the GPS 
estimate to be an outlier): 

 

 
0
1

=
=

GPS

WLS

w
w

 (3) 

 
To execute the minimum-variance algorithm on WLS and 
GPS positioning estimates { } and 

 with estimated variances  and 

, calculate the hybrid estimate 

WLSWLS LonLat ,

{ GPSGPS LonLat , } 2
WLSσ

2
GPSσ { }hybridhybrid LonLat , : 

 

 
hybridGPSGPSWLSWLS

hybridGPSGPSWLSWLS

LonLonwLonw
LatLatwLatw

=+

=+
 (4) 

 
and the hybrid standard deviation in latitude/longitude as: 
 

 22
GPSWLS

GPSWLS
hybrid

σσ
σσσ
+

=  (5) 

 
Based on the field trial data summarized in Figure 1, 
minimum-variance WLS/GPS positioning accuracies 
improve by ~30-40% for the 1-σ value (see Figure 3 and 
the 3rd row of results shown in the table contained 
therein).  Furthermore, the 95% accuracy improves 
dramatically, removing the long tails of the error 
distributions arising predominantly from GPS outliers and 
cell-ID fallback mode position estimates. 
 
These results are based on market- and handset-specific 
calibration of the mapping functions between reported 
“uncertainty” and latitude and longitude standard 
deviation.  A practical implementation considers a 
compromise that avoids this labor-intensive step.  
Parameter sensitivity studies determined that a reasonable 
compromise set the mapping functions to be: 
 

 
m100ˆ

m302.0ˆ
=

+⋅=

GPS

WLSWLS UC
σ
σ

 (6) 

 



With these compromise modeling parameters applied to 
the field trial data from markets #1 and #2, the 1-σ 
accuracy improvement still exceeds ~10%, and the outlier 
exclusion benefits to the 95% positioning accuracy 
continue to persist. 
 
WLS/GPS Minimum-Variance Hybrid Algorithm 
represents near-optimal use of WLS and GPS location and 
uncertainty estimates. 
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APPENDIX: MINIMUM-VARIANCE ESTIMATION 
 
Given: 
 

1.  and  are independent and unbiased 
estimates of an unknown quantity 

1p 2p
p  

2. the error in estimate  is Gaussian with 

standard deviation 
1p

1σ  

3. the error in estimate  is Gaussian with 

standard deviation 
2p

2σ  
 
Find: 
 

1. the minimum-variance estimate for p  called 

 hybridp
2. the standard deviation of the error in this 

estimate hybridσ  
 
Method: 
 

The weighted sum of two estimates  and : 1p 2p
 

 hybridppwpw =+ 2211  (A.1) 

 
The constraint that the sum of the weights  and 

 equals unity: 
1w

2w
 

 121 =+ ww  (A.2) 

 
The variance of the weighted sum of independent, 
zero-mean, normally distributed variables whose 
variances are  and : 2

1σ
2
2σ

 

 ( ) ( ) 22
22

2
11 hybridww σσσ =+  (A.3) 

 
Substitute for : 2w

 

 ( ) ( )( ) 22
21

2
11 1 hybridww σσσ =−+  (A.4) 

 
Expand: 

 

 2

2
2

2
1

2
21

2
2

2
1

2
1 2

hybrid

www

σ

σσσσ

=

+−+
 (A.5) 
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Differentiate with respect to , noting that 1w
01 =dwd iσ  and 111 =dwdw : 

 

 

1

2
21

2
2

2
11

2

2202

dw
d

ww

hybrid
hybrid

σ
σ

σσσ

=

+−+
 (A.6) 

 
Minimize hybridσ  by setting 01 =dwd hybridσ , 
and divide through by 2: 

 

 02
21

2
2

2
11 =+− σσσ ww  (A.7) 

 
Solve for : 1w

 

 2
2

2
1

2
2

1 σσ
σ
+

=w  (A.8) 

 
Substitution likewise can show that: 

 

 2
2

2
1

21

σσ
σσσ
+

=hybrid  (A.9) 
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