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ABSTRACT  
 
In the next ten years the number of pseudorange sources 
and their quality is expected to increase dramatically:  
The United States is going to add two new civil 
frequencies (L5 and L2C) in the modernized GPS, and the 
European Union is planning to launch Galileo, which is 
planned to be fully operative before 2015, also with 
multiple frequencies.  By combining two frequencies, 
users will be able to remove the ionospheric delay which 
is currently the largest error, thus reducing nominal error 
bounds by more than 50%.  This reduction in nominal 
error bounds together with the large number of satellites 
is not only going to increase the accuracy of the 
positioning, but more importantly, it is going to increase 
the robustness against satellite failures (or other range 
errors), even without augmentation (e.g., Inertial 
Reference Unit (IRU), baro-altimeter).  Preliminary 
studies suggest that, using Receiver Autonomous Integrity 
Monitoring (RAIM), it might be possible to provide a 
50m Vertical Alert Limit (VAL) worldwide, with a bound 
on the maximum error, even in the event of one satellite 
failure, one constellation failure or a multiple satellite 
failure. 
 
The purpose of this work is to investigate which VALs 
could be achieved with RAIM under conservative failure 
assumptions.  This paper also summarizes previous work 
concerning RAIM algorithms and compares their results 
against a common standard.  First, in light of the 
experience with the Wide Area Augmentation System 
(WAAS), a threat space for a dual frequency Galileo-GPS 
constellation is defined.  This threat space is necessary in 
order to achieve a low VAL, as it does not suffice to 
assume single failures only.  Second, RAIM 
methodologies adapted to the threat space are compared, 
and the most practical one was found to be a multiple 
hypothesis approach.  Finally, the performance results of 
the chosen RAIM scheme with a Galileo-GPS dual 
frequency constellation are presented.  It was found that 
an unaided Galileo-GPS constellation yielded Vertical 
Protection Level (VPL) values under 20m for the 
combined dual system.  This optimistic conclusion 
indicates that it will likely be possible to provide vertical 
guidance to aircraft without the need for any additional 
augmentation when the future GPS and Galileo 
constellations are operational. 

INTRODUCTION 
 
This work aims to evaluate the performance of an unaided 
Galileo-GPS constellation from a vertical integrity 
standpoint (e.g. for aviation precision approach).  A 
multitude of algorithms or methods were proposed for 
RAIM over time, both for GPS alone and more recently 
for combined Galileo-GPS constellations.  However, the 
presented results were hard to compare between the 
different papers due to the lack of a standardized threat 
model and also the different assumptions made by each 
author.  This paper seeks instead to establish a Satellite 
Failure Threat Space that is general enough to allow 
testing different algorithms and assumptions against a 
standard model.  To accommodate the different 
assumptions existing in the literature, parametric studies 
are conducted on factors external to the integrity monitor, 
such as the satellite failure probability and the expected 
User Range Accuracy (URA).  Three of the existing 
algorithms, called Least Squares (LS), Maximum Solution 
Separation and Multiple Hypothesis Solution Separation 
(MHSS) were implemented as part of the current study.  
The resulting VPL values from using these different 
algorithms are then compared and the origin of the 
inherent differences is discussed.  The most practical 
algorithm for use with the dual constellation will be 
adopted.  Based on the final results with this algorithm, a 
conclusion is drawn on the capabilities of the unaided 
combined constellation and direction for future work is 
laid out.  The current work evaluates what is the maximal 
threat space against which it is possible to offer 
protection, and does not involve Fault Detection and 
Elimination (FDE). 
 
SATELLITE FAILURE THREAT SPACE 
 
The threat space is a consistent and complete set of 
assumptions about the environment in which a RAIM 
algorithm is applied.  A standardized threat space can be 
regarded as a general test case against which each 
individual algorithm may be applied.  It has to be 
universal enough such that it can constitute a frame in 
which to apply the particular set of assumptions of each 
particular algorithm, and it should include all considered 
threats.  The threat space is in fact the sample space of all 
failure modes, including the “no failure” case or nominal 
conditions.  A failure mode is the outcome of each of the 
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navigation beacons (i.e. satellites or space vehicles (SVs)) 
being in a “healthy” or “failed” binary state, with a certain 
probability.  Nominal conditions contain the expected 
modes of behavior from the satellites, propagation 
medium, and user receiver with its surrounding 
environment.  Under these conditions, the users achieve 
their expected level of performance.  The failed state is an 
anomalous condition that can threaten the accuracy and 
integrity of the system when undetected, and the 
continuity and availability when it is detected.  Such 
failures should be infrequent and short in duration.  The 
threat model places limits on the extent and behaviors of 
fault modes.  The threat space needs to be all-inclusive, 
such that all feared events are taken into account, 
including events introduced by the algorithm itself.  Each 
method can be different with respect to its vulnerability to 
various fault modes.   
 
For the purposes of this study, dual frequency full GPS 
and Galileo constellations will be assumed.  Therefore, 
ionospheric threats will not be considered (In future 
studies, second order TEC delays and scintillation will be 
investigated).  The clock and ephemeris errors are 
assumed to be normally distributed N(0, σURA) under 
nominal, healthy satellite conditions.  The troposphere 
model will match the one in the WAAS MOPS and is 
assumed to be bounded by the confidence level provided 
in [7].  Receiver noise and multipath are also bounded by 
the provided iono-free sigma term.  Note that, like GBAS 
and SBAS, receiver failure and excessive multipath terms 
are not explicitly put into the threat space.  However, 
RAIM offers some protection against such fault modes 
where no ground augmentation can.  Previous literature 
seems to be much in agreement on a theoretical way to 
describe errors at the user.  For that reason, the latest 
model in [4] was considered appropriate.  The position 
error variance for satellite i is described there by: 

σi
2 = σURA

2 + σi,tropo
2 + σi,iono-free

2 + σL1L5
2. 

 
Multiple independent faults will be considered in the 
combined constellation.  This algorithm can be expanded 
to handle different probabilities of multiple failures, but 
the independent fault model was adopted in light of 
possible satellite clock failures as main threat sources.  
Additionally, separate constellation failure modes will be 
considered for the case where correlated faults exist 
across either the GPS or Galileo constellations but not 
both.  Furthermore, a particular user can only receive 
information from a subset of the SVs, specifically the 
ones at an elevation above a predefined mask angle.  
Thus, it is practical to consider only the satellites in view 
from the location of each specific user. 
The a priori probability of satellite failure will be 
discussed and an analysis will be conducted for the 
relevant number of failures.  The satellite failure is 
defined here as the behavior of a SV when its 
corresponding range error cannot be overbounded with a 

Gaussian N(0, σURA).  This seems to be a more natural 
way to describe a failure for this algorithm.  Although it is 
a good binary discriminator, the customary method of 
setting a failure threshold for pseudorange error does not 
help identify systematic errors when they are just below 
the threshold.  The practicality of detecting failures 
according to this new definition needs nonetheless some 
further scrutiny in future studies. 
 
The total error budget for providing Hazardous 
Misleading Information (HMI) is strictly limited for the 
case of aviation precision approaches, such that the 
maximum allowable integrity risk is 10-7/approach.  This 
budget needs to be divided between all the possible 
failure modes, and the resulting VPL will be very 
sensitive on the allocation of this integrity budget.  
Normally, in applying any RAIM algorithm, multiple 
failures are neglected, for modes which are less likely 
than a certain threshold.  The reason why certain 
improbable failure modes need to be neglected is that the 
entire threat space is extremely large and impractical to 
compute.  Therefore, it is imperative to limit the 
computation of the position error only to the most 
dangerous events from an integrity point-of-view.  In the 
same time, one can afford to conservatively assume the 
worst case scenario (i.e. failure generating HMI) for the 
remaining threats, as they have a small enough 
probabilistic impact on the total error or the total integrity 
anyway.   
 
RAIM ALGORITHMS 
 
All the algorithms used in this paper have previously been 
proposed by other authors [1, 2, 6], and were slightly 
adapted in order to be compared with each other before 
they were tested against the proposed threat model.  For 
each algorithm, the most natural way to compute the VPL 
is to search for a range of position errors which ensures a 
Pr(HMI) at most equal to the given integrity risk.  
Concurrently, every attempt will be made to minimize the 
VPL interval centered on the all-in-view position solution.  
Ultimately, a simple comparison with the VAL 
corresponding to the user’s needs will be needed for 
making a decision on whether to proceed with the desired 
operation.  As a matter of fact, this approach is similar to 
the calculation of integrity risk at the Alert Limit (AL) 
proposed for Galileo integrity [5], which method has 
already received careful consideration for use in integrity 
monitoring in that context. 
 
As a slight aside, instead of the all-in-view solution, a 
different, optimal position solution can be chosen [6], on 
which to center the VPL at each time step.  This could 
help achieve a slightly lower protection bound.  
Nevertheless, there is a tradeoff here, since the process of 
computing the optimal position is more computationally 
complex and it may also not lead to a smooth position 
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solution over time.  In consequence, the decision was 
made to give preference to the smoother all-in-view 
solution while saving the algorithm some additional 
computational time. 
 
Classical LS RAIM algorithm 
 
The same LS algorithm described in [2, 8] was used here 
for vertical integrity.  However, as discussed above, no 
failure decisions are made directly by the RAIM 
algorithm.  Instead, the VPL is set large enough to include 
the largest position error.  Users can thus make the 
decision themselves, by comparing the VPL with their 
required VAL.  Instead of a decision threshold, the 
adapted LS method actually uses the Sum of Square 
Errors (SSE) test statistic.  This approach is still 
conservative, since it allows the total SSE along any of 
the lines of sight (LOS) as the worst case scenario.  The 
test statistic is subsequently multiplied by the maximum 
vertical position error vs. test statistic slope to yield the 
Approximate Radial-Error Protection (ARP) value [8], the 
primary ingredient of the VPL.  The ARP interval is in 
fact based on the total error from all satellites occurring in 
the worst possible mode (i.e. along the LOS most 
sensitive to error). 
 
Solution Separation algorithm 
 
The name Solution Separation (SS) is used here to 
identify the RAIM algorithm which combines position 
solutions from different subsets of the satellites in view to 
compute a Protection Level (PL), particularly the VPL.  
By artificially assuming one or more SVs to be faulty and 
eliminating them from the position equation, one can 
obtain a partial position solution based only on the 
remaining satellites.  Among all the partial subsets of 
satellites, the existence of at least one fault-free subset is 
thus guaranteed, and consequently the correct position 
solution will certainly be included in the range of 
positions that constitutes the VPL interval.  Instead of the 
ARP, the difference between the estimated and actual 
position or navigation error is computed for each satellite 
subset (see Appendix), such that a VPL (or error interval) 
can actually be associated with each partial position 
solution.  Based on the assumed SV probability of failure 
and the average number of satellites in view, a decision 
will be made on what is the maximum number of 
simultaneous failures that needs to be considered.  This 
represents an advantage over the LS algorithm, which can 

only handle the assumption of one SV failure at a given 
time.  The computational load of the algorithm will 
however also increase exponentially with the number of 
assumed simultaneous failures. 
 
When computing the VPL for both the above algorithms, 
for each position solution (all-in-view, or subsets of 
satellites in view for SS), a 5.33σ (viz. 1-10-7 probability), 
confidence interval is generated and added on top of the 
vertical error.  In the SS case, the minimum VPL is half of 
the size of the union of all error intervals corresponding to 
subsets of satellites in view.  Nonetheless, if we want 
smooth changes in the position solution for the SS 
algorithm, we can center the VPL interval around the all-
in-view solution, but we need to make sure we select a 
large enough VPL value to include the above union of 
error intervals. 
 
Multiple Hypothesis SS algorithm 
 
The MHSS algorithm described here is a generalization of 
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Table 1. Prior Probability of Failure thresholds (based on binomial independent trials). 
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the algorithm proposed in [6] for use in conjunction with 
LAAS.  This algorithm was already tested against a CAT 
III VAL requirement of 5m and demonstrated to achieve 
low VPLs.  Furthermore, its assumptions are general 
enough such that it can be used for any RAIM-type 
integrity computation.  In the current study, multiple SV 
failures were considered in order to cover all possible 
failure modes included in the threat space.  The 
probability of occurrence of each failure mode is taken 
into account and a search is made for the VPL which most 
closely makes use of the entire integrity budget available. 
 
In applying the MHSS algorithm, modes with more than a 
certain number of failures are neglected from the position 
calculations when that number of SV failures is less likely 
than 10% of the total budget, or 10-8/approach for at most 
24 satellites in view (Table 1).  As an example, for a 10-4 
probability of failure it is necessary to consider up to two 
satellites out, while for any probability larger that 1.7*10-4 

three or more failures will be taken into account.  The set 
of neglected modes will constitute an unknown failure 
mode, and its corresponding integrity risk will be 
accounted for and diminish the total integrity allocation.  
Additionally, an a priori probability of failure of 10-7 per 
each approach will be associated to each possible 
constellation failure.  This last failure mode was not 
considered for the previous two algorithms, as those 
algorithms make a conservative worst-case scenario 
assumption for each possible failure, thus making it 
impossible to provide a PL if a constellation failure is 
even considered.  An example of the distribution of 
position solutions from failure modes not being neglected 
can be seen in Figure 1. 
 
The MHSS algorithm assumes the fault-free case (no 
known satellite failures) and considers all possible, yet 
undetected failure modes.  The integrity risk is computed 
based on satellite geometry and the partial position 
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Figure 2. URA of 1m, Mask angle of 5 degrees. 
Top: LS RAIM, 

Bottom: SS with one SV failure considered. 
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solutions, but the prior probabilities of failure are fixed 
and not updated conditional on the measurements.  These 
probabilities of failure can be assumed to be lower if the 
user has the possibility to run a χ2 check and detect a 
satellite fault or has access to external information such as 
integrity flags that may be broadcasted by the Galileo 
satellites or an external augmentation system (e.g. WAAS 
GEOs).  The MHSS algorithm can also be applied after 
excluding such faulty satellites.  Another reason why one 
would want to employ satellite elimination is improving 
availability for the navigation solution. 
 
COMPARISON OF LS AND SS RAIM SCHEMES 
 
Simulations were performed in order to test the RAIM 
algorithms against the same threat model.  Each 
simulation lasts 72h, with at least 500 time steps and 200 
users over the entire world.  According to WAAS MOPS 
[7], 24 GPS and 30 Galileo SV constellations are 

assumed.  At each user location, the 99.5th percentile VPL 
over the simulation period is mapped.  The world maps 
are then colored by interpolation between grid points. 
 
A first observation is that SS performs better than basic 
LS RAIM under an identical threat model (Figure 2).  
There is a good explanation for that.  In classical LS 
RAIM, information is lost in the process of forming the 
SSE statistic, in the respect that the total error is summed 
over all geometrical directions or LOS.  In the meantime, 
the SS algorithm clearly associates each position error 
with the corresponding LOS, or the geometry of a 
particular satellite subset, and does not assume that the 
maximum total error can be generated entirely by a single 
satellite. 
 
Furthermore, as it was expected, single satellite 
elimination provides better position accuracy than 
multiple satellite elimination.  Although one can discard 
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Top: SS with one SV failure, 

Bottom:  SS with two SV failures. 
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several large positioning errors by eliminating multiple 
satellites from the position equation, this operation also 
leads to a loss of good geometry (e.g. high elevation 
satellites), thus in fact degrading performance (Figure 3). 
 
If the mask angle is increased in the simulations, less SVs 
will be in view on the average, causing the satellite 
geometries to deteriorate and the VPL to increase.  
Another expected result was for VPL values to increase 
proportionally with the assumed URA.  It is seen that 
there is not a linear relationship between the two; 
however there is a clear correlation, as it can be seen by 
comparing Figures 4 and 5.   
 
The final conclusions from comparing LS and SS 
algorithms are also summarized in a more quantitative 
format in Figure 6.  Since classical LS RAIM does not 
apply to cases where more than one failure needs to be 
considered, it is impossible to make a direct comparison 

with the results from SS with more than one satellite out.  
However, it is evident that the premise of multiple failures 
causes the VPL values to degrade rapidly, especially for 
the worst-case geometry.  This could be a reason why 
previous work has chosen to ignore multiple failures 
based on their very small probability of occurrence.  In 
the case of a dual constellation, however, the probability 
of multiple failures is increased.  Consequently, a method 
that can address these issues appropriately needed to be 
examined. 
 
FINAL RESULTS WITH THE MHSS ALGORITHM 
 
After careful consideration, the MHSS method was found 
to be the most appropriate for combined Galileo-GPS 
RAIM.  Intuitively, this algorithm brings an added 
advantage, since it does not conservatively assign equal 
weights to all considered failure modes.  More insight is 
gained by examining the results from the MHSS 
simulation.  Compared to the previously examined 
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algorithms, a lower VPL will be generated for the same 
geometry and there is a visible improvement in the overall 
performance. 
 
Comparing the fully operational mode, with an average of 
18 Galileo-GPS SVs in view (Figure 7) to the degraded 
mode where only one of the constellations is available 
(Figures 8, 9), for a SV failure prior of 10-4, there are 
obvious geometry effects at equator and poles versus mid-
latitudes that should be noted here.  For example, one 
extra satellite will be visible on the average at the poles, 
however the corresponding VPL will still be higher due to 
poorer geometries, not having any SVs available at high 
elevations.  The situation gets reversed in the case of the 
degraded modes, when the average VPL is slightly lower 
at the poles and equator due to the fact that an extra 
satellite visible proves to be important for the overall 
geometry most of the time. 
 

Comparing the two results for the degraded modes, it is 
possible to notice that the proposed MHSS method works 
really well for an average of 10 or more SVs in view (e.g. 
the case of the Galileo constellation only), as there will be 
enough redundant satellites in the position equation.  
However, things start to break down when less SVs are in 
view. For the GPS-only case, when only an average of 8 
satellites are in view, the availability is impacted when 
partial solutions need to be formed, such that the 50m 
VAL can only be guaranteed 95% of the time. 
 
The SV failure prior and URA were chosen to be the 
variable parameters for this study since their values are 
determined outside RAIM, depending on the particular 
constellation characteristics.  Figure 10 presents the 
summary of all MHSS results.  The reason why some 
points have been left out on these plots for prior 
probabilities greater than 0.003 (viz. 5 or more failures 
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considered) is that those points were not statistically 
comparable with the rest of the data on the plot.  Due to 
the excessively long simulation times, less statistical 
samples were collected in these extreme cases, such that it 
is impossible to accurately represent those VPL values 
with an occurrence frequency of less than 1%. 
 
It might look surprising at first sight that the average VPL 
is quite insensitive to the chosen failure priors.  One way 
to explain this result is by the fact that multiple failures 
are much less likely than single failures and are always 
weighted accordingly.  Adding more possible failure 
modes into consideration does not change the probability 
distribution of the position solution significantly.  
Therefore, the limits of the VPL interval, outside of which 
the real position is less likely than 10-7 to lie, do not 
change by much.  What changes with the failure 

probabilities, however, are the tails of the distributions, 
making the worst case more extreme, as critical satellites 
for the geometry are more likely to fail. 
 
CONCLUSIONS 
 
Overall, the results obtained here are very encouraging for 
the performance of an unaided combined Galileo-GPS 
constellation.  We were able to get VPL values of under 
20m for the combined dual constellation and still less than 
35m for the degraded operation modes.  Thus, vertical 
guidance seems achievable without any external 
augmentation. 
 
The threat models need to be investigated in greater 
detail.  Additional error sources need to be considered, 
which were not included in the original threat space (e.g. 
SQM, receiver and antenna biases), as the Gaussian 
characterization of the errors might not be sufficient for 
providing convincing evidence on the combined 
constellation integrity performance.  Although the case of 
multipath was included in the error terms, a more detailed 
discussion of this threat is needed as well. 
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In light of future developments, the MHSS algorithm used 
here is suited for the implementation of a FDE scheme, 
since it allows the separation of the effects of each subset 
of satellites on the overall position solution.  Satellites 
could then be removed and tested one at a time in order to 
remove the faulty measurement and reduce the VPL. 
 
With these considerations in mind, the authors still expect 
that it will be possible to meet at least the Low-Precision 
Vertical (LPV) level VPL requirements after all the above 
adjustments are made. 
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APPENDIX 
 
The way in which one can compute the estimated 
navigation position error for SS-type algorithms will be 
described here in more detail.  It is important that this 
procedure does not require actual pseudorange 
measurements (not available in simulation), as the RAIM 
algorithms provide a PL based only on the relative 
geometry between the user and the Galileo and GPS 
constellations. 
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Figure 10. Parametric dependence of VPL on URA  
(1m, respectively 2m) and probability of SV failure  
(between 1 and 6 simultaneous failures considered). 
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As in the case of LS RAIM, one starts out with the 
linearized measurement equation for a number n of 
satellites in view: 

y = G·x + ε   (1) 

The linearization took place around the estimate minus 
actual position deviation vector x, which is five-
dimensional for the case of the dual constellation (North, 
East, Up and one time coordinate for GPS and Galileo 
each).  A simplifying assumption could be made by 
considering a fixed, known Galileo-GPS clock bias, but 
the choice was made not to use that assumption here, in 
order to maintain generality.  The other terms above are 
the n × 1 measurement vector y containing the differences 
between the expected ranging values and the raw 
pseudorange measurements to each of the n satellites, the 
n × 5 geometry or observation matrix G, and the n-
dimensional measurement error ε.  For the simulation 
purposes, the error along each satellite LOS was taken to 
be zero-mean Gaussian noise with the σi

2 variance 
defined earlier in this paper. 
 
The weighted LS solution for x is given by: 

x_est = (GT·W·G)-1·GT·W ·y ≡ K ·y (2) 

where K is called the weighted pseudoinverse of G and 
the weighting matrix W is the inverse of the measurement 
noise covariance matrix Σ.  For simplification, it was 
assumed that the error sources are uncorrelated between 
all the different SVs.  Therefore, Σ is a diagonal n × n 
matrix: 

Σ = σi
2 · In × n   (3) 

While the independence assumption may not be strictly 
true, it should be a reasonably good approximation.  The 
equations subsequently derived do not depend on this 
assumption, which only makes them easier to implement 
in practice. 
 
At this point, in the case of the LS algorithm, one would 
estimate the measurement noise: 

ε_est = w ≡ (I-G·K) ·y  (4) 

in order to be able to compute the weighted SSE metric.  
Instead, the SS RAIM employs the residuals from 
estimating the actual position error: 

δx = x_est – x = K ·ε  (5) 

for the all-in-view solution.  For the partial solutions, 
x_est and x will be replaced with the corresponding 
vectors based on a partial set of measurements.  Of 
interest here is only the third element in δx, the vertical 
component of the navigation error.  This element will be 
called xv, in agreement with the notation in [6] used for 
describing the MHSS algorithm.  For the ordinary SS 
algorithm, a partial VPL range will be computed for each 
partial position solution: 

VPL = xv ± kv · σv  (6) 

where kv is the number of standard deviations equivalent 
to the required integrity confidence interval (kv = 5.33 for 
a 10-7 integrity risk) and σv is a measure of vertical 
accuracy derived from the covariance of the position 
estimate: 

σv
2 = [(GT·W·G)-1]3,3  (7) 

Then, the overall VPL for the SS algorithm will be chosen 
such that it defines an interval around the all-in-view 
estimated position including all the partial solution 
ranges. 
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