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ABSTRACT

For most Global Positioning System (GPS) standard posi-
tioning service (SPS) users, real-time satellite orbits and
clocks are derived from predicted ephemeris and clock
parameters in broadcast navigation messages. Broadcast
ephemeris and clock errors, the differences between the
broadcast orbits/clocks and the truth, account for a dominant
portion of signal-in-space (SIS) errors. Traditionally, SIS
user range errors (UREs) is assumed to follow a zero-mean
normal distribution with standard deviation represented by
the broadcast user range accuracy (URA). In addition, ad-
vanced receiver autonomous integrity monitoring (ARAIM)
may rely on an assumption that UREs of different satellites
are uncorrelated. This paper is intended to examine these
assumptions and give a thorough characterization of core
SIS error behavior based on the statistics of recent data.

The radial, alongtrack, and crosstrack ephemeris errors and
clock errors are computed by comparing the broadcast ephe-
merides/clocks with the precise ones, followed by the gener-
ation of instantaneous SIS UREs, global-average SIS UREs,
and worst-case SIS UREs. Anomalous satellite behaviors
are identified and excluded by an outlier filter. Robust statis-
tics techniques are implemented to avoid the impact of sta-
tistical outliers.

An analysis of long-term stationarity is first carried out to
determine the range of useful data. The SIS errors are then
characterized with respect to mean and standard deviation,
spatial correlation, normality, relation between rms URE
and URA, and correlation among different satellites. The
results show that mean of SIS errors are nonzero for several
satellites; the radial errors, alongtrack errors, and clock er-
rors are relatively strongly correlated; UREs usually have a
non-Gaussian distribution; different satellites have different
interpretation of URA; and the UREs of different satellites
are slightly correlated.



INTRODUCTION

The Global Positioning System (GPS) is so far the most
widely used space-based global positioning, navigation, and
timing system. GPS works on the principle of trilateration,
in which the measured distance from a user receiver to at
least four GPS satellites in view as well as the positions
and clocks of these satellites are the prerequisites for the
user receiver to fix its exact position [1]. For most GPS
standard positioning service (SPS) users, real-time satellite
positions and clocks are derived from ephemeris parameters
and clock correction terms in navigation messages broadcast
by GPS satellites. The GPS Control Segment routinely gen-
erates navigation message data on the basis of a prediction
model and the measurements at more than a dozen monitor
stations [2]. The differences between the broadcast eph-
emerides/clocks and the truth account for signal-in-space
(SIS) errors. SIS errors are mainly contributed by the errors
due to the

• Space Segment, such as satellite acceleration uncertainty,
clock instability, satellite antenna variation [3], and sig-
nal imperfection [4], and the errors due to the

• Control Segment, such as the estimation errors, predic-
tion errors, and curve fit errors in broadcast ephemerides
and clocks [5].

Therefore, SIS errors are difficult to describe because they
are neither purely stochastic nor purely deterministic.

However, characterization and estimation of the core SIS
error behavior are of vital importance for GPS SIS integrity.
For example, receiver autonomous integrity monitoring
(RAIM) (or Advanced RAIM (ARAIM) [6]) and GPS III
integrity may rely on the following assumptions:

• Mean of SIS errors is close to zero;

• User range errors (UREs) are described or overbounded
by a normal distribution;

• Expected root mean square (rms) UREs are represented
by broadcast user range accuracy (URA);

• UREs of different satellites are uncorrelated.

There have been some prior work studying GPS SIS errors
[7–11], but the most of them did not focus on examining the
above assumptions. Employing the similar philosophy and
methodology as our previous paper that studies anomalous
SIS error behavior [12, 13], this paper will examine the
above assumptions and give a thorough characterization of
core SIS error behavior based on the statistics of recent
data. For the rest of this paper, we start with a description
of the methodology and then elaborate on the statistical
characterizations.

Figure 1. Procedure for computing SIS errors.

METHODOLOGY

Computation of ephemeris and clock errors

GPS ephemeris/clock errors are computed by comparing
the broadcast ephemerides/clocks with the precise, post-
processed ones. As shown in Figure 1, broadcast navigation
message data are obtained from International GNSS Service
(IGS) [14]. Our well-established data cleansing software
is employed to generate validated navigation messages that
are free of data logging errors [12, 13]. Precise ephemeri-
des/clocks from National Geospatial-Intelligence Agency
(NGA) are available every 15 minutes synchronized to GPS
time [15]. NGA precise ephemerides/clocks are regarded
as truth because they are an order of magnitude or more
accurate than the broadcast ephemerides/clocks [16].

The validated navigation messages are used to propagate
broadcast orbits/clocks at 15-minute intervals that coincide
with the precise ephemerides/clocks. The differences be-
tween broadcast and precise ephemerides are the ephemeris
errors, which are represented in the reference frame with
respect to the space vehicle: R—radial, A—alongtrack, and
C—crosstrack. The differences between broadcast and pre-
cise clocks are the clock errors, denoted by T in meters.

SIS URE metrics

GPS SIS URE is the pseudorange inaccuracy due to ephem-
eris and clock errors. For an arbitrary set of ephemeris and
clock errors (R, A,C,T ), GPS receivers at different locations
on the Earth may experience different SIS UREs. Accord-
ingly, the following four SIS URE metrics are considered in
this paper:
• Instantaneous SIS UREs computed for 20 points spread

evenly on the earth (Figure 2);
• Global average rms SIS URE given by [5]√

(0.98R − T )2 + 0.1412(A2 + C2); (1)



Figure 2. Instantaneous UREs are computed for 20 points spread
evenly on the earth, which are derived from the vertices
of a regular dodecahedron.

• Orbit-error-only rms SIS UREO defined as√
(0.98R)2 + 0.1412(A2 + C2); (2)

• Worst-case SIS URE defined as

max
|θ|≤13.88◦

(R cos θ − T +
√

A2 + C2 sin θ), (3)

where max(x) maximizes |x| and return the correspond-
ing x.

Worst-case URE can be computed either numerically from
instantaneous UREs or analytically from (R, A,C,T ) [12].
In this paper we use the latter way.

Outlier filter

Not all the SIS errors computed above should be included
in the statistics. For example, GPS receivers usually do not
use broadcast ephemerides/clocks that are set unhealthy or
older than 4 hours. The GPS SPS Performance Standard
[5] has defined a SIS not-to-exceed URE (NTE) tolerance:
4.42 times URA upper bound (UB)1 Accordingly, the SIS
errors that meet any one of the following conditions are not
included in our analysis:
• The corresponding broadcast navigation message is un-

healthy, i.e.,
– Health status word is not zero, or
– URA is greater than 48 meters [5];

• The corresponding broadcast navigation message is not
in its 4-hour fit interval;

• The corresponding precise ephemeris/clock is missing
or marked “event”;

• The corresponding worst-case URE exceeds the NTE
tolerance.

For a thorough discussion of these criteria and the anoma-
lous SIS behavior in the past, please refer to [12, 13].

1For a normal distribution, ±4.42-sigma is equivalent to 10−5 tail prob-
ability. Although the UREs generally have a heavier tail than a normal
distribution, the NTE tolerance is still a conservative threshold for out-
lier filter because URA UB is at least two times larger than the standard
deviation of UREs.

Robust statistics

Because SIS errors do not necessarily have a normal distri-
bution, the traditional statistics such as sample mean and
sample standard deviation may be affected by some extreme
samples or remaining outliers2. To cope with this problem,
we use trimmed mean (also referred to as truncated mean)
to measure the central tendency. A trimmed mean function
meanα(·) is the mean after discarding the samples at the
50α% high end and 50α% low end. Analogously, a trimmed
standard deviation function is defined as

stdα(X) =

√
meanα

(
(X −meanα(X))2). (4)

In fact, trimmed mean is a compromise between sample
mean and sample median, and trimmed standard deviation a
compromise between sample standard deviation and sample
median absolute deviation. In this paper, we use a small
value α = 0.01, i.e., use 99% of the data, to make the result
close to the mean or the standard deviation.

Normality metric

SIS errors are usually described or overbounded by a normal
distribution. Hence, it is important to know how close the
real errors are to normally distributed. Popular statistical
hypothesis tests of normality, such as Shapiro-Wilk test [17],
Lilliefors test [18], and Jarque-Bera test [19], are so strict
that they usually reject the null hypothesis that the SIS error
samples comes from a distribution in the normal family.
Even worse, these tests can not return a meaningful p-value
to tell how far the samples are from normally distributed.
Therefore, kurtosis is proposed to to quantify normality.
Kurtosis (or excess kurtosis) is defined as

γ(X) =
E(X − EX)4(
E(X − EX)2)2 − 3. (5)

A normal distribution has kurtosis γ = 0; a sub Gaussian
distribution with a lighter tail usually has kurtosis γ < 0; a
super Gaussian distribution with a heavier tail usually has
kurtosis γ > 0.

Since kurtosis involves 4th-order statistics, it relies on ex-
treme values but is vulnerable to statistical outliers. There-
fore, we use a two-step outlier filter. In the first step, the
samples with the absolute value greater than 30 meters are
discarded. 30 meters is greater than 15-sigma for most SIS
errors, so any samples beyond this threshold must be sta-
tistical outliers. In the second step, 0.01% upper and lower
ends are trimmed, i.e., 99.99% samples are involved in kur-
tosis computation, which is important for a correct kurtosis
estimation [20].

2Moreover, the sample mean may not be a maximum likelihood (ML)
estimator of expected value for non-Gaussian samples. For instance, sam-
ple median, rather than sample mean, is the ML estimator of expected
value for the samples from a two-sided exponential distribution.



STATISTICAL CHARACTERIZATION

Long-term stationarity

For the methodology and objective of this paper, any mean-
ingful statistics should be based on a range of data that are
relatively stationary. Figure 3 shows the daily median of
global average rms SIS URE, orbit-error-only UREO, and
absolute value of clock errors for two GPS satellites. The
long-term performance of IIR Space Vehicle Number (SVN)
47 is very typical, and a similar improving trend of SIS per-
formance can be seen for all other GPS satellites except IIA
SVN 27, which has a rather unusual worsening trend.

Two key messages are revealed from Figure 3. One is that
the SIS performance is dominated by the clock performance,
and the clock performance may affect the ephemeris per-
formance. The other is that the long-term performance, for
both typical and atypical, was not stationary during the last
7 years. Therefore, the statistics in the rest of the paper will
base on the data of last 3 years because the performance
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(a) Typical long-term performance: IIR SVN 47/PRN22
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(b) Atypical long-term performance: IIA SVN 27/PRN 27

Figure 3. Daily rms of global average rms SIS URE, orbit-error-
only UREO, and absolute value of clock errors.

was relatively stationary and 3×365×24×4 ≈ 105 samples
per satellite are adequate for the statistical confidence of the
core SIS error behavior.

Mean and standard deviation of SIS errors

Although ephemeris errors are generally assumed to have a
zero mean distribution, the reality may be different. Figure 4
plots the means of ephemeris errors, clock errors, instanta-
neous UREs, and worse-case UREs with a comparison to
their standard deviations. The satellites are arranged roughly
chronologically according to their Block Type3 and SVN
along the y-axis.

Figure 4 tells many stories. First of all, almost all satellites
have zero mean for their crosstrack errors, while about one
third satellites have significant nonzero mean for their along-
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Figure 4. Mean of various SIS errors with a comparison to stan-
dard deviation. The blue line with a length of twice the
standard deviation is centered at the mean denoted by
the green dot.

3In the figure, we follow the IGS convention to subdivide IIR satellites
into two subgroups IIR-A and IIR-B because the last four IIR satellites
were equipped with improved antennas. [21]



track errors. Fortunately, nonzero alongtrack or crosstrack
errors do not result in nonzero mean of UREs. The mean of
UREs are mainly correlated with the mean of clock errors
and radial errors. The nonzero mean of UREs is not critical
to ARIAM because no satellite has a mean exceeding 0.2
times standard deviation.

Secondly, in light of standard deviation, the IIR and IIR-M
satellites usually have a better SIS performance than IIA. Ta-
ble 1 summaries the standard deviation of various SIS errors
grouped by Block Type. The better SIS performance of the
young satellites is mainly due to better onboard clocks and
better radial estimation. Nevertheless, SIS error behavior
is different from satellite to satellite even for those within
the same block and of similar age. A precise model for SIS
errors should treat each satellite individually.

Lastly, both Figure 4 and Table 1 imply that clock perfor-
mance dominates the performance of SIS UREs, reinforcing
our observation from the long-term behavior.

IIA IIR IIR-M
Radial (m) 0.243 0.130 0.145
Alongtrack (m) 1.258 0.921 1.000
Crosstrack (m) 0.675 0.575 0.594
Clock (m) 1.074 0.384 0.498
Instantaneous URE (m) 1.076 0.418 0.527

Table 1. Standard deviation of various SIS errors in meters
grouped by Block Type

Spatial correlation of SIS errors

The three components of ephemeris error and the clock
error are not necessarily independent from each other. We
computed the correlation coefficients for every possible pair
of R, A, C, and T , and the results show that significant
correlation only exists among R, A, and T . Figure 5 shows
these correlation coefficients for each satellite. The positive
correlation between R and T is easy to understand, but the
negative correlation between R and A was unexpected. The
reason for the R-A correlation may be that the velocity of
satellite is inversely proportional to the radius according to
conservation of angular momentum, and a positive radial
error may result in a negative velocity error and hence a
negative alongtrack error.

Distribution of SIS errors

In addition to mean and standard deviation, SIS errors are
further characterized in terms of distribution. Figure 6 shows
the sample kurtosis of ephemeris errors, clock errors, in-
stantaneous UREs, and worse-case UREs. It can be seen
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Figure 5. Correlation coefficients among radial errors, alongtrack
errors, and clock errors.
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Figure 6. Kurtosis of various SIS errors

that as for ephemeris errors, all satellites have a super Gaus-
sian distribution for alongtrack, and about a half satellites
have a super Gaussian distribution for radial and crosstrack.
Nevertheless, no ephemeris errors have a kurtosis greater
than 3, which means that the tail is not very strong and a



normal distribution with inflated sigma should be able to
overbound ephemeris errors. In contrast, clock errors, espe-
cially the clock errors of some young satellites, have very
large kurtosis.

Another interesting phenomenon in Figure 6 is that worst-
case URE generally has a lower kurtosis than instantaneous
URE, which contradicts the common sense that “worst-case”
should come with heavier tails. In fact, it is improbable for
worst-case UREs to be close to zero. Therefore, unlike the
unimodal continuous distributions such as normal distribu-
tion and Student’s t-distribution which has one peak at the
mean, the probability density function of worst-case UREs
has two peaks. The two peaks boost the variance more than
the 4th central moment, and hence reduce the kurtosis4.

In addition to kurtosis, quantile-quantile (Q-Q) plot is graph-
ical method to compare the empirical distribution of SIS
errors with the standard normal distribution. Figure 7 shows
three typical distributions: the sub-Gaussian distribution of
IIA SVN 27 radial errors, the almost-Gaussian distribution
of IIR-M SVN 55 clock errors, and the super-Gaussian dis-
tribution of IIR-M SVN 50 clock errors. It can be seen that
even with negative kurtosis, the IIA SVN 27 radial errors
still have relative heavy tails5. When the kurtosis is positive,
the tails are much heavier. Therefore, a super-Gaussian dis-
tribution, such as Student’s t-distribution, may fit the real
data better.

Relation between rms URE and URA

As mentioned in Introduction, broadcast URA is intended
to be a conservative representation of the expected rms
behavior of the corresponding SIS UREs. Since URA is
used extensively in not only position fix but also integrity
monitoring, it is important to know how conservative URA
is. Figure 8 plots the rms instantaneous URE and rms worst-
case URE grouped by different broadcast URA. From the
left subfigure, we can see that URA is truly conservative:
for some old IIA satellites, URA is two times the expected
rms URE; for most IIR and IIR-M satellites, URA is four
times the expected rms URE. Furthermore, the rms worst-
case URE in the right subfigure implies that even for the
most unlucky user who always experiences largest URE, the
user can still expect the rms URE much lower than URA.
Besides, different satellites interpret URA very differently.
For example, the rms instantaneous URE for IIA SVN 27
is around 1.3 meters despite the URA, whereas for IIR-M

4To understand this, consider an externa example, the Bernoulli distri-
bution with p = 1/2, whose probability density function have two peaks,
and the kurtosis is −2 [20].

5This apparent contradiction is because kurtosis depicts the normality
of the majority 105 samples, and the strong upper and lower tails include
no more than 50 samples.
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Figure 7. Q-Q plot of three typical SIS errors

SVN 50 different URA does indicate different levels of rms
instantaneous URE.
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Correlation among UREs of different satellites

In RAIM/ARAIM, a key assumption is that large UREs
occur on several satellites simultaneously with very low
probability. In other words, for an arbitrary user on the Earth,
the correlation among the UREs of the satellites in view is
expected to be close to zero. With this assumption, if UREs
are close to normal, then the sum of their squares should be
close to chi-square distributed. Therefore, multiple satellite
monitoring in RAIM/ARAIM requires [10]

S =

k∑
i=1

( IUREi − IURE
URAi

)2
≤ K2

prob = 50.2, (6)

where k is the number of the satellites in view. Here we
consider only one case k = 12, which happened the most fre-
quently in last three years. Because the removal of the com-
mon clock error in (6) causes loss of 1 degree of freedom
(DoF), Figure 9 plots S against the chi-square distribution
with 11 DoF.

The red dots in Figure 9 are computed with using the broad-
cast URA as the URAi in (6). Clearly, the RAIM/ARAIM
requirement was met as the maximum value is less than 15.
Nevertheless, the red dots are far below the blue dash-dot
line because, as mentioned in the previous subsection, the
broadcast URAs are much greater than the standard devia-
tion of UREs. Therefore, we replace the URAi in (6) by the
standard deviation of UREs, and get a result as the blue plus
signs in Figure 9. It looks that the UREs of different satel-
lites are highly correlated because the blue plus signs are
high above the blue dash-dot line. However, the real UREs
are not normally distributed, and on average they have a kur-
tosis of 1.5. Accordingly, we plot the green curve using the
sum of several squared Student’s t-random variables with
ν = 8 degrees of freedom. A Student’s t-distribution with
ν = 8 has a kurtosis of 1.5, which can be seen as an approxi-
mation of the distribution of UREs. We tried the sum of 7,
8, 9, 10, 11, 12, or 13 squared such t-random variables, an
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Figure 9. rms instantaneous URE and rms worst-case URE
grouped by different broadcast URA.

the sum of 9 fits the majority of the blue plus signs best, as
shown as the green curve. Therefore, a possible explanation
is that correlation among UREs of different satellites cause
a loss of 2 degrees of freedom.

SUMMARY

In this paper, we characterized core GPS SIS error behavior
with respect to mean and standard deviation, spatial correla-
tion, normality, relation between rms URE and URA, and
correlation among different satellites. The ephemeris errors
and clock errors are computed by comparing the broadcast
ephemerides/clocks with the precise ones, followed by the
generation of various SIS UREs. Outlier filter and robust
statistics are employed to exclude anomalous satellite behav-
iors and statistical outliers. The data in recent three years
are relatively stationary and hence analyzed. The results
show that
• Mean of SIS errors are nonzero for several satellites, but

still within ±0.2 times standard deviation;
• Younger satellites usually outperform older satellites;
• Clock performance dominates SIS URE performance;
• Radial errors, alongtrack errors, and clock errors are

relatively strongly correlated;
• Clock errors and instantaneous UREs have heavier tails

than normal distribution for about half of the satellites;
• URA is usually two times the expected rms URE for

older satellites and four times for younger satellites;
• UREs of different satellites are slightly correlated, but

still meets ARAIM’s requirement.
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