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ABSTRACT

The automatic operation of farm vehicles can have great
benefits both in farm productivity and hazardous or
impossible operations. Automatic control offers many
potential improvements over human control; however,

previous efforts have failed largely due to sensor limita-
tions.  Carrier Phase Differential GPS (CDGPS) is an
enabling technology that provides a high-bandwidth, low-
noise measurement of multiple vehicle states. System
identification techniques can  then be used to generate a
mathematical model for automatic control system design
and implementation.

In this work, previous controls research on a large tractor
test bed is extended to demonstrate two different methods
of system identification. Using a priori knowledge of the
tractor dynamics, an extended Kalman filter is imple-
mented and demonstrates model parameter identification.
A Linear Quadratic Regulator (LQR) controller, based on
these parameters, performs closed loop line tracking with
a demonstrated error of better than 1.8 cm standard
deviation.

The same data is used with the Observer/Kalman Filter
Identification (OKID) method, which assumes no a priori
information about the system dynamics. It is shown that
the estimator/controller designed with this system demon-
strates equivalent experimental performance. The OKID
methodology differs from the extended Kalman filter by
utilizing solely the input and output streams to determine
the structure and order of the plant model.

INTRODUCTION

Autonomous guidance of ground vehicles is not a novel
idea. Previous attempts have largely failed due to sensor
limitations. Some experimental systems require cumber-
some auxiliary guidance mechanisms in or around the
field [1,2]. Others rely on vision systems that require clear
daylight, good weather, or field markers that require deci-
phering by pattern recognition [3,4]. Since the advent of
modern GPS receivers, a single, low-cost sensor is now
available for measuring multiple vehicle states. GPS-

System Identification of a Farm Vehicle Using
Carrier-Phase Differential GPS

Gabriel Elkaim, Michael O’Connor, Thomas Bell, and Dr. Bradford Parkinson, Stanford University



based systems already have a myriad of uses in land-based
vehicles, including meter level code-differential tech-
niques for geographic information systems (GIS) [5-7],
driver-assisted control [8], and automatic ground vehicle
navigation [9].

Using precise differential carrier-phase measurements of
satellite signals, CDGPS has demonstrated centimeter-
level accuracy in position measurements [10], and 0.1°
accuracy in vehicle attitude determination [11]. System
integrity becomes greatly enhanced with the augmentation
of the GPS satellite signals by ground based pseudo-satel-
lites [12]. Accurate and reliable measurements of multiple
states by CDGPS lend themselves to system identification,
estimation, and automatic control. CDGPS-based control
systems have been utilized in such varying platforms as a
model airplane [13], a Boeing 737 aircraft [10],  an electric
golf cart [14], and a farm tractor [15].

The process of constructing models and estimating
unknown parameters from experimental data is referred to
as “system identification.” Complex phenomena can
exceed our scientific knowledge and ability to predict
plant dynamics. Instead data from carefully-constructed
experiments are used to build an adequate mathematical
model for control. The goals of system identification are
different from physical modeling. Physical modeling
attempts to understand the entire process. In contrast,
system identification adequately models the plant’s char-
acteristics only to the extent of mapping the input/output
behavior sufficient for controlling the plant.

This paper focuses on the system identification and subse-
quent controller design of a farm tractor using CDGPS as
the only sensor of vehicle position and attitude. System
identification can provide the mathematical model
necessary to implement an automatic control system, by
careful analysis of the input and output data of a dynamic
system. Two different methods of using the acquired data
are presented to generate linear models. These are used to
generate automatic control systems, and then tested on a
large farm tractor.

EXPERIMENTAL SETUP

The primary goal of this work was to experimentally
demonstrate system identification and precision closed-
loop control of a farm tractor using CDGPS as the only
sensor of vehicle position and attitude. This section
describes the hardware used to accomplish this goal.

Vehicle Hardware: The test platform used for vehicle
identification and control testing was a John Deere Model
7800 tractor (Fig. 1). Four single-frequency GPS antennas
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were mounted on the top of the cab, and an equipment
rack was installed inside. Front wheel angle was sensed
with a potentiometer—the only non-GPS sensor used in
the system—and actuated using a modified Orthman
electro-hydraulic steering unit. A Motorola MC68HC11
microprocessor board was the communications interface
between the control computer and the steering unit. The
microprocessor converted serial commands from the
control computer into pulse-width modulated signals
which were sent to the power circuits that control the
steering valves. Wheel position was sampled and digitized
by the ’HC11 and sent to the controls computer at 20 Hz.

GPS Hardware: The CDGPS-based system used for
vehicle position is similar to the one used by the Integrity
Beacon Landing System (IBLS) [10]. A four-antenna, six-
channel Trimble Vector receiver produced attitude
measurements at 10 Hz. A single-antenna Trimble TANS
PC-card receiver produced code- and carrier-phase mea-
surements—which were used to calculate vehicle
position—at 4 Hz. An Industrial Computer Source
Pentium-based PC running the LYNX-OS real-time
operating system performed the attitude interface, position
calculations, data collection and controls calculations
using software written at Stanford.

The ground reference station consisted of a Hewlett-
Packard 386 PC, a TANS 9-channel PC-card, and software
written at Stanford to broadcast phase corrections to the
tractor through a Pacific Crest radio modem at 4800 bps.
A block diagram representation of the hardware is pictured
in Figure 2.

VEHICLE MODELING AND SYSTEM
IDENTIFICATION DATA COLLECTION

The non-linearities of the steering potentiometer and
electro-hydraulic actuator have been calibrated in previous
work at Stanford [15]. The non-linearities are “linearized”
through a look-up table implemented in the Guidance-
Navigation-Control (GNC) computer.

Agricultural farm vehicles must be able to operate over
various types of terrain and with a variety of implements.
While previous work at Stanford has demonstrated closed-
loop line following based on a simple kinematic model to
a remarkable precision [15], the model is based on
assumptions that are known to be false.

The kinematic model (Fig. 3), based on simple geometry
rather than inertias and forces, assumes both a constant
velocity along the path, as well as no wheel slip. While the
velocity may not vary a great deal, it is not constant, and
the four wheel drive on the tractor cannot move the vehicle
forward without slipping the wheels.

Vehicle conditions can change, and it is expected that
time-varying methods or adaptive controls methods will
be required to achieve good line-following performance in
these changing environments. Furthermore, the vehicle
dynamics may change a great deal with different imple-
ments and/or soil types. Slopes or ground texture may also
affect vehicle performance to the extent that a simple
model based on geometric kinematics may not be
adequate to control the tractor.

In order to gather data to perform a proper system identi-
fication of the farm tractor, a series of ten open-loop line
following tests were run in which a human driver, through
the GNC computer, caused the steering to either slew left
or right at the maximum steering rate. Also, the driver
commanded the steering rate to zero through the electro-
hydraulic actuator in order to track a roughly straight line.
This “pseudo”-random input was designed to apply the
maximum power to the tractor through the controls and
produce a rich output that would contain information from
all modes of interest. A typical pass for system identifica-
tion is pictured in Figure 4.

These data passes were run without an implement, in first
gear, at a forward velocity of approximately 0.33 m/s
(0.7 mph), and were subsequently used for calculation and
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validation of a linear plant model. In this particular
research, the data was gathered separately and then
processed as a “batch” for identification. Further research
will allow the identification process and the data gathering
process to occur simultaneously for “on-line” identifica-
tion.

THE EXTENDED KALMAN FILTER
IDENTIFICATION

A Kalman filter is a computational algorithm that
processes measurements of the inputs and outputs to
deduce a minimum error estimate of the state of a system.
It does this by utilizing knowledge of system and mea-
surement dynamics and assumed statistics of process and
sensor noises. An extended Kalman filter is a slightly
different computational algorithm for calculating the
minimum variance estimate of the state as a function of
time and accumulated data for non-linear systems.
In general, an initial guess of the state is propagated

through time until the next measurement is available, and
then a measurement update is computed using the lin-

earized equations of the system (linearized about the
current state) [16]. The appropriate formulae for imple-
mentation are summarized in Table 1.

In the case of the tractor, as can be seen from the equations
of motion of the tractor [Eqn. 1], there are only three para-
meters not directly measured in this system: V—the
tractor velocity along track, d1—the distance from the
front axle to the “center” of the vehicle, and d2—the
distance from the rear axle to the center of the vehicle.

<Eqn. 1>

The state of tractor is augmented to include these three
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parameters, which are then estimated along with the rest of
the state. These three parameters are assumed to have no
dynamics, i.e. they are constant and do not change with
time. At each time step, the state transition matrix is recal-
culated and propagated forward along with the covariance
of the states. The measurements are filtered according the
algorithms in Table 1, and the process stepped through all

of the available data collected during the system identifi-
cation passes. The results of this filtering can be seen [Fig.
5] to converge from initially poor estimates of these para-
meters to values that are consistent with the measurements
of V, d1 and d2.

Note that the values given by the EKF method are slightly
different from the values used in previous controllers [15],
but are close enough that the original controller still
achieved a remarkable line-following precision. This per-
formance, in light of mis-modeling, can be accounted for
by the known robust performance of an LQR controller
[17].

A new line-tracking controller was designed using the
improved estimates of the parameters V, d1 and d2, with
the same cost functions as the previous controllers. It is
important to note that no attempt was made to take
advantage of the new information to increase controller
performance, and that the only performance gains should
be as a direct result of better plant modeling. In addition,
a controller based on the EKF results—but including an
integral state to offset any constant errors such as steering
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bias or ground slope—was implemented to demonstrate
increased robustness to disturbances.

Although system identification was performed “off-line”,
the method used can be set up into an adaptive scheme
whereby the new controller is designed and implemented
at every new time-step based on the values of V, d1 and d2.
“On-line” system identification can be used as a basis for
adaptive control methods that will learn the dynamic
behavior of the tractor and adapt as a function of time. The
varying field conditions and implements that will be
attached to the tractor beg for a solution that is adaptive as
opposed to a conventional “fixed” controller that is
designed and implemented entirely off-line.

THE OBSERVER/KALMAN IDENTIFICATION
PROCESS

A method of system identification that uses only input and
output data to construct a state-space realization of the
system is the Observer/Kalman Identification (OKID)
process, developed at NASA Langley [18]. Given a linear,
discrete-time state-space system, the equations of motion
can be summarized as follows:

Note that the triplet, [A,B,C] is not unique, but can be
transformed through any similarity transform to another
set of coordinates. However, the system response from rest
when perturbed by a unit pulse input, known as the system
Markov parameters, are invariant under similarity trans-
forms. These Markov parameters are:

When assembled into the generalized Hankel matrix, the

Hankel matrix can be decomposed into the Observability
matrix, a state transition matrix, and the Controllability
matrix, thus the Hankel matrix (in a noise free case) will
always have rank n, where n is the system order.

Because noise will corrupt this rank deficiency of the
Hankel matrix, the Hankel matrix is truncated by a
singular value decomposition at an order that sufficiently
describes the system. This truncated Hankel matrix is then
used to reconstruct the triplet [A,B,C] and is referred to as
the Eigensystem Realization Algorithm (ERA). A
modified version of this algorithm that includes data cor-
relation is used to identify the tractor. A more complete
treatment of the subject can be found in [18].

For any real system, however, system pulse response
cannot be obtained by simply perturbing the system with a
pulse input. A pulse with enough power to excite all modes
above the noise floor would likely saturate the actuator or
respond in a non-linear fashion. The pulse response of the
system can, however, be reconstructed from a continuous
stream of rich system input and output behavior. Under
normal circumstances, there are not enough equations
available to solve for all of the Markov parameters. Were
the system asymptotically stable, such that Ak=0 for some
k, then the number of unknowns can be reduced. The iden-
tification process would be of little value if it could only
work with asymptotically stable systems.

By adding an observer to the linear system equations, the
following transformation can take place:

Thus, the system stability can be augmented through an
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observer, and the ideal Markov parameters established
through a least-squares solution [19]. It is useful to note
that the realization also provides a pseudo-Kalman

observer. The observer orthagonalizes the residuals to
time-shifted versions of both input and output. This makes
controller design a much simpler process. An improved
version of the OKID process, which includes residual
whitening [20], was used to identify the farm tractor from
the experimental data.

A singular value decomposition (SVD) of the tractor
Hankel matrix demonstrates a very large drop in the
magnitude of the singular values from the third to the
fourth, indicating a system order of n=3 [Fig. 6]. In
addition, modal singular values of all tractor models of
order higher than three exhibit a two order of magnitude
drop from the third mode to modes higher than three
[Fig. 7]. As an experimental check, the identified model
(with observer) was compared to a system identification
pass that was not used in the OKID computations [Fig. 8],
as can be seen, the match is excellent between the modeled
and actual data, with a biases and standard deviations sum-
marized in Table 2.

Table 2 —OKID reconstruction vs. Actual Data

Thus, using the OKID model and estimator, a controller
was designed to again match the previous performance of
the tractor guidance system [15]. The gain matrix [K] was
calculated using standard LQR techniques, with the
quadratic cost function a weighting on the outputs. The
results of the OKID method were similarity transformed
into a set of coordinates that matched the mapping with

bias one-σ
Lateral, y (m) -0.001 0.01
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previous work at Stanford. This ensured that the physical
intuition as to how the controller was operating would not
be lost to mathematically convenient coordinates. The
coordinate transformation was such that the states were
again directly measured. No attempt was made to tighten
the control loops or increase the bandwidth of the con-
troller, merely to demonstrate that a controller could be
designed and implemented with little or no a priori
knowledge of the system dynamics.

EXPERIMENTAL RESULTS

Three controllers, two based on the extended Kalman filter
algorithm (proportional and proportional-integral con-
trollers) and another based on the OKID identification
method were implemented on the GPS-equipped farm
tractor at Stanford.

The tractor, without an implement, was set into first gear
(0.33 m/s) and commanded to follow a “row” 50 meters
long, with all tractor guidance under computer control.
CDGPS integer ambiguities were initialized by driving the
tractor as closely as possible to a surveyed location and
manually setting the position estimate. Each of the con-
trollers was used to drive the tractor back and forth four
times over the same row. Note that only the "tight line-
tracking" was controlled by the newly designed
controllers. The bang-bang control used for waypoint nav-
igation, line acquisition, and U-turns remains unchanged
from previous work [15].

The results of the three controllers are shown as pictured
from overhead in Figure 9. At this scale, the three con-
trollers cannot be differentiated from each other. In order
to better visualize the accuracy of the controllers, a closer
view of the line is presented in Figure 10, along with lines
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delineating one inch to either side of the desired path. As
is clearly visible, all three controllers kept the tractor
closely following the line, with rare excursions outside an
inch to either side of desired path. The only controller that
experienced larger excursions was the integral controller,
which is known to be lower performance. The means and
standard deviations of the three controllers are summa-
rized in Table 3. The controllers controlled to a 2-σ of less
than 5 cm, and excepting the integral controller on pass #1,
maximum excursions from the desired path were lessthan
5 cm.

The integral controller is known to possess worse perfor-
mance, but can mitigate this deficiency by demonstrating
an increased steady-state error rejection. Further research
along these lines, as well as exploring the areas of adaptive
control is currently in progress.

CONCLUSIONS

As a continuation of work completed at Stanford, this
research is significant because it extends the under-
standing and implementation of a safe, low-cost control
system for high-accuracy control of a ground vehicle.
Farm tractor data was used for system identification and
control synthesis, with a practical demonstration of
vehicle control based on data alone—with no a priori
knowledge of the system. A constant gain controller, based
on the identified dynamics, was demonstrated to control
the tractor along straight lines with a lateral position error
of better than 1.9 cm standard deviation.

These results suggest that the transition from control of a
lone tractor to control of the tractor and implement can be
accomplished without an accurate physical model of
implement-soil interaction. Current research indicates that
the use of GPS-derived measurements for system identifi-
cation and subsequent controller synthesis is an excellent
starting point for an adaptive control scheme.

Further research is in progress to explore these adaptive
methods, as well as exploring other challenges in the

automatic control of farm vehicles. Pseudolite integration
into our system for "on-the-fly" integer ambiguity resolu-
tion and integrity enhancement, curved path following,
Driver graphical displays, and path planning are all current
topics of research.
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