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Abstract 
This paper analyses time synchronization schemes for GNSS receivers that require time-delayed 

authentication. We review the synchronization process as defined for the TESLA (Timed-Efficient 

Stream Loss-Tolerant Authentication) protocol current literature and propose how it can be adapted 

for one-way communication systems like GNSS. The receiver to be synchronized at a given 

synchronization event S needs not only an independent reference time 𝑡𝑟𝑒𝑓
𝑆 , but also a bound B of the 

reference time uncertainty. With these two parameters, the loose time synchronization requirement 

of the protocol TL and the signal-in-space time 𝑡𝑠𝑖𝑔
𝑆 , the receiver can start up the protocol. We analyse 

different startup cases and derive preconditions based on 𝑡𝑟𝑒𝑓
𝑆 , 𝑡𝑠𝑖𝑔

𝑆  ,TL, and B, and propose secure 

startup procedures that prevent data forging and other anomalous situations. We then analyse the 

practical aspects of GNSS receiver synchronization for network applications and aviation, and finalise 

with some conclusions. The conclusions can be extrapolated to other data or signal authentication 

protocols based on the delayed disclosure of cryptographic information. 

Introduction 
Timing is one of the key services provided by GNSS. The time-of-arrival scheme at the heart of GPS and 

also used in all other core GNSS constellations, allows receivers to obtain time to nanosecond-level 

accuracy without any prior time synchronization. However, having an independent time reference, 

even if less accurate than GNSS, can make receivers more resilient against current and future spoofing 

threats.  Many signal and data authentication schemes proposed or under development by GNSS are 

based on a delayed disclosure of cryptographic information.  This approach is vulnerable to spoofed 

GNSS signals that are able to fool the user clock into believing that the current time is sufficiently 

behind the actual time.  Therefore, a separate means of verifying time synchronization that is 

independent of GNSS is required.  This paper examines the use of receiver independent time 

synchronization in order to support authentication schemes. 

The delayed disclosure scheme for authentication is currently proposed by GPS´s CHIMERA [1] based 

on signal watermarking [2], and SBAS data authentication [3], and required for Galileo’s OSNMA [4]. 

Not only will independent time synchronization of GNSS receivers be required for the future GNSS 

authentication features, but it also can increase overall receiver resilience. However, secure 

independent time synchronization requirements and processes for GNSS receivers have not been 

thoroughly analysed in GNSS literature.  This paper looks at both theoretical and practical aspects of 

receiver independent time synchronization.
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From the theoretical point of view, the TESLA (Timed-Efficient Stream Loss-Tolerant Authentication) 

protocol [5]  is studied as a baseline. TESLA has been adapted for the current Galileo OSNMA scheme 

[4] and is under study for SBAS authentication [3] due to its suitability for a low-bandwidth channel 

such as GNSS. It requires the sender and the receiver be loosely synchronized in order to guarantee 

data authenticity. The receiver must verify that the received data is not delayed by more than a given 

amount of time defined by the TESLA loose time synchronization requirement 𝑇𝐿. The protocol 

originally proposed client-server synchronization schemes based on a two-way communication 

channel being available in network implementations. However, for GNSS, the receiver needs an 

external means of synchronization at startup, or a sufficiently accurate internal clock reference 

independent from GNSS. Even if we use authentication schemes not based on time-delayed 

asymmetry, such as digital signatures, loose time synchronization may be required if data replay 

attacks are to be protected. For example, in order to ensure that expired GNSS ephemeris data are not 

replayed and used, the receiver would need a time reference on the order of hours. A tighter 

requirement would apply in the case of corrections with a shorter validity time, such as SBAS 

corrections, or GNSS satellite flags.  

The paper presents first an overview of the TESLA protocol. This overview is followed by a discussion 

on how to adapt TESLA, as described in previous non-GNSS literature, to GNSS. We analyse different 

startup cases and derive preconditions based on the independent reference time, the GNSS signal 

time, the loose time synchronization requirement TL, and the reference time error bound B, analysing 

false alerts and missed detections. With these preconditions, we propose secure startup procedures 

that prevent data forging and protect against other possible anomalous situations. 

On the practical side, the paper analyses how real receivers can deal with independent time 

synchronization. This includes network-assisted receivers and standalone receivers. It characterizes 

the initial time uncertainty based on the external time sources, such as mobile networks and other 

systems, and the drifts of internal real-time clocks from available devices in the market, and compare 

them with the 𝑇𝐿 requied by current authentication protocols. The standalone receiver analysis will be 

primarily aimed at avionics receivers, for which a startup synchronization process and reference time 

requirements will be proposed. This proposal can support future avionics standards including data 

authentication protocols.  

TESLA Overview 
The TESLA protocol is a perfect example of a delayed disclosure scheme.  The user is initially provided 

with data and a Message Authentication Code (MAC) which is a function of the data and a as yet 

unknown key.  The server that provided the data and MAC later releases the key and the user can 

verify that the previously received MAC matches the functional output by combining the data and the 

key.  It is the delay between the release of the first two elements (the data and the MAC) and the final 

element (the key) that provides the authentication (along with a separate technique to validate the 

key).  At the time the data and MAC are released, only the server knows the key.  Once the key has 

been released, anyone can create a matching data and MAC combination with that key.  But, up until 

the key was released, only the server could make such a combination.  The receiver therefore needs 

to know over what period the data and MAC combination can be safely received for later 

authentication, and when the key has been made public.  One should not trust the data-MAC 

combination broadcast after that time.  If the receiver and server are synchronized, then the user can 

confidently authenticate the data.  However, if the receiver’s clock is too slow, then they may be fooled 
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into accepting a data and MAC combination that is received after the key has been made public.  

Therefore, it is imperative that the user’s clock not be allowed to fall too far behind the server’s clock. 

Differences in Synchronization between Standard TESLA and 

GNSS-TESLA  
For the TESLA protocol we will base our analysis on two references, [5] and [6]. According to [5], the 

loose time synchronization requirement implies that the receiver time tr and the server time ts have to 

be loosely synchronized within a boundary , such that 

 𝑡𝑠 −  𝑡𝑟     (1) 
 

Notice that (1) does not account for the absolute value of the error, which would result in 

| 𝑡𝑠 − 𝑡𝑟 |    , as only the server is broadcasting information. Therefore, the lack of synchronization 

only leads to a data forging attack when the receiver time 𝑡𝑟  is too far behind the server time 𝑡𝑠 , as 

this would allow an adversary to receive the time-delayed key in advance from the server and forge 

the message. In the TESLA protocol as defined in [5], the receiver and server can re-synchronize if 

necessary to maintain the loose time synchronization within the time boundaries required. It proposes 

a synchronization protocol whereby the receiver sends a time request with a salt, to the server, and 

the server sends back its time tag and the salt digitally signed, ensuring secure time transfer. The 

receiver can then check that the difference is below the loose time requirement for the TESLA protocol 

to function. The protocol assumes no clock drift, but proposes to resynchronize through the mentioned 

procedure regularly.  

Alternatively, for the TESLA protocol defined in [6] the loose time synchronization requirement is 

defined by the “safe packet test”, which consists of the following steps: 

 The receiver receives a packet Pj and notes the local time 𝑇, and determines an upper bound on 

the true time as: 𝑡𝑡𝑟𝑢𝑒 ≤ 𝑡𝑗 =  𝑇 +  𝐷(𝑇), where 𝐷(𝑇) is a known time varying bound on the 

reference time. 

 The receiver then computes the maximum possible key index imax that could be known given that 

the maximum possible current true time is 𝑡𝑗: 

 
𝑖max = 𝑓𝑙𝑜𝑜𝑟 (

𝑡𝑗 − 𝑇0

𝑇𝑖𝑛𝑡
) 

 

(2) 
 

Where 𝑇0 is the time of transmission of the first key and 𝑇𝑖𝑛𝑡 is the time interval between keys. 

 The receiver extracts from Pj the index 𝑖 of the key that should be used to sign the current packet: 

𝑖 = 𝑗 + 𝑑, where 𝑑 is the disclosure delay. 

 If 𝑖max < 𝑖 then the packet is considered safe and can be stored for future authentication. 

For GNSS, however, the assumptions are different. Firstly, the receiver-sender two-way 

communication is not possible, as GNSS provides one-way communication only. Due to this constraint, 

the GNSS receiver can be more vulnerable to replay attacks: Unless the GNSS receiver has a means to 

establish trust in the signal and ensure it is not a replay, the receiver cannot automatically 

resynchronize with it. Secondly, in network-based TESLA, packets are received separately and with 

potentially different latencies due to the network, while in GNSS each satellite transmits a continuous 
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data stream synchronized with the satellite’s atomic clock, with only a slow-varying drift due to the 

satellite-to-receiver varying distance. Finally, instead of a relative synchronization between server and 

receiver, in GNSS, the server (i.e. the navigation satellite system) is providing the true time, so in the 

absence of a spoofed signal the receiver is receiving a true time reference. 

Synchronization Parameters for GNSS-TESLA 
Let us assume the following nomenclature for GNSS-TESLA synchronization: 

 S: synchronization event at the receiver allowing bootstrapping the GNSS-TESLA protocol. 

 𝑡𝑡𝑟𝑢𝑒, 𝑡𝑠𝑖𝑔, and 𝑡𝑟𝑒𝑓: time scales for the true time, received time from the GNSS signal, and receiver 

independent reference time, respectively. 

 𝑡𝑡𝑟𝑢𝑒
𝑆 , 𝑡𝑠𝑖𝑔

𝑆 , and  𝑡𝑟𝑒𝑓
𝑆 : Event S timestamped in the timescales of the true time, GNSS signal time, 

and GNSS independent reference time, respectively. 𝑡𝑠𝑖𝑔
𝑆  corresponds to 𝑡𝑡𝑟𝑢𝑒

𝑆  if the signal comes 

from the GNSS, but it can be different if it does not. 𝑡𝑟𝑒𝑓
𝑆  is equivalent to T in the TESLA description 

above from [6].  

 𝑇𝐿: loose time synchronization requirement for a secure GNSS-TESLA protocol initialization. It is 

assumed to be known a-priori by the receiver. It is the delay between MAC and related key 

disclosure.  

 B: bound of the 𝑡𝑟𝑒𝑓
𝑆  error. 

In relation to the “safe packet test” described in [6], T is equivalent to 𝑡𝑟𝑒𝑓
𝑆 , D(T) is equivalent to B, d is 

equivalent to 𝑇𝐿 , and  𝑡𝑗 is equivalent to 𝑡̂𝑡𝑟𝑢𝑒,𝑊
𝑆 , according to our nomenclature described later in the 

paper. While the process described here is somewhat different, it follows the same principles as that 

of [6].  

In order to justify the need for B, let us assume that at startup the receiver just checks that 𝑡𝑟𝑒𝑓
𝑆 −

 𝑡𝑠𝑖𝑔
𝑆     𝑇𝐿. This means that if the signal time 𝑡𝑠𝑖𝑔

𝑆  is lagging with a delay higher than 𝑇𝐿 with respect to 

the reference time 𝑡𝑟𝑒𝑓
𝑆 , the signal is considered a replay, and otherwise it is considered as valid.  

However, this inequality is considered an over-simplification for GNSS-TESLA during a secure startup, 

and is therefore invalid. If 𝑡𝑟𝑒𝑓
𝑆   has no error, then 𝑡𝑟𝑒𝑓

𝑆  = 𝑡𝑡𝑟𝑢𝑒
𝑆 . In this case, if the receiver is acquiring 

the authentic signal, then 𝑡𝑠𝑖𝑔
𝑆  = 𝑡𝑡𝑟𝑢𝑒

𝑆  as well, and the receiver can start up independently of 𝑇𝐿. If there 

is an error uncertainty associated with 𝑡𝑟𝑒𝑓
𝑆 , fulfilling the inequality does not imply the fulfilment of the 

loose time synchronization requirement, as both 𝑡𝑟𝑒𝑓
𝑆  and 𝑡𝑠𝑖𝑔

𝑆  may be wrong by an unknown amount, 

which may be greater than 𝑇𝐿.  

For the rest of this paper, we assume that there is an error uncertainty associated with 𝑡𝑟𝑒𝑓
𝑆 , and is 

represented by a bound B. 𝑡𝑡𝑟𝑢𝑒
𝑆  shall be within the confidence interval [𝑡𝑟𝑒𝑓

𝑆  – B, 𝑡𝑟𝑒𝑓
𝑆 + B]1. We also 

assume that the receiver knows both 𝑡𝑟𝑒𝑓
𝑆  and B at startup. 

The way to obtain and characterize B at startup is out of scope of this paper. It can be based on the 

statistical characterization of the clock drift since the previous re-synchronization, that gives a certain 

                                                           
1 Or out of this confidence interval with a probability that is considered so low that the startup is considered 
secure. 
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probability that the error is contained within the confidence interval, or by the error associated with 

an external synchronization system that is used at startup, just to name some examples. 

GNSS-TESLA synchronization requirements 
As a data broadcast authentication protocol, the primary objective of GNSS-TESLA is to authenticate 

the GNSS data. In order to do so, the receiver has to ensure that the received signal is not delayed by 

more than 𝑇𝐿, as otherwise an adversary could forge the data and MACs once the key is available. 

Therefore, the following precondition must hold true to avoid data forging attacks: 

 𝑡𝑡𝑟𝑢𝑒
𝑆 −   𝑡𝑠𝑖𝑔

𝑆 <   𝑇𝐿 (3) 
 

The receiver can receive 𝑡𝑠𝑖𝑔
𝑆  but it does not know 𝑡𝑡𝑟𝑢𝑒

𝑆 , only 𝑡𝑟𝑒𝑓
𝑆 . It has to make a hypothesis on the 

value of 𝑡𝑡𝑟𝑢𝑒
𝑆  based on 𝑡𝑟𝑒𝑓

𝑆  and B. In the following, we take as a reference a worst-case scenario, 

whereby our estimation of 𝑡𝑡𝑟𝑢𝑒
𝑆  takes the worst possible value within the confidence interval. The 

worst possible value is such that 𝑡𝑟𝑒𝑓
𝑆  is delayed as much as possible with respect to 𝑡𝑡𝑟𝑢𝑒

𝑆 , as this 

maximizes the success probability of a delay attack. This condition is fulfilled if 𝑡𝑡𝑟𝑢𝑒
𝑆  had the maximum 

possible value of the interval. We therefore take an estimated true time value, for this worst-case 

scenario, as follows: 

 𝑡̂𝑡𝑟𝑢𝑒,𝑊
𝑆 =   𝑡𝑟𝑒𝑓

𝑆 + 𝐵 (4) 
 

From (3) and (4) we can define the following precondition: 

 𝑡𝑟𝑒𝑓
𝑆 −  𝑡𝑠𝑖𝑔

𝑆 <  𝑇𝐿 − 𝐵  (5) 
 

Figure 1 illustrates how 𝑡̂𝑡𝑟𝑢𝑒,𝑊
𝑆  is obtained, and the application of 𝑇𝐿 from it to determine the region 

free of data forging. If  𝑡𝑠𝑖𝑔
𝑆  is at the left of the 𝑇𝐿 interval, the data may be forged. 

 

Figure 1 –  Representation of the receiver reference time, the reference time bound, the estimated true time for the worst-
case scenario, and the loose time required for startup 

If B is so high that the whole confidence interval (2B) is greater than 𝑇𝐿, there will be a region of service 

unavailability, or potential false alerts if the service is provided. These false alerts will occur when 𝑡𝑟𝑒𝑓
𝑆  

runs too fast and 𝑡𝑡𝑟𝑢𝑒
𝑆  is in the low end of the interval. This is shown in Figure 2. In order to avoid false 

alerts, the following precondition must hold: 

 
𝐵 <

𝑇𝐿

2
 

(6) 
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Figure 2 –  False alert if B is too high and 𝑡𝑟𝑒𝑓 is advanced with respect to 𝑡𝑡𝑟𝑢𝑒 

In summary, the three preconditions required for GNSS-TESLA initialization are: 

 Bounding precondition: The reference time confidence bound B must bound the error of 𝑡𝑟𝑒𝑓
𝑆 . 

 Synchronization precondition: The time difference of the worst-case estimated true time minus 

the signal time must be below 𝑇𝐿 (5). 

 False alert precondition: To prevent false alerts, the reference time confidence bound B must be 

below half of 𝑇𝐿  (6). 

In the following, we analyze how the receiver must treat different cases of 𝑡𝑠𝑖𝑔
𝑆  with respect to 𝑡𝑟𝑒𝑓

𝑆 . 

We use Figure 3, which is equivalent to Figure 1 and fulfils (6). 

 

Figure 3 –  startup process with different signal times 

Case 1) 𝑡𝑠𝑖𝑔,1
𝑆 < 𝑡̂𝑡𝑟𝑢𝑒,𝑊

𝑆  −  𝑇𝐿   :  The received signal may be a replay with forged data. The receiver 

must stop and raise an alert. 

Case 2)  𝑡̂𝑡𝑟𝑢𝑒,𝑊
𝑆 −  𝑇𝐿 <  𝑡𝑠𝑖𝑔,2

𝑆 <   𝑡𝑟𝑒𝑓
𝑆 − 𝐵  :  The received signal cannot be a replay with forged data, 

but may be a replay, as it is out of the reference time boundaries. The receiver may stop and raise an 

alert.  It may also elect to proceed after raising the alert should the authentication otherwise pass, 

depending on the use case and application criticality. 

Case 3)  𝑡𝑟𝑒𝑓
𝑆 − 𝐵  <  𝑡𝑠𝑖𝑔,3

𝑆 <   𝑡𝑟𝑒𝑓
𝑆 +  𝐵  :  The received signal is within the boundaries of the 

reference time. The startup process can continue. 

Case 4)  𝑡𝑟𝑒𝑓
𝑆 + 𝐵  <  𝑡𝑠𝑖𝑔,4

𝑆  :  The received signal is in advance with respect to the reference time. It 

cannot therefore be a replay with forged data, but it is out of the reference time boundaries. The signal 

may be an advanced replica, and if processed, the authentication verification would fail. It is also 

possible that the previous calibration of the reference time was inaccurate or corrupted.  The receiver 

should raise an alert. It may also elect to potentially proceed should the authentication otherwise pass. 

Therefore, for a more comprehensive startup process, that includes not only data forging, but also the 

detection of unauthentic signals, we may consider a fourth precondition: 
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 Signal replay precondition: the difference between the reference time 𝑡𝑟𝑒𝑓
𝑆  and the signal time 

𝑡𝑠𝑖𝑔
𝑆  must be below the reference time confidence bound B (7). 

 | 𝑡𝑟𝑒𝑓
𝑆 −  𝑡𝑠𝑖𝑔

𝑆 | <  𝐵 (7) 

 

Analysis of False Alerts and Missed Detections  
We can reformulate (5) into the equivalent expression (8) as follows: 

 𝑡𝑟𝑒𝑓
𝑆 −  𝑡𝑠𝑖𝑔

𝑆 <  𝑇𝐿 − 𝐵 

(𝑡𝑟𝑒𝑓
𝑆 −  𝑡𝑡𝑟𝑢𝑒

𝑆 ) − (𝑡𝑠𝑖𝑔
𝑆 − 𝑡𝑡𝑟𝑢𝑒

𝑆 )  <  𝑇𝐿 − 𝐵 

𝑏𝑟𝑒𝑓 −  𝑏𝑠𝑖𝑔 <  𝑇𝐿 − 𝐵 

 
 
(8) 

Where 𝑏𝑟𝑒𝑓 and 𝑏𝑠𝑖𝑔 are the time biases with respect to the true time. Note also that the bounding 

precondition can be expressed as follows:  

 −𝐵 <  𝑏𝑟𝑒𝑓 <  𝐵  (9) 

We analyze two hypotheses: the hypothesis of no attack (𝐻0), and the hypothesis of an attack leading 

to data forging at the minimum required delay (H1). Table 1 presents how they affect the bounding 

and synchronization preconditions. In the case of the null hypothesis 𝐻0, as the true signal is received, 

there is no signal offset, so 𝑏𝑠𝑖𝑔 = 0 . This means that the synchronization precondition to fulfil is 𝑏𝑟𝑒𝑓 <

 𝑇𝐿 − 𝐵. When the receiver is under attack (𝐻1), we assume that the signal is delayed by the minimum 

necessary to forge the data, so 𝑏𝑠𝑖𝑔 = -𝑇𝐿, and the synchronization precondition to fulfil becomes  

𝑏𝑟𝑒𝑓 <  −𝐵. However, the bounding and synchronization preconditions cannot be fulfilled 

simultaneously, and therefore there cannot be missed detections. 

Hypothesis Bounding 
Precondition (9) 

Synchronization 
Precondition  (8) 

Receiver operates under null hypothesis (no attack) 
𝐻0: 𝑏𝑠𝑖𝑔  = 0 

−𝐵 <  𝑏𝑟𝑒𝑓 <  𝐵 𝑏𝑟𝑒𝑓 <  𝑇𝐿 − 𝐵 

Receiver operates under alterative hypothesis (attack) 
𝐻1: 𝑏𝑠𝑖𝑔 = -𝑇𝐿 

−𝐵 <  𝑏𝑟𝑒𝑓 <  𝐵 𝑏𝑟𝑒𝑓 <  −𝐵 

Table 1 – Hypothesis testing of no attack (H0) and attack with the minimum delay required for data forging (H1), including 
precondition 1, to be fulfilled to continue startup process, and precondition 2, fulfilled by the definition of B. 

Figure 4 and Figure 5 show the result of the bounding (9) and synchronization (8) preconditions for 

different values of 𝑏𝑟𝑒𝑓, where Figure 4 represents the null hypothesis and Figure 5 the alternative 

one. The figures assume that there is no resynchronization and B grows linearly over time since the 

last calibration.  

We can see in Figure 4 that the false-alert zone starts after B > TL/2, as anticipated by the false alert 

precondition (6). This is depicted by the triangular orange zone in the figure: while B < TL/2, we can 

ensure no false alerts, but after that, the possible inaccuracy of 𝑏𝑟𝑒𝑓 will often lead to the case depicted 

in Figure 2. Due to this reason, the recommended operational zone, colored in green, stops when B = 

TL/2. The light grey areas represent when the bounding precondition is not fulfilled, and the dark grey 

areas when neither the bounding nor the synchronization preconditions are fulfilled. 

Figure 4 also shows three sample cases, C1, C2, and C3, to better illustrate the precondition checks. In 

C1, where B < 𝑇𝐿/2, if the bounding precondition (8) is fulfilled, there will be no false alerts, whatever 

is the value of 𝑏𝑟𝑒𝑓. In C2, as  B > 𝑇𝐿/2, the synchronization precondition (9) is not fulfilled for high 
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values of 𝑏𝑟𝑒𝑓, leading to a false alert. This effect is aggravated in C3, where B > 𝑇𝐿. The main problem 

of exceeding B > 𝑇𝐿 is that, even if 𝑏𝑟𝑒𝑓 is small and therefore the reference time is around the true 

time, a false alert will be raised. Note that the fact that the bounding and synchronization 

preconditions will be sometimes fulfilled beyond B > 𝑇𝐿, for negative 𝑏𝑟𝑒𝑓  values, does not imply that 

signals replayed with a delay beyond 𝑇𝐿 will go undetected, as shown in Figure 5. 

 

Figure 4 –  Detection regions over time since last calibration, in case of no attack, 𝐻0: 𝑏𝑠𝑖𝑔  = 0. 

 

Figure 5 –  Detection regions over time since last calibration, in case of data forging attack, 𝐻1: 𝑏𝑠𝑖𝑔 = -𝑇𝐿. As both 

preconditions can’t hold simultaneously irrespectively of 𝑏𝑟𝑒𝑓, attacks are detected. 

Figure 5 shows the alternative hypothesis 𝐻1 where the signal is delayed with 𝑏𝑠𝑖𝑔 = -𝑇𝐿, which is the 

minimum delay to forge the data. In this case, the check will only pass if 𝑏𝑟𝑒𝑓 <  −𝐵. However, this 

condition will never be fulfilled due the bounding precondition, so if the signal is data-spoofed, the 

process will always detect it, as long as B effectively bounds the reference time error. This is true also 

of B > 𝑇𝐿. 
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GNSS-TESLA Synchronization Procedures  
This section presents two proposals for synchronization startup. The proposals are based on the 

abovementioned three preconditions (bounding, synchronization, and false alerts), with some small 

variants. The first method for implementing the synchronization logic during GNSS-TESLA receiver 

startup is depicted in Figure 6. It assumes that the receiver can periodically re-calibrate its internal 

clock, and is based on the following steps: 

1. At startup, get 𝑡𝑟𝑒𝑓
𝑆  and B(𝑡𝑟𝑒𝑓

𝑆  – tlast_calibration) from a reference receiver Real Time Clock (RTC) (e.g. 

[7] [8]). 

2. Get 𝑡𝑠𝑖𝑔
𝑆  from the signal in space, by calculating a GNSS position and time fix, still to be 

authenticated.  

3. Lookup the appropriate value of 𝑇𝐿  for the TESLA protocol. 

4. Check that the internal reference time confidence bound B is within limits (𝑇𝐿/2). If not, raise an 

alert to the operator to initiate an alternate synchronization procedure. 

5. Check that 𝑡𝑟𝑒𝑓
𝑆 −  𝑡𝑠𝑖𝑔

𝑆 <  𝑇𝐿 − 𝐵. If this is the case, continue startup. 

6. If 𝑡𝑟𝑒𝑓
𝑆 −  𝑡𝑠𝑖𝑔

𝑆 ≥  𝑇𝐿 − 𝐵, raise an alert to a potential spoofing attack. 

7. Check the validity of the TESLA keys and MACS, if they are valid then proceed as normal and collect 

new data to calibrate the RTC (i.e. 𝑡𝑟𝑒𝑓
𝑆  – 𝑡𝑠𝑖𝑔

𝑆  data presuming that 𝑡𝑠𝑖𝑔
𝑆  = 𝑡𝑡𝑟𝑢𝑒

𝑆 , under the more 

detailed assumptions below).   

 

Figure 6  –  GNSS-TESLA synchronization startup flow diagram – Method 1 

Another similar synchronization procedure for GNSS-TESLA receiver startup is depicted in Figure 7. It 

is based on the following steps: 

1. At startup, get 𝑡𝑟𝑒𝑓
𝑆  and B(𝑡𝑟𝑒𝑓

𝑆  – tlast_calibration) from the reference time source (receiver real time 

clock, external source, or other). 

2. Get  𝑡𝑠𝑖𝑔
𝑆  from the signal in space, by calculating a GNSS position and time fix, still to be 

authenticated. 
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3. Lookup the appropriate value of 𝑇𝐿  for the TESLA protocol (the calculation of 𝑇𝐿 is out of the scope 

of this paper). 

4. Check that the internal reference time confidence bound B is within limits (𝑇𝐿  / 2). If not, re-

synchronize through an alternate synchronization procedure and go to step 1 if possible. 

5. Check that the difference between 𝑡𝑠𝑖𝑔
𝑆  and 𝑡𝑟𝑒𝑓

𝑆  is within 𝑡𝑟𝑒𝑓
𝑆  boundaries defined by B (signal 

replay precondition).  

6. If 𝑡𝑠𝑖𝑔
𝑆  and 𝑡𝑟𝑒𝑓

𝑆  differ beyond the expectation, check if a signal replay with data forging attack is 

possible (synchronization precondition). If this is the case, report a possible data forging alert. If 

not, report a signal anomaly (unauthentic signal). 

7. If the result of 5. is positive, as this precondition is more restrictive than the synchronization 

precondition, consider the GNSS data trustable and continue authenticating the data. If the 

authentication is valid (i.e. it passes the authentication verification), the position can be considered 

as data-authenticated. Otherwise raise an authentication alert. 

 

Figure 7 –  GNSS-TESLA synchronization startup flow diagram - – Method 2 

The second procedure slightly differs from the first one mainly in that it incorporates the signal replay 

precondition. Also, the management of unfulfilled preconditions is slightly different. In summary, these 

are just examples that show that, depending on the security profile of the application, some variants 

in the startup procedure can be introduced. We finalise this section with some further considerations 

on signal synchronization and RTC calibration. 

Signal synchronization: The above procedures assume that the 𝑡𝑠𝑖𝑔
𝑆  is obtained once the SIS of at least 

four satellites is acquired and tracked and a still-unauthenticated position and time solution is 
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calculated. However, the receiver could also obtain the signal time from a single satellite, at the 

expense of an uncertainty of some milliseconds to be accounted for in the process.  

Real-time clocks and their calibration: A real-time clock is an independent clock that keeps time even 

when the receiver is powered off.  In this concept it will need to be calibrated relative to GNSS time.  

This should be done very carefully and only using data known to be valid.  Initially, this calibration may 

be performed by the receiver manufacturer.  In the Method 1 described above, two different 

calibration approaches are used: An initial calibration in a trusted environment (i.e. where spoofing is 

not observed and trusted not to be present) or against an independent and trusted time source.  These 

approaches are beyond the scope of this paper and will not be further described.  Another approach 

is when B is consistently below TL/2, then the calibration can be updated when all of the above 

conditions are met.  For example, an RTC may have an accuracy bound of five parts per million (ppm) 

or to within five seconds after one million seconds have elapsed.  Thus if we knew 𝑡𝑟𝑒𝑓
𝑆  accurately one 

day (86,400 seconds) ago, then we would have a value for B of 0.432 seconds after being turned off 

for one day.  Assuming we follow our above procedure, once we passed all of our checks and 

authenticated the signal, we could collect and store values of 𝑡𝑟𝑒𝑓
𝑆  – 𝑡𝑠𝑖𝑔

𝑆 .  These would be used to 

calibrate 𝑡𝑟𝑒𝑓
𝑆  the next time it is called upon at start up, assuming, as abovementioned, that the receiver 

places a certain confidence on the authenticity of 𝑡𝑠𝑖𝑔
𝑆 . Further information and characterization of 

RTCs can be found in [9]. 

Authenticated Network Time Synchronization 
This section and the following ones deal with practical aspects of GNSS receiver synchronization for 

different applications, starting with assisted receivers who can benefit from authenticated network 

time synchronization. In the event that the user clock uncertainty has grown beyond the secure time 

synchronization requirement, then a re-synchronization of the RTC will be required. One way to 

achieve this is through an authenticated network time transfer. As described in [11], two-way 

communication is a necessary condition for secure time transfer. This is the only mechanism to avoid 

a simple replay attack. The time-seeker constructs a message requesting a time response from a time 

server, including a “nonce”, or cryptographically secure random number. The server responds with a 

time estimate and a digital signature, or message authentication code, that includes both the server’s 

timestamp and the client-generated nonce. In this way a causal link is established between the request 

and the response. The client measures the round-trip time between client and server and generates a 

best estimate of the current local time as the server time plus one half the round trip time. An 

implementation of this procedure is also described in [5] for the TESLA protocol, as abovementioned.  

This approach remains vulnerable to a Man-in-the-Middle (MitM) attack, in which a malicious 

adversary positions themselves on the network between the client and server and selectively delays 

incoming and outgoing packets. For example, in the extreme case where the client and server are co-

located, the true round trip time should be zero, however the attacker can deliver the request packets 

to the server with no delay, and the response packets to the client with a delay of, say, one second, 

thereby yielding a client clock error of 0.5 seconds early. On the other hand the attacker can delay the 

request packets and deliver the response packets promptly thereby yielding a client clock error of 0.5 

seconds late. The maximum attacker induced time error is +/- RTT/2, where RTT is the round trip time. 
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Figure 8 shows the principle of operation of all network based time synchronization mechanisms. Here 

time flows downwards, with the client timeline on the left and the server on the right. The nominal 

operating condition is shown in the left plot, while the condition under a MitM attack is shown on the 

right.  

 

Figure 8 - Network time synchronization. Left: no attack; Right: Man-in-the-Middle attack. Note the extra delay 𝛿𝑡 
introduced by the MitM, this translates into a clock error of 𝛿𝑡/2. 

The Network Time Protocol (NTP) is one of the most commonly used network time synchronization 

protocols, but while a number of attempts have been made to introduce cryptographic authentication 

it remains largely used without any security features. The latest effort to address this at the standards 

level is the Network Time Security (NTS) over NTP protocol, which is currently at the draft stage with 

the Internet Engineering Task Force (IETF) [12] [13]. This protocol is essentially as described above, but 

the individual time offsets from multiple servers are aggregated and filtered over long time periods. In 

general NTP is designed to run continuously providing accurate and stable time to network connected 

devices. 

An alternative authenticated network synchronization protocol has recently been proposed by Google. 

This protocol is called Roughtime and is based on a snapshot approach to synchronization with, as the 

name suggests, a relatively low accuracy, but with very high reliability. Again the time synchronization 

is very similar to that described above, but Roughtime utilises multiple servers in a chain configuration. 

The protocol specifically allows the detection of malicious spoofers and their elimination from the time 

transfer computation. This protocol is also currently undergoing review in the IETF standardization 

process [12] [13]. 

Both NTS and Roughtime rely on standard network communications protocols, and as such the 

uncertainty bound on the transferred time is constrained to one half of the measured round trip time, 

due to the vulnerability to MitM attacks described above. With a good geographic spread of servers, 

round trip times of the order of 10’s to 100’s of milliseconds can be expected given a reasonably good, 

low latency network connection, such as ethernet or 3G data connections. Thus either of these two 

protocols, or indeed any other similar protocol, are viable candidates for the resynchronization of the 

reference clock, provided that a reliable network connection is periodically available at a rate 

commensurate with the resynchronization needs of the RTC. 
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Application to Aviation 
The above approach is very well suited for commercial aviation as these aircraft rarely go 24 hours 

without being powered on and they move from one location to another.  Therefore, it is highly unlikely 

that they will be subjected to spoofing for extended periods of time.  A successful attack on our 

synchronization approach would be to echo valid signals, but to slowly drive the receiver time 

backwards until it is more than TL behind the true time.  As a result, TL should be chosen such that this 

requires many days to succeed.  For example, again using 5 ppm as the specification on the RTC along 

with a value of 6 seconds for TL  would require that a spoofer spend at least more than a week slowly 

offsetting the signal before they can successfully offset the receiver clock sufficiently. Unfortunately, 

general aviation aircraft (as well as many other users) may indeed go more than a week without 

operating their receivers and updating their calibration.  Here we would require either a tighter 

specification on the RTC (e.g. 1 ppm), a larger TL , or an alternative calibration method. 

One possible solution is to use a method of multiple instances where different MACs are sent with 

different TL  values.  For example, one MAC can use keys that are released 6 seconds later while another 

MAC is also transmitted, but this MAC uses a key that will be released 120, or 300 seconds later, as 

implemented e.g. for Galileo OSNMA with the slow MAC concept [10].  An advantage of this approach 

is that that the same TESLA keychain may be used for both MACs.  Thus, the required number of bits 

to be transmitted is minimized as a MAC may be only 30 bits [3].  These slow MACs also do not need 

to be transmitted nearly as often as the fast MACs.  Following our same example, if the user has not 

turned on their receiver in the last two weeks, but has turned it on in the last forty, then they will have 

to wait at least 120 seconds to validate the slow MAC but then they will have been able to verify that 

the received data has not been forged and they can now use the received signal to update the 

calibration on their RTC, under the assumption that the signal is trusted.  Further, with a TL of two 

minutes, most operators should have access to an independent time source with greater accuracy (e.g. 

wrist watch, laptop with NTP, etc.). 

Conclusions and Future Work 
Independent loose time synchronization of GNSS receivers from an external time reference of an 

accuracy of some seconds or minutes is required for GNSS time-delayed authentication protocols, be 

it for data or spreading code authentication. It may also be a useful feature to protect in general against 

spoofing attacks.  

This paper looks at independent time synchronization processes particularized for the TESLA protocol 

applied to GNSS, establishing the necessary and recommended preconditions. The GNSS receiver must 

provide, at the synchronization event S, its reference time 𝑡𝑟𝑒𝑓
𝑆  and a bound B of its error (bounding 

precondition), and check that 𝑡𝑟𝑒𝑓
𝑆  and the time from the GNSS signal 𝑡𝑠𝑖𝑔

𝑆  comply with this inequality: 

𝑡𝑟𝑒𝑓
𝑆 −  𝑡𝑠𝑖𝑔

𝑆 <  𝑇𝐿 − 𝐵 (synchronization precondition). The receiver must also re-synchronize before B 

exceeds 𝑇𝐿/2 to avoid false alerts (false alert precondition). If B exceeds this limit, data forging still will 

be detected, although with an increasing false alert rate. In addition, if the difference between 𝑡𝑟𝑒𝑓
𝑆  

and 𝑡𝑠𝑖𝑔
𝑆  is above B, the signal can be considered unauthentic (signal replay precondition).  

Secure GNSS-TESLA synchronization procedures at startup based on these rules are proposed, with 

some considerations about RTC recalibration, in case an RTC is used as the external time reference. 
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The paper also qualitatively analyses external synchronization through secure time transfer from 

assistance networks, and the potential implementation of such procedures in the domain of aviation. 

Future work on the topic includes defining a logic when B exceeds  𝑇𝐿/2, depending on whether the 

use case can tolerate false alerts, and in that case, how far the receiver could exceed that region 

depending on the tolerable false alert rate. In addition to this, the bound B was assumed to increase 

monotonically and linearly, but in the future this bound, its evolution, and its integrity level will need 

to be properly characterized. Other remaining work include the recalibration procedures, including 

conditions on which the receiver can be recalibrated (i.e. the bound B can be reset to zero or reduced), 

and the development and experimentation of external synchronization procedures based on real 

receivers and RTCs. 
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