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ABSTRACT  
 
This paper investigates an adaptive carrier smoothing for 
a single frequency GPS user. Using a Hatch filter in a 
single frequency receiver reduces multipath and receiver 
noise but introduces an induced bias that depends on the 
rate of ionospheric delay and a carrier smoothing time. 
Ideally, to use a Hatch filter more effectively and 
efficiently, the rate of ionospheric delay and noise 

characteristics should be known. However, since these are 
usually not known to a single frequency user, a 
conservative constant carrier smoothing time is typically 
used for safety of life applications such as WAAS and 
LAAS. 
 
This paper starts by introducing how to estimate the rate 
of ionospheric delay with white noise-like multipath and 
highly correlated multipath from code and carrier 
divergence (CCD). For the different multipath 
characteristics, the ordinary least square (OLS) or the 
(feasible) generalized least square (GLS) estimators is 
used. Given the estimated ionospheric delay rate, 
multipath can be separated and is modeled as white noise 
or a cosine wave according to the multipath 
characteristics. The estimated rate of ionospheric delay 
and the modeled multipath are used to construct a cost 
function. From the cost function, it is possible to compute 
an optimal carrier smoothing time which balances the 
reduction of multipath against the magnitude of the 
induced bias. These processes are repeated every 60 
seconds and update the optimal carrier smoothing time by 
keep observing the ionospheric rate and multipath. 
Preliminary results show that this technique significantly 
suppresses multipath and does not introduce any 
noticeable large drifts.      
 
INTRODUCTION  
 
The carrier-smoothing (Hatch) filter has been widely used 
in GPS community. The filter smoothes noisy pseudo 
range measurements by using precise but ambiguous 
carrier phase measurements. However, this filter 
introduces a bias in the filtered range due to the 
divergence of code and carrier measurements. The 
magnitude of the bias is a function of a carrier smoothing 
time and ionospheric delay gradients. When a user 
increases the smoothing time, the user obtains smoother 
measurements but suffers a bigger bias due to the 
ionospheric delay gradients. Therefore, there is a trade-off 
between smoothness and an induced bias in using a Hatch 
filter.  
 
Typically, a carrier smoothing time is preset based on a 
user’s requirement and kept constant during operation. 
The requirements are compromised from the induced bias 
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and the smoothness of the filtered ranges. To high 
integrity users, these preset smoothing times are chosen 
by considering worst conditions in terms of ionospheric 
delay gradients and noise in the code phase measurements, 
which may not fully take advantage of a Hatch filter. To 
avoid the disadvantage for a single frequency user, 
various methods have been proposed to mitigate 
multipath: a kalman filter with a modeled platform 
dynamics [1], a complementary kalman filter with GPS 
velocity [2], and an optimal hatch filter using a multipath 
model parameterized by an elevation angle and Klobuchar 
model [3].   
 
This paper introduces a method how a single frequency 
receiver user can select the optimal carrier smoothing 
time. Unlike the previous approaches, this method 
directly estimates time-varying slant ionospheric delay 
rates and multipath in code phase measurements. Using 
these estimates, two cost functions are constructed for 
white noise multipath and highly correlated multipath to 
give an optimal carrier smoothing time that minimizes the 
cost functions to balance an induced bias and multipath 
effect. This optimal carrier smoothing time is used in a 
Hath filter, and this whole procedure is repeated at a 
certain rates.  
 
This paper is structured as follows. First, linear regression 
theory is briefly reviewed because it is extensively used to 
estimate time-varying slant ionospheric delay gradients. 
Second, estimation scheme of the slant ionospheric delay 
rates and multipath characteristics using code minus 
carrier phase measurements will be discussed. Third, 
given estimated ionospheric delay rate and multipath, the 
formulation of cost functions with respect to white noise 
multipath and highly correlated multipath will be 
discussed. Fourth, tests of real data will be shown and 
discussed. Lastly, discussion and conclusion will be 
followed. 
 
OVERVIEW OF LINEAR REGRESSION 
 
A. Simple Linear Regression with White Noise 
 
When the relationship between an observation, y , and a 
regressor, x ,is linear, y can be modeled as [4] 

 
0 1y xβ β ε= + +  (1) 

 
where 0β is the intercept, 1β  is the slope, and 
ε ~WN 2(0, )σ  is white noise.  
 
When the time series of the observation, y , are available, 
the linear model can be described in a matrix form as  
 

Y X β= + ε  (2) 

 
where Y is a 1n× vector, X is a 2n× matrix, β is a 
2 1× vector, and ε is a 1n×  vector. 
 
If we can assume that the linear model is correct, the 
unbiased and the most efficient estimate of β can be 
obtained from the ordinary least-squares (OLS) which is 

 
1ˆ ( )T T

OLS X X X Yβ −=  (3) 
 
The variance of ˆ

OLSβ is 
 

2 1ˆVar( ) ( )T
OLS X Xβ σ −=  (4) 

 
 
B.  Linear Regression with Autocorrelated Noise 
 
When the noise is autocorrelated, the ordinary least-
squares still gives an unbiased solution, but the variance is 
no longer minimized. In this case, the generalized least -
squares gives the best solution. 
 
The linear model with autocorrelated noise is 
 

2( ) 0, Var( )
Y X
E V

β

σ

= +

= =

ε
ε ε

 (5) 

  
where V is a nonsingular and positive definite matrix. 
 
The unbiased and the most efficient solution for equation 
(5) is 
 

1 1 1ˆ ( )T T
GLS X V X X V Yβ − − −=  (6) 

 
The variance is 
 

2 1 1ˆVar( ) ( )T
GLS X V Xβ σ − −=  (7) 

 
The generalized least-squares (GLS) requires a covariance 
matrix, V ,  of the noise to estimate the coefficients β . 
However, the covariance matrix is usually unknown either. 
Therefore, it is necessary to estimate the covariance 
matrix and the coefficients at the same time. This is well-
known problem in econometrics and can be solved by 
using a 2 step process, also called as a feasible 
generalized least-squares (FGLS) [5].        
 
The FGLS algorithm is 
 
 find OLSβ from OLS and compute residuals 

OLSe Y X β= −  
1) Fit an ARMA model to e  
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2) Find GLSβ  using V computed from the ARMA 
model 

3) Compute GLSe Y X β= −  
4) Return to 1) until GLSβ  stabilizes 

 
The FGLS includes AutoRegressive-Moving Average 
(ARMA) modeling to the residual errors. Discussion 
about ARMA modeling can be also found in [5]. 
 
ESTIMATION OF SLANT IONOSPHERIC DELAY 
RATES AND MULTIPATH IN CODE PHASE 
MEASUREMENTS USING LINEAR REGRESSION 
 
A. Linear Model for Code minus Carrier Phase 
Measurements 
 
The basic measurements in a GPS receiver are code and 
carrier phase measurements. The code phase 
measurements, ρ , and the carrier phase measurements, 
Φ , can be written as 
 

[ ]

[ ]
u s

u s

r c t t I T M

r c t t I T N M
ρρ δ δ

δ δ Φ

= + − + + +

Φ = + − − + + +
 (8) 

  
where r is the true range between a receiver and a satellite. 
c is the speed of light. utδ and stδ are receiver and 
satellite clock errors, respectively. I is ionospheric delay 
and T is tropospheric delay. N is an integer ambiguity. 
M ρ  and MΦ  include multipath, thermal noises, and 
modeling errors in the code and carrier phase 
measurements respectively. Since multipath is usually 
bigger than other receiver related noise, M ρ  and MΦ will 
be considered as multipath in code and carrier phase 
measurements.  
 
 The difference, y , between ρ andΦ at time t  is 
  

, ,2
t t t

t t t

y
I N M Mρ

ρ

Φ

= −Φ

= − + −
 (9) 

 
This difference includes ionospheric delays multiplied by 
2, a bias, and multipath. Our interest here is to estimate 
slant ionospheric delay rates and separate the multipath 
from the other terms. Before jumping into this problem, it 
should be noted that the ionospheric delays slowly change 
with respect to time during nominal ionospheric days. 
Therefore, the rate can be seen as a constant during a 
short time window (tens of minutes). Then, equation (9) 
can be rewritten as 
 

0 1 , ,

0 1 ,

2

2
t t t

t

y t M M

t M
ρ

ρ

β β

β β
Φ= + ⋅ + −

≈ + ⋅ +
 (10) 

 

In equation (10), ,tM Φ  is ignored because it is much 
smaller than ,tM ρ .  
 
Expressing the time series of equation (10) in a matrix 
form yields 
 

{

{

1 1

2 2

,1

,02

1

,

1 2
1 2

1 2
n n

t t

t t

nt t
XY M

y Mt
y Mt
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Y X M

ρ

ρ

β
ρ

β
β

β

⎡ ⎤ ⎡ ⎤⋅⎡ ⎤
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⎢ ⎥ ⎢ ⎥⋅⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

= +

MM M

14243 14243

 (11) 

Now, the problem becomes to find 1β in the presence of 
M . If M is close to white nose, the ordinary least-
squares (OLS) is the best estimator. However, if M is 
highly correlated, the feasible generalized least-squares 
(FGLS) should be used instead of the OLS.  
 
B. Multipath Estimation and Its Characteristics from 
Dynamic and Static GPS Receiver Measurements 
 
In general, the multipath characteristics are closely related 
to the motion of the platform where a GPS antenna is 
installed. Airborne and static ground measurements are 
considered in this section because they have white noise 
multipath and highly correlated multipath.      
 
Assuming that we have a good estimate of β̂ , the 
estimated multipath can be separated as followings. 
  

ˆM̂ Y X β= −  (12) 
 
Figure 1 shows a time series of mean subtracted airborne 
code minus carrier phase measurements and its fitted line 
using first order linear regression. 
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Figure 1: Mean subtracted code minus carrier over 600s  
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with a regressed line for airborne measurements 
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Figure 2: Power spectral density of airborne multipath in 

code minus carrier phase measurements 
 

The power spectral density of the residuals in figure 1 is 
shown in figure 2 which indicates that the multipath can 
be approximated as white noise. Therefore, it should be 
reasonable to use the OLS to estimate the ionospheric 
delay gradients. 
 
Figure 3 shows a time series of mean subtracted static 
ground code minus carrier phase measurements and its 
fitted line using first order linear regression.  
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Figure 3: Mean subtracted code minus carrier over 600s  

with a regressed line for static ground measurements 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-6

-4

-2

0

2

4

6

8

10

12

Normalized Frequency  (×π rad/sample)

P
ow

er
/f

re
qu

en
cy

 (
dB

/r
ad

/s
am

pl
e)

Power Spectral Density Estimate via Welch

 
Figure 4: Power spectral density of static ground noise in 

code minus carrier measurements 
 

Figure 4 shows the power spectral density of the residuals 
in figure 3. It shows that the residuals have a significant 
low frequency noise, from which we can conclude that the 
noise is highly autocorrelated. Therefore, the FGLS is 
desirable for this case. 
 
In this subsection, it is shown that the OLS is appropriate 
to be used in airborne measurements and the FGLS in 
static ground measurements. However, the OLS is much 
easier to be implemented and preferable in practice than 
the FGLS. In the next subsection, the feasibility of using 
the OLS on the measurements with correlated noise will 
be discussed.   
 
C. Comparison of the Estimated Slant Ionospheric 
Delay Rates Using the OLS and the FGLS on the 
Measurements with Autocorrelated Noise  
 
The feasible generalized least squares (FGLS) is an 
asymptotically optimal estimator when noise is correlated.  
Even though it is desirable to use the FGLS, the FGLS is 
quite computationally intensive to be used in real time. 
Therefore, we should make sure that it is worth while to 
pursuit the FGLS with the burden of the heavy 
computation for our applications.  
 
The FGLS and the OLS are implemented on the 800 
seconds window of static ground measurements whose 
multipath has a strong correlation, and figure 5 shows that 
the difference of the results from the FGLS and the OLS.  
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Figure 5: Histogram of the difference of the estimated 

ionospheric delay rates from using the OLS and the FGLS 
 
The mean of the difference in the histogram is -0.0004 
mm/s mean, and the standard deviation is 0.06 mm/s.  
These statistics are insignificant for most of applications 
since slant ionospheric delay rates of tens of mm/s are of 
a concern in practice. Thus the OLS can be used instead 
of the FGLS on the code minus carrier phase 
measurements having autocorrelated noise.  
 
D. Evaluation of the Estimated Slant Ionospheric 
Delay Rates with Dual Frequency Measurements 
 
In the previous subsection, it is shown that the OLS can 
be used instead of the FGLS without much sacrifice. 
Therefore, the estimated ionospheric delay rates from the 
OLS are used. In order to check adequacy of our model, 
measurements from a dual frequency receiver are used.  
 
The reference ionospheric delay rates from a dual 
frequency receiver are computed as follows [6]. 
 

2
2

1, 1 1 2 22 2
1 2

, 1, 1, 1

[( ) ( )]L
L t L L L L t

L L

t dual L t L t

f
S N N

f f
I S S −

= Φ − − Φ −
−

Δ = −
 (13) 

 
where 1Lf and 2Lf are the center frequencies of 1L and 

2L  bands. It should be noted that ,t dualIΔ from a dual 
frequency receiver is a direct estimate of an ionospheric 
delay and include some noise.  
 
Figure 6 shows ,t dualIΔ and ,1

ˆ
tβ for one satellite computed 

from implementing the OLS on static ground 
measurements on a nominal ionospheric day. These 
estimates are computed at every 15 seconds and a 800 
seconds sliding window is used to estimate ,1

ˆ
tβ . Since 

raw ,t dualIΔ is quite noisy, it is smoothed by a non-causal 
moving average filter and shown as a green line in the 

plot. The ,1
ˆ

tβ is also filtered by using a causal moving 
average filter because estimates using window are also 
likely to have some noise. Unlike ,t dualIΔ , ,1

ˆ
tβ is filtered 

because smoothing is impossible in real time. The 
smoothing and filtering process uses past 30 minutes of 
estimates. From figure 6, we can see that the filtered slant 
ionospheric delay rate, shown as a red line, using the 
linear model closely follows the measured slant 
ionospheric delay rates from a dual frequency receiver. 
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Figure 6: Comparison of the estimated ionospheric delay 
rates from a dual frequency receiver and from using the 

linear model during  
 
Figure 7 shows the histogram of the difference between 

,t dualIΔ and ,1
ˆ

tβ for all satellites in view during 19 hours 
on Oct 26, 2006 at Atlantic City. The mean of the 
difference is -0.047 mm/s, and the standard deviation is 
0.15 mm/s. These results indicate that the linear model is 
quite satisfactory for many applications.     
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Figure 7: Histogram of the difference between 
smoothed ,t dualIΔ and ,1

ˆ
tβ  for all in view during 

 19 hours on Oct 26, 2006 at Atlantic City 
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OPTIMAL CARRIER SMOOTHING BASED ON 
THE ESIMATES OF SLANT IONOSHPERIC 
DELAY RATES AND MULTIPATH  
 
Errors in smoothed range using a Hatch filter need to be 
identified to formulate a cost function. An optimal carrier 
smoothing is naturally the one that minimizes the cost 
function. This section shows the errors in carrier 
smoothed range and derivation of two cost functions that 
differs with respect to multipath characteristics.      
 
A.   Errors in Carrier Smoothed Range 

 
Using a Hatch filter, the carrier-smoothed pseudorange at 
time t , tρ , is given by 

 
11

1 1( )k
t t t t tk kρ ρ ρ−

− −= + +Φ −Φ  (14) 
 
where ρ is a code phase measurement, tΦ is a carrier 
phase measurement, and k is a carrier smoothing time.  

 
We can define the error,ε , in the smoothed pseudorange 
as [7] 

 
t t t u s t tr c t t T Iε ρ δ δ= − − − − −⎡ ⎤⎣ ⎦  (15) 

 
This error has the following dynamics.  

 
1 1 1

1 12 ( )k k
t t t t tk k kI I Mε ε− −

− −= − − +  (16) 
 
If we consider the initial error, 0ε , to zero and a constant 

ionospheric delay rate such as 1( )t tI I a−− = , then the 
solution of the error is given by 
 

1 1
1

0 0

12
t t

i i
t t i

i i

a M
k

ε φ φ
− −

+
−

= =

= − +∑ ∑  (17) 

 
where 1k

kφ −= . The assumption on the constant 
ionospheric delay rate is valid for tens of minutes in 
nominal ionospheric days.  
 
Furthermore, when t is large, the steady state error, ssε , 
becomes 

 
1

0
1

0

12( )
1

12( 1)

t
i

ss t i
i
t

i
t i

i

a M
k

k a M
k

φε φ
φ

φ

−

−
=
−

−
=

= − +
−

= − − +

∑

∑
 (18) 

 

From equation (18), it should be noted that the steady 
state error, ssε , of the carrier smoothing filter is a 
function of the rate of ionospheric delays, multipath in the 
code phase measurements, and a carrier smoothing time. 
Equation (18) says that the lager a carrier smoothing time 
is, there are a bigger induced bias and lesser effects of 
multipath in ssε . 
 
B. Cost Function with White Noise Multipath 
 
The error contributed from white noise multipath in 
equation (18) is 
 

1

0

1 t
i

Mw t i
i

M
k

ε φ
−

−
=

= ∑  (19) 

 
When the multipath is assumed to be white, i.e 

2{ } ~ (0, )nM WN σ , the variance of M wε can be computed 
as follows. 
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Therefore, a cost function for white noise multipath can 
be defined as follows. 
 

2
2 2

( )

4 ( 1)
2 1

w I MwJ k J J

k a
k

μ

σμ

= +

= − +
−

 (21) 

 
where a and σ are assumed to be given. μ  is a 
weighting factor. IJ is the square of the induced bias 
and MwJ  is the variance of filtered multipath. 
 
Figure 8 shows optimal k ’s chosen with respect to given 
ionospheric rates and standard deviations of multipath 
when μ  is set to 0.05. 
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Figure 8: Optimal k ’s with white noise 

 multipath assumption 
 

Figure 9 and 10 shows the expected induced bias and 
variance of filtered multipath when using the optimal k in 
figure 8. The induced bias and the variance are the 
decision criteria that a user bases on to choose μ and an 
optimal k . 

 
 

Figure 9: Induced bias from  
using optimal k ’s from figure 8. 

 
The assumption on the white noise multipath is not valid 
to static ground users but is reasonable to airborne as 
shown in a previous section. Therefore, the optimal 
k obtained from white noise multipath is recommended to 
airborne users. 
 

 
Figure 10: Variance of filtered multipath 
 from using optimal k ’s from figure 8 

 
C.   Cost Function with Sinusoidal Multipath  
 
The highly correlated multipath on ground can be seen as 
a quasi-sinusoidal wave. This quasi-sinusoidal wave also 
can be seen as the weighted sum of infinitely many sine 
and cosine waves. Among the many waves, a low 
frequency noise is difficult to be filtered in general. Also, 
this is the case in using a Hatch filter, which gives hints of 
how to treat the quasi-sinusoidal wave in the formulation 
of the cost function. 
 
Let us model quasi-sinusoidal multipath as a cosine wave 
 

cos( )sM A tω α= ⋅ +  (22) 
 
where A is an amplitude, ω is the distinct low frequency 
that has high power and α is an unknown phase. A 
reasonable guideline to determine A and ω is as follows. 
 

1) Compute Fast Fourier Transform (FFT) of 
multipath 

2) Find the frequency which has the most distinct 
magnitude in low frequency, and designate it 
asω  

3) Compute the sampled σ and designate A as 2σ  
 
Figure 11 shows true multipath and a modeled cosine 
wave. The true multipath is separated from code minus 
carrier phase measurements measured from a static 
ground antenna using the OLS. Therefore, the separated 
multipath has the characteristics of ground multipath.  
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Figure 11: True multipath and a modeled sine wave  

 
When the modeled cosine wave is put into a Hatch filter, 
the output, Msε , has the following expression with a large 
t . 
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Then, the amplitude of the filtered cosine wave, FA , is 
 

21 2 cos( )
F

AA
k φ ω φ

=
− +

 (24) 

 
Figure 12 shows the outputs of the true and the modeled 
multipath from a Hatch filter when 100k = . In this 
simulation, an ionospheric delay rate is set to 0. The 
bound of the filtered cosine wave in steady state is FA± . 
From this figure, we can see that this bound very closely 
indicates the maximum and the minimum values of the 
filtered true multipath.        
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Figure 12: Filtered multipath of the true and the modeled 

multipath from a Hatch filter.  
 
Then, a cost function with a sinusoidal multipath, sJ , can 
be constructed as the sum of the cost due to an induced 
bias and the cost due to FA . 
 

2
2 2

2 24 ( 1)
(1 2 cos( ) )

s I MsJ J J

Ak a
k w

μ

μ
φ φ

= +

= − +
− +

 (25) 

 
Figure 13 shows optimal k ’s chosen with respect to 
given ionospheric gradients and amplitudes. μ is set to 1 
and ω is set to 0.04 rad /s which has 157 seconds period 
and is commonly observed from static ground 
measurements. 
 

 
Figure 13: Optimal k ’s with sinusoidal  

multipath assumption 
 

 
Figure 14 and 15 shows the induced bias and the 
amplitude of a filtered cosine wave when using optimal 
k ’s in figure 13. 

148



 
Figure 14: Induced bias from using 

 optimal k ’s from figure 13. 
 

 
 

Figure 15: Amplitudes of a filtered cosine wave with ω = 
0.04 rad/s from using optimal k ’s from figure 13.  
 
ADAPTIVE CARRIER SMOOTHING 
PROCEDURES 
 
As a summary for the previous long discussion, the 
adaptive carrier smoothing procedures are illustrated in 
figure 16.  
 
 

 
 

Figure 16: Adaptive carrier smoothing procedures 

 
At first, the estimator takes code minus carrier phase 
measurements for all satellites and outputs estimated 
parameters: slant ionospheric delay rates and standard 
deviation of multipath for white noise multipath 
assumption and ionospheric delay rates, amplitude and 
distinct low frequency for the modeled cosine wave for 
highly correlated multipath assumption. These estimates 
are low pass filtered, and the optimizer selects an optimal 
carrier smoothing time from the cost functions. Then, the 
optimal smoothing time is put into a Hatch filter. These 
procedures are repeated at a certain rate to adapt to the 
change of circumstances.  
 
RESULTS 
 
The adaptive carrier smoothing techniques are 
implemented on airborne measurements and static ground 
measurements. The sliding window of code minus carrier 
phase measurements is set to 800 seconds. The 
parameters are estimated every 15 seconds and filtered 
using a low pass filter. Therefore, the optimal carrier 
smoothing time is also updated every 15 seconds. The 
results are presented in this section with respect to 
airborne measurements and static ground measurements.  
   
A. Airborne Measurements 
 
Figure 17 shows estimated standard deviation of 
multipath, ˆmultipathσ , and estimated slant ionospheric delay 
rates over time, â , for one satellite. Figure 18 shows 
optimal k corresponding to the estimated parameters in 
figure 17. 
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Figure 17: ˆmultipathσ and â over time for one satellite 
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Figure 18: Optimal k corresponding to 
The estimated parameters in figure 17 

 
In figure 17, ˆmultipathσ  increases over time, but â  
decreases. Therefore, optimal k is increasing because a 
user will have smoother position solutions without adding 
a significant induced bias to them.    
 
Figure 19 compares position solutions obtained from 
using a 100 seconds Hatch filter and the adaptive carrier 
smoothing with white noise multipath assumption. 
Interestingly, significant noise reduction is observed 
during 1700~2200 seconds from using the adaptive carrier 
smoothing than the other times. The reason is that there 
were two satellites at very low elevation angles, and 
severe multipath was observed in the code phase 
measurements. Figure 20 shoes the elevations angles over 
time of all satellites used in the test.    
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Figure 19: Difference of position solutions using an 100s 
hatch filter and the adaptive carrier smoothing with white 

noise multipath assumption 
 

500 1000 1500 2000 2500
0

10

20

30

40

50

60

70

80

90

Time (s)

E
le

va
tio

n 
a

ng
le

 (
de

gr
e

e)

 
Figure 20: The elevation angles in degrees of 

the satellites in the test for airborne measurements. 
  

B. Static Ground Measurements 
 
Figure 21 shows the amplitude and frequency for the 
cosine wave, ˆ

FA and ω̂ , and estimated slant ionospheric 
delay rate, â , for one satellite.  
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Figure 21: Optimal k over time 
with respect to ˆ

FA , ω̂ , and â  
 
Figure 22 shows the behavior of the optimal k  
corresponding to the estimated parameters in figure 19. 
There are several large peaks of the smoothing time when 
the ionospheric delay rate is very close to zero. In 
principle, the smoothing time can increase up to infinity 
when the ionospheric delay rate is exactly zero. 
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Figure 22: Optimal k  corresponding to 
the estimated parameters in figure 19 

 
Figure 23 compares position solutions obtained from 
using a 100 seconds Hatch filter and the adaptive carrier 
smoothing with sinusoidal multipath assumption. In this 
example, ionospheric delay gradients are small for all 
satellites, thus the adaptive carrier smoothing gives much 
smoother position solutions. The difference of the two 
position solutions are more clearly shown in figure 23 
than figure 19. 
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Figure 23: Difference of position solutions using an 100s 

hatch filter and the adaptive carrier smoothing with 
sinusoidal multipath assumption  

 
DISCUSSION 
 
It is shown that the estimation of slant ionospheric delay 
rates with a single frequency receiver is very promising. It 
is observed that the estimates are exceptionally good 
when a satellite is at high elevation angles. But, when an 
elevation angle is low, the estimates have errors as much 
as 1mm/s. The reasons for the relatively poorer 
performance at low elevation angles are severe multipath 
and a rapid change of variance of multipath. The problem 
due to change of the variance can be fixed by using 
variance-stabilizing transformations [4], but the severe 

multipath at low elevation angles will still make it 
difficult to estimate accurate slant ionospheric delay rates. 
Therefore, when satellites are at low elevation angles, 
high integrity users are recommended to limit a maximum 
carrier smoothing time or compute an optimal carrier 
smoothing time by setting a minimum ionospheric delay 
rates based on a confidence interval. For white noise 
multipath, the 95% confidence interval for the ionospheric 
delay rate is ,1

ˆ 0.6tβ ± mm/s when a 800s sliding window 
and a standard deviation of 2m are considered.    
 
CONCLUSION 
 
Throughout this paper, the adaptive carrier smoothing 
technique is introduced for white noise multipath and 
highly correlated multipath. This technique is tested both 
on dynamic airborne and static ground measurements 
taken on nominal ionospheric days. From the suggested 
cost functions and the particular measurements, the 
optimal carrier smoothing times are usually much bigger 
than 100 seconds for both airborne and static ground 
measurements. Since there is no large ionospheric 
gradient observed, the position solutions using adaptive 
carrier smoothing are smoother than the position solutions 
using 100s carrier smoothing time without having a 
significant induced bias for the both tests.  
 
Even though it is rather hard to quantify the smoothness 
obtained from using the adaptive carrier smoothing, the 
difference of the two position solutions can provide rough 
estimates. For example, in the result for the static ground 
measurements, the positions using adaptive carrier 
smoothing tends to be inside the position using 100s 
Hatch filter. The difference of the two position solutions 
has a mean close to zero and standard deviations of 22cm 
in East, 35cm in North, and 56cm in Up. Therefore, 
roughly speaking, these are the smoothness benefited 
from using the adaptive carrier smoothing.  
 
Overall, the adaptive carrier smoothing introduced in this 
paper is expected to be more useful in times or places that 
ionosphere is very active and multipath is severe. In 
addition, more aggressive users are recommended to 
tweak the cost function on their own preferences to better 
meet their applications. 
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