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ABSTRACT

The Maximum Likelihood Estimator (MLE) is most often
used to estimate the signal time delay in a multipath en-
vironment. There are various implementations of the MLE
which can be divided into the time domain algorithms and the
frequency domain algorithms. In this paper, the current time
and frequency domain schemes are compared and analyzed
in least square sense. Also novel solutions in both domains
are developed to resolve the close-in multipath signals. They
are tested by the Monte Carlo simulation and their perfor-
mances are compared to the Cramer-Rao bound on the Direct
Sequence Spread Spectrum (DSSS) signal.

I. INTRODUCTION

The accurate estimation of a multipath channel is the essen-
tial part of the positioning process in urban canyons and indoor
areas where severe multipath is experienced and generates a
high positioning error. While most of other types of errors in
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the positioning systems are now technically tracktable such as
the ionospheric error in the Global Positioning System (GPS),
the multipath error remains as a single dominant source of the
positioning error. Therefore the mitigation of the multipath
error is pursued extensively and various efforts have been
made to estimate a multipath channel but they are either too
complex to implement or not providing enough improvement.

The complexity of the problem comes from the fact that
there are multiple parameters to be estimated such as time
delay, amplitude and phase of each multipath signal. Thus
the overall operation requires a multiple dimensional search
where the dimension increases as the number of multipath
signals increases. Especially the time delay is in a nonlinear
form to the cost function and makes the estimation as a nonlin-
ear optimization problem. Furthermore when a Line-of-Sight
(LOS) signal has an enough separation from multipath signals,
it can be well resolved but when close-in multipath signals
exist, it becomes difficult to estimate because of the ambiguity
between the LOS signal and the multipath signal. Hence the
implementation of the Maximum Likelihood Estimator (MLE)
in a multipath environment is proven to be a challenging task
especially in small hand-held GPS devices or cell phones
where power consumption due to high computation is least
favored. Thus the focus of this paper is on the development of
an algorithm with low complexity but still providing effective
multipath mitigation for hand-held devices.

There are various approaches to implement the MLE which
can be classified into two groups, the time domain estimators
and the frequency domain estimators. The time domain meth-
ods investigate the correlation function of a received signal.
The Waveform Shape Tracking focuses on the shape of small
sections of the correlation function and matches it with a stored
reference waveform measuring distortion and balancing the
early and late parts of the waveform to find the true peak. It is
simple but accompanies a loss of SNR because of giving up
the information embedded in the rest of the correlation func-
tion. The Successive Cancellation is more sophiscated method
which iteratively tracks dominant multipath components and
removes them until the residue becomes lower than a threshold
value. It more closely implementes the MLE but requires
intensive computation. The Multipath Mitigation Technique
(MMT) by Weill [1] formulates the multipath problem as
a least square problem in time domain and reduces the
complexity by breaking it into smaller problems in a reduced
search space.

The frequency domain methods are based on a least square
estimation problem trying to fit the weighted complex expo-
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nential functions which are a function of time delay, amplitude
and phase of multipath components to a received signal spec-
trum. They are more convenient in estimating the time delays
than the time domain methods because the time delays are
expressed as exponents. It is initially proposed by Kirsteins [2]
using the Tufts and Kumaresan algorithm [3] to solve the least
square problem and a more robust scheme is given by Vaccaro
[4] using the coarse search by the Kirsteins method and the fine
search by the Gauss-Newton algorithm. The frequency domain
approaches also generally accompany iterative searches.

The structure of the time domain and the frequency domain
approaches are discussed as least square problems in Section
II and novel approaches to the close-in multipath are proposed
in Section III. The proposed schemes are compared with the
Cramer-Rao Lower Bound (CRLB) by simulation in Section
IV and the conclusion is given in Section V.

II. LEAST SQUARE ESTIMATION OF TIME DELAY IN TIME

AND FREQUENCY

In this section, the time delay estimation problem is formu-
lated into least square problems in time domain and frequency
domain fitting an estimated signal into a received signal
which is equivalent to the MLE in the AWGN channel. The
estimation of a received signal or a channel requires the
reconstruction of the time delay, the amplitude and the phase
of the channel impulse response but the ultimate goal is to find
the time delay of the LOS signal τLOS only which is essential
to the positioning. The channel model is defined as follows.

x(t) = s(t) ∗ h(t) + n(t) (1)

where h(t) =
∑M

m=1 amδ(t − τm) is the channel impulse
response function with the time delays τ = (τ1, ..., τM )
and the complex amplitudes a = (a1, ..., aM ) combining the
amplitudes and the phases corresponding to the M multipath
components in the ascending order of time delay. n(t) is the
additive white gaussian noise with zero mean and variance
σ2

n and s(t) is the transmitted signal and x(t) is the received
signal to be sampled at the sampling rate of 1/Ts to be total
L samples. T is the signal time duration and W is the single-
sided signal bandwidth. The cost function Γ of the least square
problem is a function of the complex amplitudes a and the
time delays τ . To find τ1 = τLOS , the time delay of the LOS
signal, first a minimizing Γ is derived analytically and then τ
minimizing Γ for given a is investigated.

A. Time Domain Least Square Solution

The time domain least square problem is given (2) and
approximated by discrete samples and transformed into a
matrix form (3).

Γ =
∫ T

0

∣∣∣∣∣x(t) −
M∑

m=1

âms(t − τ̂m)

∣∣∣∣∣
2

dt (2)
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Γ ≈
L∑

n=1

∣∣∣∣∣x(tn) −
M∑

m=1

âms(tn − τ̂m)

∣∣∣∣∣
2

= ‖x − Câ‖2

= RX(0) − 2RH
XSâ + âHRSâ (3)

where â = (â1, ..., âM ) is the estimation of a and τ̂ =
(τ̂1, ..., τ̂M ) is the estimation of τ and x = (x(t1), ..., x(tL))
and

C =

⎡
⎢⎢⎢⎣

s(t1 − τ̂1) . . . s(t1 − τ̂M )
s(t2 − τ̂1) . . . s(t2 − τ̂M )

...
. . .

...
s(tL − τ̂1) . . . s(tL − τ̂M )

⎤
⎥⎥⎥⎦

and RX(t) and RS(t) are the autocorrelation functions of x(t)
and s(t) respectively and RXS(t) is the cross correlation func-
tion of x(t) with s(t) and RXS = (RXS(τ̂1), ..., RXS(τ̂M ))
and

RS =

⎡
⎢⎣

RS(0) RS(τ̂1 − τ̂2) . . . RS(τ̂1 − τ̂M )
...

...
. . .

...
RS(τ̂M − τ̂1) RS(τ̂M − τ̂2) . . . RS(0)

⎤
⎥⎦

â minimizing Γ can be calculated by the product of x and
C† = (CHC)−1CH the pseudo inverse of C or by RS and
RXS.

â∗ = C†x = R−1
S RXS (4)

Given â∗, Γ is now a function of only the time delay τ and can
be expressed as the maximization problem of another quadratic
form excluding a constant term.

min Γ(â∗, τ̂ ) = min
∥∥(

I − CC†)x
∥∥2

= xHx − maxxHCC†x
= Rx(0) − maxRH

XSR
−1
S RXS (5)

However, because both RXS and RS are nonlinear functions
of τ̂ , it can not be solved linearly and the authors are not aware
of an analytic solution to this problem except the iterative
search. Weill uses a step-wise iterative search coming back
and forth between (4) and (5) updating τ̂ and â each time [1].

B. Frequency Domain Least Square Solution

The frequency domain least square problem can be for-
mulated similarily (6). The cost function Γ (2) can also be
expressed in frequency domain through the Parseval’s theorem
and transformed into a matrix form (7).

Γ =
∫ W

−W

∣∣∣∣∣X(f) −
M∑

m=1

âmS(f)e−j2πfτ̂m

∣∣∣∣∣
2

df (6)

≈
L∑

k=1

∣∣∣∣∣X(fk) − S(fk)
M∑

m=1

âme−j2πfk τ̂m

∣∣∣∣∣
2

= ‖X − Dâ‖2 (7)
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where X(f) and S(f) are the Fourier transform of x(t) and
s(t) each and X(fk) and S(fk) are their discrete correspo-
nents and fk = (k − 1)/T and X = (X(f1), ..., X(fL)) and

D =

⎡
⎢⎢⎢⎣

S(f1)e−j2πf1 τ̂1 . . . S(f1)e−j2πf1 τ̂M

S(f2)e−j2πf2 τ̂1 . . . S(f2)e−j2πf2 τ̂M

...
. . .

...
S(fL)e−j2πfL τ̂1 . . . S(fL)e−j2πfL τ̂M

⎤
⎥⎥⎥⎦

X and D each represent the received signal spectrum and
the estimated spectrum composed of the weighted exponential
functions.

â minimizing Γ is given as the product of X and D† =
(DHD)−1DH the pseudo inverse of D.

â∗ = D†X (8)

Given âmin, Γ is now a function of only time delay τ̂ and
can be expressed as a maximization problem.

min Γ(â∗, τ̂ ) = min
∥∥(

I − DD†)X
∥∥2

= XHX − maxXHDD†X (9)

τ̂ minimizing Γ can be found by either an iterative search
or a linear prediction technique because (6) is in a form of
an exponential function fitting problem. However the linear
prediction method is generally limited to the signals with a
flat spectrum [2] [3] [4].

C. Equivalence of Time and Frequency Domain Solutions

There is high similarity between the time domain least
square solution and the frequency domain least square solution
in their derivation and structure. And it turns out that their
results are equivalent to each other. The correlation of two
function can be calculated either in time or frequency domain.

x(t) � s(t) ↔ X(f)S(f) (10)

In discrete form, the correlation function can be expressed as
follows after the Inverse Fourier Transform on the frequency
domain result.

RXS(τ) =
L∑

n=1

x(tn)s(tn − τ)

=
L∑

k=1

X(fk)S(fk)e−j2πfkτ (11)

Based on (11), RXS and RS can be obtained from either
(C,x) or (D,X) because s(tn − τ) and S(fk)e−j2πfkτ are
the elements of C and D.

RXS = CHx = DHX

RS = CHC = DHD (12)

Therefore the time domain solution and the frequency domain
solution are equivalent to each other.

â∗ = RS
−1RXS = C†x = D†X (13)
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III. INVERSE CORRELATION METHOD AND INVERSE

SPECTRUM METHOD

In the previous section, the least square estimation problems
are described in time and frequency domains where the opti-
mization problems are derived to be functions of only the time
delay parameters removing other variables (5)(9). However,
they are hard to be solved straightforward without iterative
searches due to the nonlinearity. In this section, the Inverse
Correlation Method (ICM) and the Inverse Spectrum Method
(ISM), are proposed which provide an effective multipath
estimation without iterative searches under certain approxi-
mations. For them the cost function is re-defined to fit the
received signal with a set of uniformly delayed signals with
â = (â1, ..., âL) at (t1, ..., tL).

Γ =
L∑

n=1

∣∣∣∣∣x(tn) −
L∑

l=1

âls(tn − tl)

∣∣∣∣∣
2

=
L∑

k=1

∣∣∣∣∣X(fk) −
L∑

l=1

âlS(fk)e−j2πfktl

∣∣∣∣∣
2

(14)

We assume that the sampling rate 1/Ts is high enough and
the number of signal samples is sufficiently larger than the
number of multipath components i.e. L � M and only a
single multipath component exists at each time sample. Then
the complex amplitudes â = (â1, ..., âL) at (t1, ..., tL) become
indicators of the existence of multipath components at given
time bins. In other words, instead of estimating both (a, τ )
which requires iterative searches, only the amplitudes at the
fixed time bins are to be estimated by non-iterative methods.
They would be comparable to the iterative schemes for the
multipath signals close to sample times but could be less
accurate otherwise. However their simpler structure makes
them more suitable solutions for the hand-held devices.

A. Inverse Correlation Method

A new approach can be found in (4) where â the estimate
of a is shown to be achievable by the simple matrix multipli-
cations. After re-defining RS,RXS and C for (τ̂1, ..., τ̂L) =
(t1, ..., tL), the solution to the new cost function (14) is given
as âICM.

âICM = C†x = R−1
S RXS (15)

where x = (x(t1), ..., x(t2L)) collected for [0, 2T ) assuming
τLOS ∈ [0, T ) and tl = T (l − 1)/L and

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s(t1) 0 . . . 0
s(t2) s(t1) . . . 0

...
...

. . .
...

s(tL) s(tL−1) . . . s(t1)
0 s(tL) . . . s(t2)
...

...
. . .

...
0 0 . . . s(tL)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Because only a single multipath component exists at each time
sample âICM becomes a delay profile of the received signal
2
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S

and the amplitude âICM,l indicates the existence of a multipath
signal at each bin.

R−1
S represents the inverse process of the correlation func-

tion and thus it is called as the Inverse Correlation Matrix.
Fig. 1 displays an example of the auto-correlation function
and its inverse correlation function based on the 31 chip Gold
sequence. The rows of R−1

S are the inverse correlation func-
tions corresponding to the correlation functions with different
delays. The ICM process is basically differentiating the corre-
lation output to generate a sharper peak. In (15) the calculation
of the inverse matrix C† requires large computations but can
be calculated in advance and stored in memory using the
prefixed time instances and the known autocorrelation function
of the reference signal.

B. Inverse Spectrum Method

A similar approach can be found in (8) where a is again
shown to be achievable by a simple matrix multiplication and
can represent a delay profile of the received signal. D is re-
defined for (τ̂1, ..., τ̂L) = (t1, ..., tL), the solution to the new
cost function (14) is given as âISM.

âISM = D†X = R−1
S RXS (16)

where fk = (k − 1)/2T and X = (X(f1), ..., X(f2L)) and

D =

⎡
⎢⎢⎢⎣

S(f1)e−j2πf1t1 . . . S(f1)e−j2πf1tL

S(f2)e−j2πf2t1 . . . S(f2)e−j2πf2tL

...
. . .

...
S(f2L)e−j2πf2Lt1 . . . S(f2L)e−j2πf2LtL

⎤
⎥⎥⎥⎦

D† represents the inverse process of the signal spectrum and
thus it is called as the Inverse Spectrum Matrix. The pseudo
inverse matrix D† can be calculated in advance and stored
in memory and only the signal spectrum X needs to be
calculated based on the received signal. Fig. 2 displays the
signal spectrum of the 31 chip Gold sequence and its inverse
spectrum. The rows of D† are the inverse signal spectrums
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Fig. 3. Complementary implementation of correlation method and Inverse
correlation method based on C and C†

corresponding to the spectrum of the signals with different
delays. As shown in the figure, the ISM is multiplying an
inverted spectrum to the incoming spectrum to make it a flat
spectrum. Therefore the higher frequency components of the
signal is enhanced and generates a sharper peak in time domain
at the expense of the SNR because the high frequency noise
is also boosted.

C. Implementation

Because the outputs of the ICM and the ISM are math-
matically equivalent to each other but the ISM requires the
Fourier Transform of the received signal, the ICM is easier to
be adopted in the conventional receivers than ISM.

Fig. 3 displays an implementation of the ICM along with
the correlation method (CM) both taking a common input and
using matrix multiplications. âCM = CHx is the output of
the conventional correlator and is optimal in terms of noise
suppression but less effective to mitigate multipath because of
the smooth shape. Contrarily the ICM output âICM = C†x
has a sharper waveform which is critical to resolve the close-
in multipath. However it could suffer in low SNR cases. The
conventional correlation output and the ICM output have com-
plementary characteristics and hence the addition of the ICM
to the existing structure can improve the receiver performance
especially in the multipath environment.

In this paper, the correlation output and the ICM output are
used separately for time delay estimation and for simplicity,
the LOS is declared based on a specified threshold value.
Further study is required for development of the optimal
combination scheme of the two outputs.
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IV. RESULTS

In this section, the proposed linear estimation schemes, the
M and the ISM are compared with the CRLB based on the
onte Carlo simulation but because of equivalency of the ICM
d the ISM, only ICM result is discussed. The 31 chip Gold
uence is used as a signal and a complex baseband channel

assumed. The single sided signal bandwidth W is assumed
be same as the signal chip rate 1/Tchip and the sampling
e is a half of the chip time Ts = Tchip/2 and the signal is
pass filtered at the signal bandwidth at the transmitter and

the receiver.
Fig. 4 shows the example of the ICM processing at SNR =
dB where a LOS signal and a multipath are located closely
T = 1 Tchip). The correlation functions of the LOS signal
d the multipath signal are overlapped and thus the resulting
rrelation function becomes wider and contains uncertainty
out τLOS . Its peak is actually 1 sample apart from τLOS .
wever the ICM output shows two distinct peaks and thus
OS can be easily resolved without ambiguity. Fig. 5 displays

low SNR case (SNR = 5 dB) where noise components
forming many false peaks in the ICM output but the

rrelation output is relatively safe from them. Fig. 4 and Fig.
demonstrate the strength of the correlation output and the
M to the high noise case and to the close-in multipath case
pectively and their the weakness vice versa. In Fig. 6, the
t-mean-square (rms) error of the time delay estimation is
tted against the time separation between the LOS and a
ltipath signal ∆T at SNR = 20 dB. The ICM generally

tperforms the correlation output in this close-in multipath
se as expected. Especially for ∆T = 0.4 ∼ 0.65 [Tchip], the
M is superior to the correlation output.
The ICM is tested along with the correlation method in the

GN channel without multipath signals and the result is
own in Fig. 7. The estimation error is plotted over the SNR
m -10 dB to 20 dB. The curves are their rms errors and the
aight line is the CRLB. At low SNR, they deviate from the
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LOS signal and a multipath signal

CRLB but become closer to it as the SNR increases which is
predicted by the detection theory bound [8][9]. The correlation
method outperforms in this AWGN case. Fig. 8 shows the
case where a single multipath signal is located apart from
the LOS signal with time separation ∆T = 0.05 ∼ 1 [Tchip]
equally likely. Within this study, we focus on the close-in
multipath and thus the multipath signal with ∆T less than
1 Tchip is considered and beyond 1 Tchip, the multipath is
relatively easier to resolve than the close-in multipath case.
Clearly the error due to the multipath prevents the convergence
to the CRLB and keeps both curves at a constant distance. It
is because the CRLB only considers the AWGN and not the
multipath and thus the error due to the multipath creates the
gap between the CRLB and the performance of the estimators.
Although the correlation method is generally better than the
ICM, at high SNR the performance curves are reversed and
the ICM generates less error which confirms the advantage of
4
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the ICM in high multipath and high SNR cases.
In the AWGN channel the results show that the conventional

correlation output is better than the ICM and quickly converges
to the CRLB. However when the SNR is high and the close-in
multipath is introduced, the estimation error is dominated by
the multipath error and the strong multipath resolving capa-
bility of the ICM starts to have an effect. It clearly supports
that the introduction of the ICM to the existing correlator
can provide an alternative interpretation of the received signal
which can complement the correlator output especially in the
severe multipath environment.

V. CONCLUSION

The accurate estimation of multipath channels is strongly
desired for the precise positioning. However, it still remains
as a hard problem to be solved due to the high computational
burden of the estimators requiring multi-dimensional searches
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and the ambiguity in the close-in multipath cases. In this paper,
multipath estimation problem is analyzed as the least square
problems in time domain and frequency domain and the novel
estimation methods, the Inverse Correlation Method (ICM) and
the Inverse Spectrum Method (ISM), are proposed which can
be implemented by the linear matrix multiplications without
iterative searches. The channel is approximated by the discrete
channel model and the ICM and the ISM are the least square
fits to the received signal in time and frequency respectively.
Even though there is weakness to low SNR cases, they are
shown to perform effectively in the very close multipath
cases and could improve the performance of the conventional
correlator in the multipath environment.

The proposed methods can be easily implemented within
the existing receiver structure with minimal changes and
computation. Further study is in need to investigate their
optimal integration with the existing correlation output.
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