Methodology and Case Studies of Signal-in-Space Error Calculation

Top-down Meets Bottom-up

Grace Xingxin Gao*, Haochen Tang*, Juan Blanch*,
Jiyun Lee+, Todd Walter* and Per Enge*

*Stanford University, USA

+ KAIST, Korea

September 23, 2009

Research funded by Federal Aviation Administration

Outline

- Introduction Signal-in-space error
- Methodology Top-down
- Methodology Bottom-up
- Case Studies
 - Planned satellite position outage, PRN 10, Day 39 of Year 2007
 - Unplanned clock anomaly, PRN 07, Day 229 of Year 2007

Error Sources of GPS Signals

Motivation & Prior Work

Motivation

- signal-in-space, propagation and receiver errors have been well studied, but better understanding is still required
- Essential for GPS integrity
 - Satellite failures are identified if the signal-in-space errors exceed 4.42*URA (User Range Accuracy)
 - The statistics of signal-in-space errors are useful for evaluating URA

Prior work of signal-in-space error calculation

- KAIST, Jiyun Lee. GEAS presentations since early 2009
- Ohio Univ., Frank Van Grass. GEAS presentation 2009
- FAATC, Tom McHugh for WAAS PAN report
- IIT, Boris Pervan, et al. GEAS presentation in Sept. 2008
- Aerospace, Karl Kovach, presented at SCPNT in Nov. 2008
- David L. M. Warren and John F. Raquet, Broadcast vs. precise GPS ephemerides: a historical perspective, GPS Solutions, 2004
- Jefferson D, Bar-Sever Y (2000) Accuracy and consistency of broadcast
 GPS ephemeris data. Proc ION-GPS-2000

Signal in Space (SIS) Errors

Main errors

- Satellite position
- Satellite clock

Other

- code-carrier incoherence
- signal deformation
- Inter-signal errors
- satellite antenna phase center variation
- satellite antenna group delay center variation
- relativistic correction errors

Methodology Overview: Top-down vs. Bottom-up

Bottom-up Methodology, Flow Chart

Top-down Methodology, Data Source

Data Source: Wide Area Augmentation System (WAAS) / National Satellite Test Bed (NSTB) Network

- 38 stations in North America, with 3 receivers per station
- Data update rate: 1 Hz
- Output pseudo-range measurements and navigation messages

Bottom-up Methodology, Data Sources

Broadcast ephemeris: International GNSS Service (IGS) network

Precise ephemeris: National Geospatial-Intelligence Agency (NGA) network

http://earth-info.nga.mil/GandG/sathtml/StationMap.gif

Methodology Comparison: Top-down vs. Bottom-up

	Top-down	Bottom-up
Data Source	WAAS & NSTB	IGS & NGA
Control of data source	Yes	No
Data update rate	High, every 1 sec	Low, 15 min
Depend on post-processed truth	No	Yes
Include all SIS errors	Yes	No
Receiver glitches	No for WAAS	Yes
Remove all non SIS errors	No	Yes
Receiver coverage	Limited (CONUS)	Worldwide, but not even
Data availability	Difficult to retrieve past data	Available

Case Studies

Planned satellite position outage, PRN 10, Day 39 of Year 2007

Ground Track of PRN 10, Day 39-40 of Year 2007

Worst Projected Ephemeris Error

PRN 10, Day 39 of 2007 Worst projected ephemeris error ($\Delta X, \Delta Y, \Delta Z, \Delta b$)

Top-down vs. Bottom-up, 100-sec Smoothing

PRN 10 Day 39

100-sec smoothing

Atlantic City NJ, 39.44° N 74.56° W

Discrepancies of Top-down vs. Bottom-up, 100-sec Smoothing

Top-down vs. Bottom-up, 15-min Smoothing

PRN 10 Day 39

15-min smoothing

Atlantic City NJ, 39.44° N 74.56° W

Discrepancies of Top-down vs. Bottom-up, 15-min Smoothing

Case Studies

Unplanned clock anomaly, PRN 07, Day 229 of Year 2007

Ground Track of PRN 07, Day 229 of Year 2007

Worst Projected Ephemeris Error

PRN 07, Day 229 of 2007 Worst projected ephemeris error ($\Delta X, \Delta Y, \Delta Z, \Delta b$)

Top-down vs. Bottom-up, Arcata CA, 100-sec Smoothing

Discrepancies of Top-down vs. Bottom-up, 100-sec Smoothing

Conclusion (1/2)

- Compared two approaches to calculate signal-in-space error
 - Top-down: strips off all other errors from the pseudo-range errors, leaves alone signal-in-space errors
 - Bottom-up: builds up signal-in-space errors from satellite position errors and clock errors
- Top-down and bottom-up both have pros and cons

	Top-down	Bottom-up
Data Source	WAAS & NSTB	IGS & NGA
Control of data source	Yes	No
Data update rate	High, every 1 sec	Low, 15 min
Depend on post-processed truth	No	Yes
Include all SIS errors	Yes	No
Receiver glitches	No for WAAS	Yes
Remove all non SIS errors	No	Yes
Receiver coverage	Limited (CONUS)	Worldwide, but not even
Data availability	Difficult to retrieve past data	Available

Conclusion (2/2)

Two case studies

	PRN 10, Day 39 of Year 2007	PRN 07, Day 229 of Year 2007
Planned outage?	Yes	No
Outage type	Satellite position	Satellite clock
Site investigated	Atlantic City, NJ	Arcata, CA

- Top-down and bottom-up match well for both normal and abnormal cases
- The discrepancies are independent of the filter length of carrier smoothing
- The discrepancies are due to
 - Inaccurate estimate of iono/tropo/multipath/receiver clock errors
 - Other error sources, e.g. code-carrier incoherence, signal deformation, Intersignal errors, satellite antenna phase center variation, satellite antenna group delay center variation, relativistic correction errors, etc
 - Inaccuracies in precise ephemerides
 - Incorrect choice of active broadcast ephemeris
- The discrepancies are within +/-4 meters as a starting point
- Near term goal: better than 1 m

Thank You!

The authors acknowledge Tom McHugh from the FAA Tech Center for providing the WAAS/NSTB data of the 2007 outages.

Back-up Slides

Top-down Methodology in Detail: Removing Ionosphere Error

Dual-frequency iono-free combination:

$$\rho_{IF} = \frac{f_{L1}^2}{f_{L1}^2 - f_{L2}^2} \rho_{L1} - \frac{f_{L2}^2}{f_{L1}^2 - f_{L2}^2} \rho_{L2},
\Phi_{IF} = \frac{f_{L1}^2}{f_{L1}^2 - f_{L2}^2} \Phi_{L1} - \frac{f_{L2}^2}{f_{L1}^2 - f_{L2}^2} \Phi_{L2},$$

 ρ : Code measurement

Φ: Carrier measurement

 $ho_{{\scriptscriptstyle I\! F}}$: lono-free combination of code measurements

Top-down Methodology in Detail: Removing Troposphere Error

Estimate and removal of troposphere error based on WAAS Minimum Operational Standard (MOPS):

Top-down Methodology in Detail: Removing Receiver Multipath Error

Carrier smoothing:

$$\frac{\overline{\rho}(t_i) = \frac{1}{M} \rho(t_i) + \frac{(M-1)}{M} [\overline{\rho}(t_{i-1}) + (\Phi(t_i) - \Phi(t_{i-1}))],$$

$$\overline{\rho}(t_1) = \rho(t_1).$$

 $\rho(t)$: Code measurement

 $\Phi(t)$: Carrier measurement

 $\rho(t)$: Smoothed pseudo-range measurement

Top-down Methodology in Detail: Removing Receiver Clock Error

Different among satellites, cancels out after averaging

- Receiver clock error is a common error for pseudo-ranges from all satellites
- For healthy satellites, the signal in space error is zero-mean i.i.d.
- Averaging the remaining errors from those healthy satellites cancels out satellite in space errors and leaves alone the user clock bias

Common among satellites, remains after averaging

Bottom-up Methodology, Data Sources

- International GNSS Service (IGS) network
 - Provide broadcast ephemeris
 - 350+ receivers worldwide
 - Output pseudo-range measurements and navigation data in RINEX format
 - Data update every 2 hours

http://igscb.jpl.nasa.gov/network/netindex.html

- National Geospatial-Intelligence Agency (NGA) network
 - Provide post-processed true ephemeris
 - 10+ receivers worldwide
 - Output satellite position and clock information
 - Data update every 15 minutes

http://earth-info.nga.mil/GandG/sathtml/StationMap.gif

Bottom-up Methodology in Detail

Ephemeris Error – Satellite Position

PRN 10, Day 39 of 2007

Ephemeris error ($\Delta X, \Delta Y, \Delta Z$)

The ephemeris anomaly of PRN 10 on Day 39 is due to satellite position errors.

Ephemeris Error – Clock

PRN 07, Day 229 Year 2007

The clock error is the cause of the anomaly.