

Proceedings of the 2020 International Technical Meeting, 964 https://doi.org/10.33012/2020.17190

ION ITM 2020, San Diego, California, January 21-24, 2020

Independent Time Synchronization for
Resilient GNSS Receivers

Ignacio Fernandez-Hernandez†, Todd Walter*, Andrew Neish*, C. O’Driscoll§

*Stanford University, †European Commission, § Independent Consultant

Abstract
This paper analyses time synchronization schemes for GNSS receivers that require time-delayed

authentication. We review the synchronization process as defined for the TESLA (Timed-Efficient

Stream Loss-Tolerant Authentication) protocol current literature and propose how it can be adapted

for one-way communication systems like GNSS. The receiver to be synchronized at a given

synchronization event S needs not only an independent reference time 𝑡𝑟𝑒𝑓
𝑆 , but also a bound B of the

reference time uncertainty. With these two parameters, the loose time synchronization requirement

of the protocol TL and the signal-in-space time 𝑡𝑠𝑖𝑔
𝑆 , the receiver can start up the protocol. We analyse

different startup cases and derive preconditions based on 𝑡𝑟𝑒𝑓
𝑆 , 𝑡𝑠𝑖𝑔

𝑆 ,TL, and B, and propose secure

startup procedures that prevent data forging and other anomalous situations. We then analyse the

practical aspects of GNSS receiver synchronization for network applications and aviation, and finalise

with some conclusions. The conclusions can be extrapolated to other data or signal authentication

protocols based on the delayed disclosure of cryptographic information.

Introduction
Timing is one of the key services provided by GNSS. The time-of-arrival scheme at the heart of GPS and

also used in all other core GNSS constellations, allows receivers to obtain time to nanosecond-level

accuracy without any prior time synchronization. However, having an independent time reference,

even if less accurate than GNSS, can make receivers more resilient against current and future spoofing

threats. Many signal and data authentication schemes proposed or under development by GNSS are

based on a delayed disclosure of cryptographic information. This approach is vulnerable to spoofed

GNSS signals that are able to fool the user clock into believing that the current time is sufficiently

behind the actual time. Therefore, a separate means of verifying time synchronization that is

independent of GNSS is required. This paper examines the use of receiver independent time

synchronization in order to support authentication schemes.

The delayed disclosure scheme for authentication is currently proposed by GPS´s CHIMERA [1] based

on signal watermarking [2], and SBAS data authentication [3], and required for Galileo’s OSNMA [4].

Not only will independent time synchronization of GNSS receivers be required for the future GNSS

authentication features, but it also can increase overall receiver resilience. However, secure

independent time synchronization requirements and processes for GNSS receivers have not been

thoroughly analysed in GNSS literature. This paper looks at both theoretical and practical aspects of

receiver independent time synchronization.

 965

From the theoretical point of view, the TESLA (Timed-Efficient Stream Loss-Tolerant Authentication)

protocol [5] is studied as a baseline. TESLA has been adapted for the current Galileo OSNMA scheme

[4] and is under study for SBAS authentication [3] due to its suitability for a low-bandwidth channel

such as GNSS. It requires the sender and the receiver be loosely synchronized in order to guarantee

data authenticity. The receiver must verify that the received data is not delayed by more than a given

amount of time defined by the TESLA loose time synchronization requirement 𝑇𝐿. The protocol

originally proposed client-server synchronization schemes based on a two-way communication

channel being available in network implementations. However, for GNSS, the receiver needs an

external means of synchronization at startup, or a sufficiently accurate internal clock reference

independent from GNSS. Even if we use authentication schemes not based on time-delayed

asymmetry, such as digital signatures, loose time synchronization may be required if data replay

attacks are to be protected. For example, in order to ensure that expired GNSS ephemeris data are not

replayed and used, the receiver would need a time reference on the order of hours. A tighter

requirement would apply in the case of corrections with a shorter validity time, such as SBAS

corrections, or GNSS satellite flags.

The paper presents first an overview of the TESLA protocol. This overview is followed by a discussion

on how to adapt TESLA, as described in previous non-GNSS literature, to GNSS. We analyse different

startup cases and derive preconditions based on the independent reference time, the GNSS signal

time, the loose time synchronization requirement TL, and the reference time error bound B, analysing

false alerts and missed detections. With these preconditions, we propose secure startup procedures

that prevent data forging and protect against other possible anomalous situations.

On the practical side, the paper analyses how real receivers can deal with independent time

synchronization. This includes network-assisted receivers and standalone receivers. It characterizes

the initial time uncertainty based on the external time sources, such as mobile networks and other

systems, and the drifts of internal real-time clocks from available devices in the market, and compare

them with the 𝑇𝐿 requied by current authentication protocols. The standalone receiver analysis will be

primarily aimed at avionics receivers, for which a startup synchronization process and reference time

requirements will be proposed. This proposal can support future avionics standards including data

authentication protocols.

TESLA Overview
The TESLA protocol is a perfect example of a delayed disclosure scheme. The user is initially provided

with data and a Message Authentication Code (MAC) which is a function of the data and a as yet

unknown key. The server that provided the data and MAC later releases the key and the user can

verify that the previously received MAC matches the functional output by combining the data and the

key. It is the delay between the release of the first two elements (the data and the MAC) and the final

element (the key) that provides the authentication (along with a separate technique to validate the

key). At the time the data and MAC are released, only the server knows the key. Once the key has

been released, anyone can create a matching data and MAC combination with that key. But, up until

the key was released, only the server could make such a combination. The receiver therefore needs

to know over what period the data and MAC combination can be safely received for later

authentication, and when the key has been made public. One should not trust the data-MAC

combination broadcast after that time. If the receiver and server are synchronized, then the user can

confidently authenticate the data. However, if the receiver’s clock is too slow, then they may be fooled

 966

into accepting a data and MAC combination that is received after the key has been made public.

Therefore, it is imperative that the user’s clock not be allowed to fall too far behind the server’s clock.

Differences in Synchronization between Standard TESLA and

GNSS-TESLA
For the TESLA protocol we will base our analysis on two references, [5] and [6]. According to [5], the

loose time synchronization requirement implies that the receiver time tr and the server time ts have to

be loosely synchronized within a boundary , such that

 𝑡𝑠 − 𝑡𝑟   (1)

Notice that (1) does not account for the absolute value of the error, which would result in

| 𝑡𝑠 − 𝑡𝑟 |   , as only the server is broadcasting information. Therefore, the lack of synchronization

only leads to a data forging attack when the receiver time 𝑡𝑟 is too far behind the server time 𝑡𝑠 , as

this would allow an adversary to receive the time-delayed key in advance from the server and forge

the message. In the TESLA protocol as defined in [5], the receiver and server can re-synchronize if

necessary to maintain the loose time synchronization within the time boundaries required. It proposes

a synchronization protocol whereby the receiver sends a time request with a salt, to the server, and

the server sends back its time tag and the salt digitally signed, ensuring secure time transfer. The

receiver can then check that the difference is below the loose time requirement for the TESLA protocol

to function. The protocol assumes no clock drift, but proposes to resynchronize through the mentioned

procedure regularly.

Alternatively, for the TESLA protocol defined in [6] the loose time synchronization requirement is

defined by the “safe packet test”, which consists of the following steps:

 The receiver receives a packet Pj and notes the local time 𝑇, and determines an upper bound on

the true time as: 𝑡𝑡𝑟𝑢𝑒 ≤ 𝑡𝑗 = 𝑇 + 𝐷(𝑇), where 𝐷(𝑇) is a known time varying bound on the

reference time.

 The receiver then computes the maximum possible key index imax that could be known given that

the maximum possible current true time is 𝑡𝑗:

𝑖max = 𝑓𝑙𝑜𝑜𝑟 (

𝑡𝑗 − 𝑇0

𝑇𝑖𝑛𝑡
)

(2)

Where 𝑇0 is the time of transmission of the first key and 𝑇𝑖𝑛𝑡 is the time interval between keys.

 The receiver extracts from Pj the index 𝑖 of the key that should be used to sign the current packet:

𝑖 = 𝑗 + 𝑑, where 𝑑 is the disclosure delay.

 If 𝑖max < 𝑖 then the packet is considered safe and can be stored for future authentication.

For GNSS, however, the assumptions are different. Firstly, the receiver-sender two-way

communication is not possible, as GNSS provides one-way communication only. Due to this constraint,

the GNSS receiver can be more vulnerable to replay attacks: Unless the GNSS receiver has a means to

establish trust in the signal and ensure it is not a replay, the receiver cannot automatically

resynchronize with it. Secondly, in network-based TESLA, packets are received separately and with

potentially different latencies due to the network, while in GNSS each satellite transmits a continuous

 967

data stream synchronized with the satellite’s atomic clock, with only a slow-varying drift due to the

satellite-to-receiver varying distance. Finally, instead of a relative synchronization between server and

receiver, in GNSS, the server (i.e. the navigation satellite system) is providing the true time, so in the

absence of a spoofed signal the receiver is receiving a true time reference.

Synchronization Parameters for GNSS-TESLA
Let us assume the following nomenclature for GNSS-TESLA synchronization:

 S: synchronization event at the receiver allowing bootstrapping the GNSS-TESLA protocol.

 𝑡𝑡𝑟𝑢𝑒, 𝑡𝑠𝑖𝑔, and 𝑡𝑟𝑒𝑓: time scales for the true time, received time from the GNSS signal, and receiver

independent reference time, respectively.

 𝑡𝑡𝑟𝑢𝑒
𝑆 , 𝑡𝑠𝑖𝑔

𝑆 , and 𝑡𝑟𝑒𝑓
𝑆 : Event S timestamped in the timescales of the true time, GNSS signal time,

and GNSS independent reference time, respectively. 𝑡𝑠𝑖𝑔
𝑆 corresponds to 𝑡𝑡𝑟𝑢𝑒

𝑆 if the signal comes

from the GNSS, but it can be different if it does not. 𝑡𝑟𝑒𝑓
𝑆 is equivalent to T in the TESLA description

above from [6].

 𝑇𝐿: loose time synchronization requirement for a secure GNSS-TESLA protocol initialization. It is

assumed to be known a-priori by the receiver. It is the delay between MAC and related key

disclosure.

 B: bound of the 𝑡𝑟𝑒𝑓
𝑆 error.

In relation to the “safe packet test” described in [6], T is equivalent to 𝑡𝑟𝑒𝑓
𝑆 , D(T) is equivalent to B, d is

equivalent to 𝑇𝐿 , and 𝑡𝑗 is equivalent to 𝑡̂𝑡𝑟𝑢𝑒,𝑊
𝑆 , according to our nomenclature described later in the

paper. While the process described here is somewhat different, it follows the same principles as that

of [6].

In order to justify the need for B, let us assume that at startup the receiver just checks that 𝑡𝑟𝑒𝑓
𝑆 −

 𝑡𝑠𝑖𝑔
𝑆  𝑇𝐿. This means that if the signal time 𝑡𝑠𝑖𝑔

𝑆 is lagging with a delay higher than 𝑇𝐿 with respect to

the reference time 𝑡𝑟𝑒𝑓
𝑆 , the signal is considered a replay, and otherwise it is considered as valid.

However, this inequality is considered an over-simplification for GNSS-TESLA during a secure startup,

and is therefore invalid. If 𝑡𝑟𝑒𝑓
𝑆 has no error, then 𝑡𝑟𝑒𝑓

𝑆 = 𝑡𝑡𝑟𝑢𝑒
𝑆 . In this case, if the receiver is acquiring

the authentic signal, then 𝑡𝑠𝑖𝑔
𝑆 = 𝑡𝑡𝑟𝑢𝑒

𝑆 as well, and the receiver can start up independently of 𝑇𝐿. If there

is an error uncertainty associated with 𝑡𝑟𝑒𝑓
𝑆 , fulfilling the inequality does not imply the fulfilment of the

loose time synchronization requirement, as both 𝑡𝑟𝑒𝑓
𝑆 and 𝑡𝑠𝑖𝑔

𝑆 may be wrong by an unknown amount,

which may be greater than 𝑇𝐿.

For the rest of this paper, we assume that there is an error uncertainty associated with 𝑡𝑟𝑒𝑓
𝑆 , and is

represented by a bound B. 𝑡𝑡𝑟𝑢𝑒
𝑆 shall be within the confidence interval [𝑡𝑟𝑒𝑓

𝑆 – B, 𝑡𝑟𝑒𝑓
𝑆 + B]1. We also

assume that the receiver knows both 𝑡𝑟𝑒𝑓
𝑆 and B at startup.

The way to obtain and characterize B at startup is out of scope of this paper. It can be based on the

statistical characterization of the clock drift since the previous re-synchronization, that gives a certain

1 Or out of this confidence interval with a probability that is considered so low that the startup is considered
secure.

 968

probability that the error is contained within the confidence interval, or by the error associated with

an external synchronization system that is used at startup, just to name some examples.

GNSS-TESLA synchronization requirements
As a data broadcast authentication protocol, the primary objective of GNSS-TESLA is to authenticate

the GNSS data. In order to do so, the receiver has to ensure that the received signal is not delayed by

more than 𝑇𝐿, as otherwise an adversary could forge the data and MACs once the key is available.

Therefore, the following precondition must hold true to avoid data forging attacks:

 𝑡𝑡𝑟𝑢𝑒
𝑆 − 𝑡𝑠𝑖𝑔

𝑆 < 𝑇𝐿 (3)

The receiver can receive 𝑡𝑠𝑖𝑔
𝑆 but it does not know 𝑡𝑡𝑟𝑢𝑒

𝑆 , only 𝑡𝑟𝑒𝑓
𝑆 . It has to make a hypothesis on the

value of 𝑡𝑡𝑟𝑢𝑒
𝑆 based on 𝑡𝑟𝑒𝑓

𝑆 and B. In the following, we take as a reference a worst-case scenario,

whereby our estimation of 𝑡𝑡𝑟𝑢𝑒
𝑆 takes the worst possible value within the confidence interval. The

worst possible value is such that 𝑡𝑟𝑒𝑓
𝑆 is delayed as much as possible with respect to 𝑡𝑡𝑟𝑢𝑒

𝑆 , as this

maximizes the success probability of a delay attack. This condition is fulfilled if 𝑡𝑡𝑟𝑢𝑒
𝑆 had the maximum

possible value of the interval. We therefore take an estimated true time value, for this worst-case

scenario, as follows:

 𝑡̂𝑡𝑟𝑢𝑒,𝑊
𝑆 = 𝑡𝑟𝑒𝑓

𝑆 + 𝐵 (4)

From (3) and (4) we can define the following precondition:

 𝑡𝑟𝑒𝑓
𝑆 − 𝑡𝑠𝑖𝑔

𝑆 < 𝑇𝐿 − 𝐵 (5)

Figure 1 illustrates how 𝑡̂𝑡𝑟𝑢𝑒,𝑊
𝑆 is obtained, and the application of 𝑇𝐿 from it to determine the region

free of data forging. If 𝑡𝑠𝑖𝑔
𝑆 is at the left of the 𝑇𝐿 interval, the data may be forged.

Figure 1 – Representation of the receiver reference time, the reference time bound, the estimated true time for the worst-
case scenario, and the loose time required for startup

If B is so high that the whole confidence interval (2B) is greater than 𝑇𝐿, there will be a region of service

unavailability, or potential false alerts if the service is provided. These false alerts will occur when 𝑡𝑟𝑒𝑓
𝑆

runs too fast and 𝑡𝑡𝑟𝑢𝑒
𝑆 is in the low end of the interval. This is shown in Figure 2. In order to avoid false

alerts, the following precondition must hold:

𝐵 <

𝑇𝐿

2

(6)

 969

Figure 2 – False alert if B is too high and 𝑡𝑟𝑒𝑓 is advanced with respect to 𝑡𝑡𝑟𝑢𝑒

In summary, the three preconditions required for GNSS-TESLA initialization are:

 Bounding precondition: The reference time confidence bound B must bound the error of 𝑡𝑟𝑒𝑓
𝑆 .

 Synchronization precondition: The time difference of the worst-case estimated true time minus

the signal time must be below 𝑇𝐿 (5).

 False alert precondition: To prevent false alerts, the reference time confidence bound B must be

below half of 𝑇𝐿 (6).

In the following, we analyze how the receiver must treat different cases of 𝑡𝑠𝑖𝑔
𝑆 with respect to 𝑡𝑟𝑒𝑓

𝑆 .

We use Figure 3, which is equivalent to Figure 1 and fulfils (6).

Figure 3 – startup process with different signal times

Case 1) 𝑡𝑠𝑖𝑔,1
𝑆 < 𝑡̂𝑡𝑟𝑢𝑒,𝑊

𝑆 − 𝑇𝐿 : The received signal may be a replay with forged data. The receiver

must stop and raise an alert.

Case 2) 𝑡̂𝑡𝑟𝑢𝑒,𝑊
𝑆 − 𝑇𝐿 < 𝑡𝑠𝑖𝑔,2

𝑆 < 𝑡𝑟𝑒𝑓
𝑆 − 𝐵 : The received signal cannot be a replay with forged data,

but may be a replay, as it is out of the reference time boundaries. The receiver may stop and raise an

alert. It may also elect to proceed after raising the alert should the authentication otherwise pass,

depending on the use case and application criticality.

Case 3) 𝑡𝑟𝑒𝑓
𝑆 − 𝐵 < 𝑡𝑠𝑖𝑔,3

𝑆 < 𝑡𝑟𝑒𝑓
𝑆 + 𝐵 : The received signal is within the boundaries of the

reference time. The startup process can continue.

Case 4) 𝑡𝑟𝑒𝑓
𝑆 + 𝐵 < 𝑡𝑠𝑖𝑔,4

𝑆 : The received signal is in advance with respect to the reference time. It

cannot therefore be a replay with forged data, but it is out of the reference time boundaries. The signal

may be an advanced replica, and if processed, the authentication verification would fail. It is also

possible that the previous calibration of the reference time was inaccurate or corrupted. The receiver

should raise an alert. It may also elect to potentially proceed should the authentication otherwise pass.

Therefore, for a more comprehensive startup process, that includes not only data forging, but also the

detection of unauthentic signals, we may consider a fourth precondition:

 970

 Signal replay precondition: the difference between the reference time 𝑡𝑟𝑒𝑓
𝑆 and the signal time

𝑡𝑠𝑖𝑔
𝑆 must be below the reference time confidence bound B (7).

 | 𝑡𝑟𝑒𝑓
𝑆 − 𝑡𝑠𝑖𝑔

𝑆 | < 𝐵 (7)

Analysis of False Alerts and Missed Detections
We can reformulate (5) into the equivalent expression (8) as follows:

 𝑡𝑟𝑒𝑓
𝑆 − 𝑡𝑠𝑖𝑔

𝑆 < 𝑇𝐿 − 𝐵

(𝑡𝑟𝑒𝑓
𝑆 − 𝑡𝑡𝑟𝑢𝑒

𝑆) − (𝑡𝑠𝑖𝑔
𝑆 − 𝑡𝑡𝑟𝑢𝑒

𝑆) < 𝑇𝐿 − 𝐵

𝑏𝑟𝑒𝑓 − 𝑏𝑠𝑖𝑔 < 𝑇𝐿 − 𝐵

(8)

Where 𝑏𝑟𝑒𝑓 and 𝑏𝑠𝑖𝑔 are the time biases with respect to the true time. Note also that the bounding

precondition can be expressed as follows:

 −𝐵 < 𝑏𝑟𝑒𝑓 < 𝐵 (9)

We analyze two hypotheses: the hypothesis of no attack (𝐻0), and the hypothesis of an attack leading

to data forging at the minimum required delay (H1). Table 1 presents how they affect the bounding

and synchronization preconditions. In the case of the null hypothesis 𝐻0, as the true signal is received,

there is no signal offset, so 𝑏𝑠𝑖𝑔 = 0 . This means that the synchronization precondition to fulfil is 𝑏𝑟𝑒𝑓 <

 𝑇𝐿 − 𝐵. When the receiver is under attack (𝐻1), we assume that the signal is delayed by the minimum

necessary to forge the data, so 𝑏𝑠𝑖𝑔 = -𝑇𝐿, and the synchronization precondition to fulfil becomes

𝑏𝑟𝑒𝑓 < −𝐵. However, the bounding and synchronization preconditions cannot be fulfilled

simultaneously, and therefore there cannot be missed detections.

Hypothesis Bounding
Precondition (9)

Synchronization
Precondition (8)

Receiver operates under null hypothesis (no attack)
𝐻0: 𝑏𝑠𝑖𝑔 = 0

−𝐵 < 𝑏𝑟𝑒𝑓 < 𝐵 𝑏𝑟𝑒𝑓 < 𝑇𝐿 − 𝐵

Receiver operates under alterative hypothesis (attack)
𝐻1: 𝑏𝑠𝑖𝑔 = -𝑇𝐿

−𝐵 < 𝑏𝑟𝑒𝑓 < 𝐵 𝑏𝑟𝑒𝑓 < −𝐵

Table 1 – Hypothesis testing of no attack (H0) and attack with the minimum delay required for data forging (H1), including
precondition 1, to be fulfilled to continue startup process, and precondition 2, fulfilled by the definition of B.

Figure 4 and Figure 5 show the result of the bounding (9) and synchronization (8) preconditions for

different values of 𝑏𝑟𝑒𝑓, where Figure 4 represents the null hypothesis and Figure 5 the alternative

one. The figures assume that there is no resynchronization and B grows linearly over time since the

last calibration.

We can see in Figure 4 that the false-alert zone starts after B > TL/2, as anticipated by the false alert

precondition (6). This is depicted by the triangular orange zone in the figure: while B < TL/2, we can

ensure no false alerts, but after that, the possible inaccuracy of 𝑏𝑟𝑒𝑓 will often lead to the case depicted

in Figure 2. Due to this reason, the recommended operational zone, colored in green, stops when B =

TL/2. The light grey areas represent when the bounding precondition is not fulfilled, and the dark grey

areas when neither the bounding nor the synchronization preconditions are fulfilled.

Figure 4 also shows three sample cases, C1, C2, and C3, to better illustrate the precondition checks. In

C1, where B < 𝑇𝐿/2, if the bounding precondition (8) is fulfilled, there will be no false alerts, whatever

is the value of 𝑏𝑟𝑒𝑓. In C2, as B > 𝑇𝐿/2, the synchronization precondition (9) is not fulfilled for high

 971

values of 𝑏𝑟𝑒𝑓, leading to a false alert. This effect is aggravated in C3, where B > 𝑇𝐿. The main problem

of exceeding B > 𝑇𝐿 is that, even if 𝑏𝑟𝑒𝑓 is small and therefore the reference time is around the true

time, a false alert will be raised. Note that the fact that the bounding and synchronization

preconditions will be sometimes fulfilled beyond B > 𝑇𝐿, for negative 𝑏𝑟𝑒𝑓 values, does not imply that

signals replayed with a delay beyond 𝑇𝐿 will go undetected, as shown in Figure 5.

Figure 4 – Detection regions over time since last calibration, in case of no attack, 𝐻0: 𝑏𝑠𝑖𝑔 = 0.

Figure 5 – Detection regions over time since last calibration, in case of data forging attack, 𝐻1: 𝑏𝑠𝑖𝑔 = -𝑇𝐿. As both

preconditions can’t hold simultaneously irrespectively of 𝑏𝑟𝑒𝑓, attacks are detected.

Figure 5 shows the alternative hypothesis 𝐻1 where the signal is delayed with 𝑏𝑠𝑖𝑔 = -𝑇𝐿, which is the

minimum delay to forge the data. In this case, the check will only pass if 𝑏𝑟𝑒𝑓 < −𝐵. However, this

condition will never be fulfilled due the bounding precondition, so if the signal is data-spoofed, the

process will always detect it, as long as B effectively bounds the reference time error. This is true also

of B > 𝑇𝐿.

 972

GNSS-TESLA Synchronization Procedures
This section presents two proposals for synchronization startup. The proposals are based on the

abovementioned three preconditions (bounding, synchronization, and false alerts), with some small

variants. The first method for implementing the synchronization logic during GNSS-TESLA receiver

startup is depicted in Figure 6. It assumes that the receiver can periodically re-calibrate its internal

clock, and is based on the following steps:

1. At startup, get 𝑡𝑟𝑒𝑓
𝑆 and B(𝑡𝑟𝑒𝑓

𝑆 – tlast_calibration) from a reference receiver Real Time Clock (RTC) (e.g.

[7] [8]).

2. Get 𝑡𝑠𝑖𝑔
𝑆 from the signal in space, by calculating a GNSS position and time fix, still to be

authenticated.

3. Lookup the appropriate value of 𝑇𝐿 for the TESLA protocol.

4. Check that the internal reference time confidence bound B is within limits (𝑇𝐿/2). If not, raise an

alert to the operator to initiate an alternate synchronization procedure.

5. Check that 𝑡𝑟𝑒𝑓
𝑆 − 𝑡𝑠𝑖𝑔

𝑆 < 𝑇𝐿 − 𝐵. If this is the case, continue startup.

6. If 𝑡𝑟𝑒𝑓
𝑆 − 𝑡𝑠𝑖𝑔

𝑆 ≥ 𝑇𝐿 − 𝐵, raise an alert to a potential spoofing attack.

7. Check the validity of the TESLA keys and MACS, if they are valid then proceed as normal and collect

new data to calibrate the RTC (i.e. 𝑡𝑟𝑒𝑓
𝑆 – 𝑡𝑠𝑖𝑔

𝑆 data presuming that 𝑡𝑠𝑖𝑔
𝑆 = 𝑡𝑡𝑟𝑢𝑒

𝑆 , under the more

detailed assumptions below).

Figure 6 – GNSS-TESLA synchronization startup flow diagram – Method 1

Another similar synchronization procedure for GNSS-TESLA receiver startup is depicted in Figure 7. It

is based on the following steps:

1. At startup, get 𝑡𝑟𝑒𝑓
𝑆 and B(𝑡𝑟𝑒𝑓

𝑆 – tlast_calibration) from the reference time source (receiver real time

clock, external source, or other).

2. Get 𝑡𝑠𝑖𝑔
𝑆 from the signal in space, by calculating a GNSS position and time fix, still to be

authenticated.

 973

3. Lookup the appropriate value of 𝑇𝐿 for the TESLA protocol (the calculation of 𝑇𝐿 is out of the scope

of this paper).

4. Check that the internal reference time confidence bound B is within limits (𝑇𝐿 / 2). If not, re-

synchronize through an alternate synchronization procedure and go to step 1 if possible.

5. Check that the difference between 𝑡𝑠𝑖𝑔
𝑆 and 𝑡𝑟𝑒𝑓

𝑆 is within 𝑡𝑟𝑒𝑓
𝑆 boundaries defined by B (signal

replay precondition).

6. If 𝑡𝑠𝑖𝑔
𝑆 and 𝑡𝑟𝑒𝑓

𝑆 differ beyond the expectation, check if a signal replay with data forging attack is

possible (synchronization precondition). If this is the case, report a possible data forging alert. If

not, report a signal anomaly (unauthentic signal).

7. If the result of 5. is positive, as this precondition is more restrictive than the synchronization

precondition, consider the GNSS data trustable and continue authenticating the data. If the

authentication is valid (i.e. it passes the authentication verification), the position can be considered

as data-authenticated. Otherwise raise an authentication alert.

Figure 7 – GNSS-TESLA synchronization startup flow diagram - – Method 2

The second procedure slightly differs from the first one mainly in that it incorporates the signal replay

precondition. Also, the management of unfulfilled preconditions is slightly different. In summary, these

are just examples that show that, depending on the security profile of the application, some variants

in the startup procedure can be introduced. We finalise this section with some further considerations

on signal synchronization and RTC calibration.

Signal synchronization: The above procedures assume that the 𝑡𝑠𝑖𝑔
𝑆 is obtained once the SIS of at least

four satellites is acquired and tracked and a still-unauthenticated position and time solution is

B < TL/2
N

Resynchronize

Y

Unauthentic Signal
|tS

ref - t
S

sig| < B

Y

Operate as normal

N
tS

ref - t
S

sig < TL - B
N

Y

Unauthentic Signal
Data Forging Possible

START

Get tS
ref, B, TL , and

tS
sig

Authentication valid?

Y

Authentication Alert
N

 974

calculated. However, the receiver could also obtain the signal time from a single satellite, at the

expense of an uncertainty of some milliseconds to be accounted for in the process.

Real-time clocks and their calibration: A real-time clock is an independent clock that keeps time even

when the receiver is powered off. In this concept it will need to be calibrated relative to GNSS time.

This should be done very carefully and only using data known to be valid. Initially, this calibration may

be performed by the receiver manufacturer. In the Method 1 described above, two different

calibration approaches are used: An initial calibration in a trusted environment (i.e. where spoofing is

not observed and trusted not to be present) or against an independent and trusted time source. These

approaches are beyond the scope of this paper and will not be further described. Another approach

is when B is consistently below TL/2, then the calibration can be updated when all of the above

conditions are met. For example, an RTC may have an accuracy bound of five parts per million (ppm)

or to within five seconds after one million seconds have elapsed. Thus if we knew 𝑡𝑟𝑒𝑓
𝑆 accurately one

day (86,400 seconds) ago, then we would have a value for B of 0.432 seconds after being turned off

for one day. Assuming we follow our above procedure, once we passed all of our checks and

authenticated the signal, we could collect and store values of 𝑡𝑟𝑒𝑓
𝑆 – 𝑡𝑠𝑖𝑔

𝑆 . These would be used to

calibrate 𝑡𝑟𝑒𝑓
𝑆 the next time it is called upon at start up, assuming, as abovementioned, that the receiver

places a certain confidence on the authenticity of 𝑡𝑠𝑖𝑔
𝑆 . Further information and characterization of

RTCs can be found in [9].

Authenticated Network Time Synchronization
This section and the following ones deal with practical aspects of GNSS receiver synchronization for

different applications, starting with assisted receivers who can benefit from authenticated network

time synchronization. In the event that the user clock uncertainty has grown beyond the secure time

synchronization requirement, then a re-synchronization of the RTC will be required. One way to

achieve this is through an authenticated network time transfer. As described in [11], two-way

communication is a necessary condition for secure time transfer. This is the only mechanism to avoid

a simple replay attack. The time-seeker constructs a message requesting a time response from a time

server, including a “nonce”, or cryptographically secure random number. The server responds with a

time estimate and a digital signature, or message authentication code, that includes both the server’s

timestamp and the client-generated nonce. In this way a causal link is established between the request

and the response. The client measures the round-trip time between client and server and generates a

best estimate of the current local time as the server time plus one half the round trip time. An

implementation of this procedure is also described in [5] for the TESLA protocol, as abovementioned.

This approach remains vulnerable to a Man-in-the-Middle (MitM) attack, in which a malicious

adversary positions themselves on the network between the client and server and selectively delays

incoming and outgoing packets. For example, in the extreme case where the client and server are co-

located, the true round trip time should be zero, however the attacker can deliver the request packets

to the server with no delay, and the response packets to the client with a delay of, say, one second,

thereby yielding a client clock error of 0.5 seconds early. On the other hand the attacker can delay the

request packets and deliver the response packets promptly thereby yielding a client clock error of 0.5

seconds late. The maximum attacker induced time error is +/- RTT/2, where RTT is the round trip time.

 975

Figure 8 shows the principle of operation of all network based time synchronization mechanisms. Here

time flows downwards, with the client timeline on the left and the server on the right. The nominal

operating condition is shown in the left plot, while the condition under a MitM attack is shown on the

right.

Figure 8 - Network time synchronization. Left: no attack; Right: Man-in-the-Middle attack. Note the extra delay 𝛿𝑡
introduced by the MitM, this translates into a clock error of 𝛿𝑡/2.

The Network Time Protocol (NTP) is one of the most commonly used network time synchronization

protocols, but while a number of attempts have been made to introduce cryptographic authentication

it remains largely used without any security features. The latest effort to address this at the standards

level is the Network Time Security (NTS) over NTP protocol, which is currently at the draft stage with

the Internet Engineering Task Force (IETF) [12] [13]. This protocol is essentially as described above, but

the individual time offsets from multiple servers are aggregated and filtered over long time periods. In

general NTP is designed to run continuously providing accurate and stable time to network connected

devices.

An alternative authenticated network synchronization protocol has recently been proposed by Google.

This protocol is called Roughtime and is based on a snapshot approach to synchronization with, as the

name suggests, a relatively low accuracy, but with very high reliability. Again the time synchronization

is very similar to that described above, but Roughtime utilises multiple servers in a chain configuration.

The protocol specifically allows the detection of malicious spoofers and their elimination from the time

transfer computation. This protocol is also currently undergoing review in the IETF standardization

process [12] [13].

Both NTS and Roughtime rely on standard network communications protocols, and as such the

uncertainty bound on the transferred time is constrained to one half of the measured round trip time,

due to the vulnerability to MitM attacks described above. With a good geographic spread of servers,

round trip times of the order of 10’s to 100’s of milliseconds can be expected given a reasonably good,

low latency network connection, such as ethernet or 3G data connections. Thus either of these two

protocols, or indeed any other similar protocol, are viable candidates for the resynchronization of the

reference clock, provided that a reliable network connection is periodically available at a rate

commensurate with the resynchronization needs of the RTC.

 976

Application to Aviation
The above approach is very well suited for commercial aviation as these aircraft rarely go 24 hours

without being powered on and they move from one location to another. Therefore, it is highly unlikely

that they will be subjected to spoofing for extended periods of time. A successful attack on our

synchronization approach would be to echo valid signals, but to slowly drive the receiver time

backwards until it is more than TL behind the true time. As a result, TL should be chosen such that this

requires many days to succeed. For example, again using 5 ppm as the specification on the RTC along

with a value of 6 seconds for TL would require that a spoofer spend at least more than a week slowly

offsetting the signal before they can successfully offset the receiver clock sufficiently. Unfortunately,

general aviation aircraft (as well as many other users) may indeed go more than a week without

operating their receivers and updating their calibration. Here we would require either a tighter

specification on the RTC (e.g. 1 ppm), a larger TL , or an alternative calibration method.

One possible solution is to use a method of multiple instances where different MACs are sent with

different TL values. For example, one MAC can use keys that are released 6 seconds later while another

MAC is also transmitted, but this MAC uses a key that will be released 120, or 300 seconds later, as

implemented e.g. for Galileo OSNMA with the slow MAC concept [10]. An advantage of this approach

is that that the same TESLA keychain may be used for both MACs. Thus, the required number of bits

to be transmitted is minimized as a MAC may be only 30 bits [3]. These slow MACs also do not need

to be transmitted nearly as often as the fast MACs. Following our same example, if the user has not

turned on their receiver in the last two weeks, but has turned it on in the last forty, then they will have

to wait at least 120 seconds to validate the slow MAC but then they will have been able to verify that

the received data has not been forged and they can now use the received signal to update the

calibration on their RTC, under the assumption that the signal is trusted. Further, with a TL of two

minutes, most operators should have access to an independent time source with greater accuracy (e.g.

wrist watch, laptop with NTP, etc.).

Conclusions and Future Work
Independent loose time synchronization of GNSS receivers from an external time reference of an

accuracy of some seconds or minutes is required for GNSS time-delayed authentication protocols, be

it for data or spreading code authentication. It may also be a useful feature to protect in general against

spoofing attacks.

This paper looks at independent time synchronization processes particularized for the TESLA protocol

applied to GNSS, establishing the necessary and recommended preconditions. The GNSS receiver must

provide, at the synchronization event S, its reference time 𝑡𝑟𝑒𝑓
𝑆 and a bound B of its error (bounding

precondition), and check that 𝑡𝑟𝑒𝑓
𝑆 and the time from the GNSS signal 𝑡𝑠𝑖𝑔

𝑆 comply with this inequality:

𝑡𝑟𝑒𝑓
𝑆 − 𝑡𝑠𝑖𝑔

𝑆 < 𝑇𝐿 − 𝐵 (synchronization precondition). The receiver must also re-synchronize before B

exceeds 𝑇𝐿/2 to avoid false alerts (false alert precondition). If B exceeds this limit, data forging still will

be detected, although with an increasing false alert rate. In addition, if the difference between 𝑡𝑟𝑒𝑓
𝑆

and 𝑡𝑠𝑖𝑔
𝑆 is above B, the signal can be considered unauthentic (signal replay precondition).

Secure GNSS-TESLA synchronization procedures at startup based on these rules are proposed, with

some considerations about RTC recalibration, in case an RTC is used as the external time reference.

 977

The paper also qualitatively analyses external synchronization through secure time transfer from

assistance networks, and the potential implementation of such procedures in the domain of aviation.

Future work on the topic includes defining a logic when B exceeds 𝑇𝐿/2, depending on whether the

use case can tolerate false alerts, and in that case, how far the receiver could exceed that region

depending on the tolerable false alert rate. In addition to this, the bound B was assumed to increase

monotonically and linearly, but in the future this bound, its evolution, and its integrity level will need

to be properly characterized. Other remaining work include the recalibration procedures, including

conditions on which the receiver can be recalibrated (i.e. the bound B can be reset to zero or reduced),

and the development and experimentation of external synchronization procedures based on real

receivers and RTCs.

References

[1] Anderson, Jon M.; Carroll, Katherine L.; et al., "Chips-Message Robust Authentication (Chimera)

for GPS Civilian Signals," in ION GNSS+, Portland, OR, 2017.

[2] L. Scott, "Anti-Spoofing & Authenticated Signal Architectures for Civil Navigation Systems," ION

GPS, 2003.

[3] A. Neish, T. Walter and J. D. Powell, "SBAS Data Authentication: A Concept of Operations," in

ION GNSS+ 2019, Miami, FL, 2019.

[4] I. Fernandez-Hernandez, V. Rijmen, G. Seco-Granados, J. Simon, I. Rodriguez and J. D. Calle, "A

Navigation Message Authentication Proposal for the Galileo Open Service," Journal of the

Insitute of Navigation, no. Spring, pp. pp. 85-102, 2016.

[5] A. Perrig, R. Canetti, J. D. Tygar and D. Song, "The TESLA Broadcast Authentication Protocol,"

CryptoBytes, 2002.

[6] V. Roca, A. Francillon and S. Faurite, "RFC 5776 - Use of Timed Efficient Stream Loss-Tolerant

Authentication (TESLA) in the Asynchronous Layered Coding (ALC) and NACK-Oriented Reliable

Multicast (NORM) Protocols," Internet Engineering Task Force (IETF), 2010.

[7] "STMicroelectronics," [Online]. Available: https://www.st.com/en/clocks-and-timers/real-time-

clock-rtc-ics.html. [Accessed Dec 2019].

[8] Micro Crystal, [Online]. Available: https://www.microcrystal.com/en/products/real-time-clock-

rtc/. [Accessed Dec 2019].

[9] SEIKO EPSON CORPORATION, "High-Stability Time Adjustment with Real-Time Clock Module -

White paper," 2014.

 978

[10] I. Fernández, V. Rijmen, T. Ashur, P. Walker, G. Seco, J. Simón, C. Sarto, D. Burkey and O.

Pozzobon., "Galileo Navigation Message Authentication Specification for Signal-In-Space

Testing – v1.0," European Commission, 2016.

[11] L. Narula and T. E. Humphreys, "Requirements for secure clock synchronization," IEEE Journal of

Selected Topics in Signal Processing , vol. 12, no. 4, p. pp. 749–762., 2018.

[12] D. Franke, D. Sibold, K. Teichel, M. Dansarie and R. Sundblad, "Network Time Security for the

Network Time Protocol. Internet-Draft.," IETF Secretariat, url: http://www.ietf.org/internet-

drafts/draft-ietf-ntp-using-nts-for-ntp-20.txt, July 2019.

[13] A. Malhotra, A. Langley and W. Ladd, "Roughtime. Internet-Draft," IETF Secretariat,

http://www.ietf.org/internet-drafts/draft-roughtime-aanchal-03.txt, July 2019.

