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ABSTRACT

In the near future, there will be two more civil GPS signals
in addition to the current one at the L1 frequency (1575.42
MHz). The second civil signal will be broadcast at the L2
frequency (1227.60 MHz), and the third civil signal will be
broadcast at the recently-selected Lc frequency (1176.45
MHz). With three civil frequencies, a user can generate
three beat frequency signals. The L1 and L2 carrier fre-
quencies are processed to create the Widelane (WL) with
wavelength of 86 centimeters. The combination of the L1
and Lc carrier frequencies yields the second beat frequency
with 75 centimeters in wavelength (Medium Lane, ML).
The combination of the L2 and Lc carrier frequencies
yields the third beat frequency with 5.9 meters in wave-
length (Extra Widelane, EWL).

In earlier research [8], an instantaneous geometry-free car-
rier-phase DGPS integer ambiguity resolution technique
was developed utilizing the multiple available beat fre-

quencies. This technique, known as Cascade Integer Reso-
lution (CIR), resolves the integer ambiguities successively
from the longest to the shortest beat wavelength. The per-
formance of CIR was examined in the earlier study, and it
was shown that CIR can be used to resolved the Lc integer
ambiguity with probability of wrong integer resolution of
1E-4 up to 2.4 kilometers from a reference station. It can
also resolve the WL integer ambiguity up to 22 kilometers,
and the EWL integer ambiguity beyond that, with the same
probability of incorrect integer resolution.

Performance degradation of the CIR over distance mainly
comes from the spatial decorrelation of ionospheric error
(residual differential troposphere error is eliminated by the
geometry-free CIR process). This paper focuses on recent
improvements to CIR performance to extend service
volume and reduce the probability of incorrect integer res-
olution. First, effect of decrease in measurement error on
performance of the CIR is examined. Then, the spatial gra-
dient of the residual differential ionosphere error, which
was assumed to have a fixed standard deviation of 2 parts
per million in the earlier research, is estimated by using
measurements from two different user locations. Estima-
tion of ionospheric spatial decorrelation is integrated into
the CIR process. With these enhancements, performance of
the CIR increased. With the probability of incorrect integer
ambiguity resolution of 1E-4, the optimized CIR can
resolve the Lc integer up to 4 km (increases of 2.4 km) and
the WL integer up to 40 km (increase of 22 km).

DEFINITION OF THE CIR

In earlier research, Cascade Integer Resolution (CIR) was
developed. The CIR is a geometry-free, instantaneous inte-
ger ambiguity resolution method. It utilizes beat frequen-
cies of the three civil GPS signals (Table 1) to resolve the
integer ambiguity



A real-valued solution for the extra widelane integer,
, is estimated by subtracting the Lc code pseudorange

measurement from the EWL measurement. The Lc code is
used in the CIR as the principle pseudorange measurement,
as it will have improved multipath performance due to its
higher clock rate of 10.23 MHz. Assuming the double dif-
ferenced measurements are used, the EWL integer estima-
tion is described in the following equations.

(1)

(2)

•  is wavelength in meter

•  is carrier phase measurement

• R is geometric range

•  is a scale factor for ionospheric error

•  is ionospheric error at the L1 frequency

• T is tropospheric error

•  is carrier phase multipath and receiver error

•  is pseudorange in meter

•  is code multipath and receiver error

If the combined error from both the Lc code and the EWL
measurements is smaller than one-half of an EWL wave-
length (5.86 m), the goal is to obtain the correct EWL inte-
ger by rounding the real-valued solution. Note that the
residual differential tropospheric term, which is indepen-
dent of frequency, is eliminated when the Lc code and the
EWL measurements are differenced. 

With a correct integer, the EWL measurement is used as the
pseudorange measurement, and is subtracted from the WL
measurement to get a real-valued solution for the WL inte-
ger ambiguity.

(3)

(4)

Again, if the combined error from the EWL and WL mea-
surements is smaller than one-half of a WL wavelength (86
cm), a correct WL integer is obtained by rounding the real-
valued solution. 

With a correct integer, the WL measurement is used as the
pseudorange measurement to resolve the L1, L2 or Lc inte-
ger ambiguity. The Lc case is shown as an example.

(5)

(6)

Since this method resolves the integer ambiguities from the
longest to the shortest wavelength successively using the
previous measurement, it is defined as the Cascade Integer
Resolution (CIR).

INTEGRITY OF THE CIR PROCESS

Analysis Setup

The CIR with three civil GPS signals uses one-on-one com-
bination of three carrier frequencies to form three beat fre-
quencies. However, the generated beat frequencies are not
linearly independent. For example, in the first and second
rows of Table 2, the EWL and WL frequencies can be
added together to produce the ML frequency. The effect of
linearly dependent beat frequency measurements in the
CIR process is examined by a covariance analysis of mea-
surement error. The state vector, u, observation matrix, H,
and measurement vector, z used in the analysis are
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Table 1.  Three Beat Frequencies

Beat Frequency
Frequency 

(MHz)
Wavelength 

(m)

Extra Widelane (EWL)
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51.15 5.86
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described in Equations (7) and (8). The analysis is also used
to calculate the probability of incorrect integer resolution
of each CIR step, verifying integrity of the CIR in an
ensemble sense, in contrast to the conditional probability
analysis developed in the earlier research, whish was a
Bayesian result.

(7)

(8)

• z is a measurement vector, including six double differ-
ence measurements, three code and three carrier phase. 
An a priori knowledge of linear gradient of standard 
deviation of residual differential ionospheric delay is 
also included.

• H is an observation matrix. Scale factors for iono-
spheric effect on frequencies other than the L1 are 
included.

• u is a state vector, containing pseudorange, R, residual 
differential ionospheric effect at the L1 frequency, , 
and three integer ambiguities for the L1, L2 and Lc 
carrier phase measurements, , , and .

•  is a measurement error vector.

A covariance matrix of the state estimation error, , is
calculated from a covariance matrix of the measurement
error, . Calculation of the  and the  matrices are
shown in Equations (9) and (10). The six double difference
measurements, three code and three carrier phase, are
assumed to be independent, and measurement error models
developed in the earlier research are used to form the mea-
surement error vector, . The double difference carrier
phase multipath and receiver error is assumed to be
bounded by a Gaussian distribution with standard deviation
of 2% of wavelength. The linear gradient of standard devi-
ation of residual differential ionospheric error is 2 ppm, and
therefore the standard deviation of the residual differential
ionosphere error is calculated by multiplying its gradient
with the baseline distance.

(9)

(10)

(11)

The covariance matrix of the estimation error of three
double difference integers, , is a subset of a covariance
matrix of states, . Using the  matrix (Equation (11)),
standard deviation of the estimation error for the integer
ambiguity solution for each carrier frequency maybe calcu-
lated by taking the square root of its diagonal components.

Table 2.  Three Beat Frequencies
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The standard deviation of the estimation error for the inte-
ger ambiguity solution for each beat frequency is also cal-
culated by multiplying the  matrix with a vector
containing the multiplication factor for the involved fre-
quencies. This step forms the beat frequency. Taking the
square root of this value yields the standard deviation of the
estimation error. In Equation (12), this process is com-
pleted for the EWL integer ambiguity solution.

(12)

The estimated solution of the integer ambiguity is real-val-
ued, and it can be rounded into a correct integer if the stan-
dard deviation of the estimation error of the integer
ambiguity solution is much less than 1/2. Therefore, a
desired level of integrity can be specified by multiplying
the standard deviation of the integer ambiguity estimation
error with a factor, . Then, to round the real-valued
solution into a correct integer with a desired level of integ-
rity, the following relation must hold true.

(13)

Assuming a normal distribution of estimation error, the
probability of wrong integer rounding, is then the follow-
ing.

(14)

 and  is a normal distribution function

Example:  when  (or )

Applying the Covariance Analysis to the CIR

The CIR uses the code measurements to resolve the EWL
integer ambiguity, then uses the EWL measurement to
resolve the WL integer ambiguity, and so on. Due to this
cascading nature, the measurement vector, z, and the obser-
vation matrix, H, in the covariance analysis are updated
after a successful rounding of real-valued integer ambigu-
ity estimation to a correct integer for each beat frequency.
For example, once a correct EWL integer is rounded with a
desired integrity, as specified in Equation (13), probability

of incorrect rounding of the estimated WL integer ambigu-
ity solution is calculated after the following update.

(15)

where 

and  is a subset of 

(16)

Since  is rounded to a correct integer,  is 0.
Then probability of the wrong WL integer rounding is the
following.

(17)

The updated measurement vector, , and observation
matrix, , is updated once again with a correct WL inte-
ger, which is rounded with a desired integrity to calculate
the probability of wrong Lc integer rounding. 

Integrity of the CIR Over Short Baseline Distances

Integrity of the CIR is examined by using a covariance
analysis of the measurement error. The double difference
measurement error model developed in the earlier research
is used in the analysis. A short baseline distance between
the reference and user receivers is assumed, and residual
differential ionospheric effect is ignored. Probability of
wrong integer rounding of each step in the CIR process is
calculated. The results are shown in Table 3. 

The analysis results show that resolution of the EWL inte-
ger in the CIR is highly successful, with probability of
wrong integer rounding less then . Resolving the WL
integer has probability of wrong integer rounding equal to

. While the ML integer resolution has probabil-
ity of wrong integer rounding of 0. This means that once
the EWL and WL integer ambiguities are resolved, the ML
integer is already known as it is a linear combination of the
previous two terms. Therefore, the linearly dependent beat
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frequency measurement, the ML measurement in this case,
does not affect integrity of the CIR process, as resolution of
this term is trivial and unnecessary. The Lc integer ambigu-
ity is resolved by using the WL measurement, and proba-
bility of wrong integer rounding is . 

Integrity of the entire CIR process with n steps is then
defined as follows.

(18)

For example, integrity of the entire CIR process over a
short distance is calculated below.

(19)

Integrity of the CIR at a short baseline distance can be
interpreted in several ways by using the results from the
covariance analysis. For an accuracy requirement on the
order of tens of centimeters and integrity requirement on
the order of , the CIR can be used to resolve the EWL
integer ambiguity, since probability of wrong integer
rounding is less than . However, the CIR cannot be
used to resolve the WL integer ambiguity for this applica-
tion, since the probability of wrong integer rounding is

. Since the WL measurement cannot be used in this
application, resolving the Lc integer ambiguity is not pos-
sible due to the aforementioned cascading nature of the
CIR. For an accuracy requirement on the order of centime-
ters and integrity requirement on the order of , the CIR
can be used to resolve the EWL, WL, and Lc integer ambi-
guity, since integrity of the entire CIR process is 99.994%
(per Equation (19)).

Integrity of the CIR Over Long Baseline Distance

As baseline distance between the reference and user receiv-
ers increases, residual differential ionospheric error grows.
Probability of wrong integer rounding at each step of the
CIR is calculated over distance, from 0 to 20 km. The
results are plotted in Figure 1. Note that the probability of
wrong EWL integer rounding is not shown on the plot as
this value is lower than  even at the 20 km baseline. As
expected, the probability of wrong integer rounding, or
integrity risk of each step, increases over distance. As men-
tioned, this occurs because the standard deviation of mea-
surement error increases over distance due to the increase
in residual differential ionospheric error. Integrity of the
CIR with a short baseline distance, is represented at 0 km
in Figure 1. 

Table 3.  Integrity of the CIR Steps
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Figure 1. Integrity of the CIR Steps Over Distance

10
9–

0 5 10 15 20 25 30 35 40
0

0.05

0.1

0.15

0.2

0.25

Baseline Distance (km)

A
cc

ur
ac

y,
 1

 S
ig

m
a(

m
) Integrity: 1e-8    

               1e-4

Figure 2. Level of Accuracy of the CIR Over Distance



The probability results in Figure 1 can be used to interpret
integrity of the CIR over distance. For an application
requiring integrity risk on the order of , the EWL inte-
ger ambiguity is resolved since the probability of incorrect
EWL integer resolution is less than  for all the tested
distances. The WL integer ambiguity cannot be resolved
because the probability of incorrect WL integer ambiguity
is higher than  for all the tested distances (o in the fig-
ure). Due to the aforementioned cascading nature, the Lc
integer ambiguity cannot be resolved without resolving the
WL integer ambiguity.

For an application requiring integrity risk on the order of
, the EWL integer ambiguity is resolved since the

probability of incorrect EWL integer ambiguity resolution
is less than  for all the tested distances. The WL inte-
ger ambiguity is resolved up to 22 km, where probability of
incorrect WL integer ambiguity resolution becomes higher
than . The Lc integer ambiguity is resolved up to 2.4
km, where probability of incorrect Lc integer ambiguity
resolution becomes higher than . Figure 2 summarizes
the above results.

EFFECT OF MULTIPATH AND RECEIVER 
ERROR REDUCTION ON INTEGRITY OF THE 
CIR

The white noise portion of the double difference measure-
ment error is reduced by using time averaging. Figure 3
shows the effect of time averaging on the double difference
of the L1 carrier phase measurement. The upper figures
represent double difference carrier phase measurements
without time averaging, in time and frequency domain
(power spectral density), from left to right, respectively.
The lower figures represents the same measurements with
the time averaging applied. A time constant of 200 seconds
is used. The time averaged double difference carrier phase
measurements show decrease in measurement error in the
time domain, and decrease in power of high frequency
components. These results indicate that the white noise
portion of measurement error, such as receiver error due to
thermal noise and fast varying component of multipath, is
reduced. However, they also indicate biased noise, such as
the slow varying component of multipath is not reduced. 

For a short baseline distance, carrier phase multipath is the
limiting error source for performance of CDGPS. Multi-
path mitigation is an ongoing research topic. For example,
research by Axelrad [1] uses the signal to noise ratio to
eliminate the slow varying component of multipath. Work
by Ray [10] uses multiple antennae to reduce multipath
effect for a static receiver; he reports 73% overall reduc-
tion.

If multipath and receiver error could be bounded by a
normal distribution with standard deviation of 1% of a
wavelength by using multipath mitigation techniques,
along with time averaging, considerable improvement on
integrity of the CIR can be achieved. Figur e4 shows prob-
ability of wrong integer rounding at each step in the CIR
process over distance when the 1% value is used. Note that
the probability of wrong EWL integer rounding is not
shown on the plot as this value is lower than  even at
the 20 km baseline.

The probability results in Figure 4 can be used to interpret
integrity of the CIR over distance. For an application
requiring integrity risk on the order of , the EWL inte-
ger ambiguity is resolved since the probability of incorrect
EWL integer resolution is less than  for all the tested
distances. The WL integer ambiguity is resolved up to 6.9
km, where probability of incorrect WL integer ambiguity
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resolution becomes higher than . The Lc integer ambi-
guity is resolved up to 2.2 km, where probability of incor-
rect Lc integer ambiguity resolution becomes higher than

For an application requiring integrity risk on the order of
, both the EWL and WL integer ambiguities are

resolved since the probability of incorrect EWL and WL
integer ambiguity resolution is less than  for all the
tested distances. The Lc integer ambiguity is resolved up to
2.6 km, where probability of incorrect Lc integer ambiguity
resolution becomes higher than . Figure 5 shows the
level of accuracy achieved by the CIR over distance for
varying integrity requirements.

OPTIMIZATION OF THE CIR BY ESTIMATIING 
THE SPATIAL GRADIENT OF DIFFERENTIAL 
IONOSPHERE ERROR

Correction of Measurement Error due to Ionosphere

The pseudorange measurement error due to ionospheric
effect varies from a few meters to tens of meters at the
zenith, if uncorrected [4]. For a single frequency, stand
alone user, a simple algorithm developed by Klobuchar [9]
is used to correct for approximately 50% of the ionospheric
range error. The algorithm corrects for the error by using
the user’s approximate geodetic latitude, longitude, eleva-
tion angle and azimuth to each GPS satellite, along with
eight ionosphere coefficients included in the navigation
message modulated on the C/A code.

By using DGPS, the range error due to ionosphere is
reduced further. If the reference and user receivers are
receiving a GPS satellite signal through the same iono-
spheric conditions, DGPS correction eliminates the range
error due to ionosphere. However, the condition of the ion-

osphere decorrelates as the distance between the reference
and user receivers increases. The spatial gradient of stan-
dard deviation of residual differential ionospheric error is
assumed at 2 ppm in the analysis of the CIR, which uses
double difference measurements. Figure 6 shows the
increase in residual differential ionospheric error in the
double difference measurement over growing baseline dis-
tance due to the spatial gradient.

For a user with a multiple frequency receiver, ionospheric
range error is directly observed as it is a function of the car-
rier frequency of the GPS signal. For example, if the code
and carrier phase measurements from the L1 and L2 fre-
quencies are available, ionospheric range error is calcu-
lated by using the following equations.

 (20)

 (21)

Also, a linear combination of measurements from multiple
frequencies can be formed in such a way as to eliminate the
effect of ionosphere. The ionospheric-free linear combina-
tion of the L1 and L2 carrier phase measurement, shown in
Equation (22), has a significant disadvantage, however.
The integer ambiguity of the  measurement is not
an integer, since the integer ambiguity of the L2 carrier
phase measurement is multiplied by , which is a
real number (0.7792), and the result is then subtracted from
the L1 integer ambiguity.

(22)
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Improving Performance of the CIR by Estimating 
Spatial Gradient of Residual Differential Ionospheric 
Error

It was shown earlier that the probability of wrong integer
estimation in the CIR is driven by measurement error. For
a short baseline distance between the reference and user
receivers, performance of the CIR is determined by double
difference multipath and receiver error. However, as the
baseline distance increases, probability of wrong integer
estimation grows larger due to the increase in residual dif-
ferential ionospheric error.

The spatial gradient of residual differential ionospheric
error can be observed and treated as a state if measurements
from two or more separate locations are used in the CIR.
The measurement vector, z, the observation matrix, H, and
the state vector, u, in Equation (7) are modified to carry out
the covariance analysis with the spatial gradient as an addi-
tional state, by using measurements from two locations
with a separation distance of , as shown in
Equation (23) and Figure 7.

(23)

With the updated observation matrix and measurement
error vector, the covariance analysis of the state estimation
developed earlier is used to calculate the probability of
incorrect integer resolution of each step in the CIR.
Figure 8 shows improvements in the probability of wrong
WL and Lc integer estimation when the spatial gradient of

residual differential ionospheric error is estimated by using
measurements from two locations separated by 10 km. The
probability of wrong EWL integer estimation by using the
Lc code measurements in both cases is lower than 
and hence is not shown on the plot.

When the spatial gradient is estimated with  km,
the CIR can be used to resolve the Lc integer ambiguity up
to 4 km, instead of up to 2.4 km without the estimation,
with probability of incorrect integer resolution of . It
can also resolve the WL integer ambiguity up to 40 km with
the estimation, instead of up to 22 km without the estima-
tion, with the same probability. Clearly, by estimating the
spatial gradient, performance of the CIR is improved. In
Figure 9, a comparison of performance of the CIR over dis-
tance for a desired level of integrity with (circle in
Figure 9) and without estimation (triangle in Figure 9) of
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the spatial gradient of residual differential ionospheric
error is shown

In Figure 10, it is shown that the larger the separation dis-
tance between the measurements,  km, the greater the
improvement due to increased observability on the spatial
gradient. However, since the estimated states now include
the effect of change in geometry of the satellite as the user
moves from one location to the other for multiple measure-
ments, the CIR with spatial gradient of residual differential
ionospheric error estimation is no longer a geometry-free
process. Although the effect of change in satellite geometry
should further improve performance of the CIR, it is not
analyzed in this paper. Also, the user receiver is assumed to
maintain the lock on the GPS carrier as the user moves
between the measurement points. If the lock is reset, addi-
tional integer ambiguity resolution is required for each car-
rier phase measurement at the new measurement location.

COLCLUSION

A very accurate pseudorange can be acquired by using car-
rier phase measurement of the GPS signal, if its integer
ambiguity is resolved. The Cascade Integer Resolution
uses the longer wavelength of beat frequencies of multiple
GPS carrier frequencies as “stepping stones” to resolve the
integer ambiguity.

Due to its cascading nature, integrity of the integer estima-
tion of each step must meet a desired level before the CIR
process progresses. The integrity of each integer resolution
step is investigated by using covariance analysis with five
states: pseudorange, ionosphere delay, integer ambiguity
for the L1, L2 and Lc, and with six measurements: three C/
A code and three carrier phase measurements. Covariance
analysis is used to calculate the probability of estimating
the right EWL, WL and ML integers. Results from these

integrity analyses are used to find the service distance or
coverage area of the CIR, with a given desired probability
of incorrect integer resolution. For an application requiring
integrity risk on the order of , the CIR can be used to
resolve the Lc integer ambiguity up to 2.4 km, the WL inte-
ger ambiguity up to 22 km, and the EWL integer ambiguity
beyond 22 km. Table 4 summarizes the performance of the
CIR.

If the standard deviation of double differenced multipath
and receiver error could be reduced to   1% of a wavelength
by using multipath mitigation techniques, along with time
averaging, considerable improvement on integrity of the
CIR can be achieved. Table 5 summarizes the improve-
ment of the CIR performance due to decrease in measure-
ment error.

The spatial gradient of standard deviation of residual dif-
ferential ionospheric error was first assumed to be 2 ppm.
It is used as a priori information in the covariance analysis.
However, the spatial gradient is observable if measure-
ments from two or more separate locations are used in the
CIR. When measurements from locations 10 km apart are
used to estimate the spatial gradient, the performance of the
CIR improved. For a desired probability of incorrect inte-
ger ambiguity resolution of , the Lc integer is resolved
up to 4 km instead of up to 2.4 km without estimation of the
spatial gradient. Also, the WL integer is resolved up to 40
km with the estimation, instead of 22 km without, for the

∆b

0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

10


-9


10

-8


10

-7


10

-6


10

-5


10

-4


10

-3


10

-2


10

-1


10

0


Baseline Distance (km)


P
ro

ba
bi

lit
y 

of
 W

ro
ng

 In
te

ge
r 

E
st

im
at

io
n


Lc Code to EWL


EWL to WL     


WL to Lc      


With Iono Gradient Estimation 


With Iono Gradient Estimation 


Lc code to EWL line is not shown


since it is less then 10

Figure 10. Probability of Wrong Integer Estimation, 
=20 km∆b

Table 4.  Resolved Integer Ambiguity by the CIR for 
Different Levels of Integrity, k=2% of Wavelength

Resolved Integer Ambiguity

Desired
Integrity

Lc WL EWL

cannot resolve cannot resolve up to 40+km

cannot resolve cannot resolve up to 40+km

up to 2.4 km up to 22 km up to 40+km

Table 5.  Resolved Integer Ambiguity by the CIR for 
Different Levels of Integrity, with Reduced 
Measurement Error (k=1%)

Resolved Integer Ambiguity

Desired
 Integrity

Lc WL EWL

up to 2 km up to 6.7 km up to 40+km

up to 2.6 km up to 40 +km up to 40+km

up to 2.6 km up to 40+ km up to 40+km
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same probability. However, the CIR process is no longer
geometry free when the multiple measurements are used to
estimate the spatial gradient of differential ionospheric
error.

The Cascade Integer Resolution is developed to utilize
multiple civil GPS signals to guide users to their destina-
tions accurately and reliably. By instantaneously estimat-
ing the integer ambiguity with relatively low probability of
incorrect resolution, the CIR is well suited for use in
CDGPS with the three civil GPS signals available in the
near future.
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