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ABSTRACT 
 
Strong ionosphere storms are a potential threat for the Local 
Area Augmentation System (LAAS).  During these storms, 
very large spatial gradients of ionosphere delays might 
cause significant errors in user position estimation.  
Therefore, LAAS needs to continuously monitor ionosphere 
behavior in order to ensure integrity against the ionosphere 
anomalies. 
 
This paper introduces a new ionosphere monitoring method 
using dual-frequency GPS signals.  This method consists 
of two algorithms, each of which measures a different 
aspect of the ionosphere delay behavior.  The first 
algorithm estimates the rate of change of the ionosphere 
delay in time by using dual-frequency carrier-phase 
measurements.  Although the algorithm estimates the 
temporal gradients very precisely, it cannot observe 
ionosphere fronts which appear to be stationary.  The 
second algorithm directly computes the ionosphere spatial 
differences between the LAAS Ground Facility (LGF) and 
the user, estimating the ionosphere delays with 
dual-frequency code measurements.  By definition, this 
algorithm has no unobservable condition.  However, the 
estimated differences are noisy.   
 
Combining these two algorithms, we develop an ionosphere 
monitoring method in which these algorithms work 
complementarily.  We then formulate a theoretical Vertical 
Protection Level (VPL) customized to this method.  
Availability simulations show that the system with the new 
monitor provides better performance than conventional 
single-frequency LAAS. 
 
1. INTRODUCTION 
 
Local-area differential GPS systems such as the Local Area 
Augmentation System (LAAS) assume near-perfect 
correlation of the ionosphere delays between LGF and users.  
However, large spatial gradients during strong ionosphere 
storms can invalidate this basic assumption and cause 
hazardous errors in user position estimations [1,2].  Hence, 

severe ionosphere anomalies are a potential threat to LAAS 
that, while rare, must be mitigated to a significant degree to 
support Category III (CAT III) precision landings in the 
future.   
 
Dual-frequency GPS techniques are know to be an effective 
means to reduce or remove ionosphere-induced errors and 
thus improve the robustness of LAAS to ionosphere 
anomalies [3,4,5].  In a previous study [3], we selected two 
dual-frequency methods and evaluated their effectiveness 
under anomalous ionosphere conditions.  These methods 
were divergence-free smoothing (denoted here as “DFree”) 
and ionosphere-free smoothing (denoted here as “IFree”).  
Simulations showed that, if the system had perfect 
knowledge of the ionosphere status in real-time, DFree 
provided much better availability than IFree for most 
ionosphere conditions, whereas IFree was superior only 
under extremely anomalous conditions.  This result 
suggested that optimal system availability would be 
obtained by using DFree for nominal or moderately 
anomalous conditions and switching to IFree under 
extremely anomalous conditions (i.e., conditions that 
otherwise would be the most hazardous to users).  We 
named this system “hybrid dual-frequency LAAS”. 
 
An important problem remained from the earlier study: how 
does the system monitor the ionosphere status?  Without 
an ionosphere monitor, the hybrid system cannot 
appropriately change the primary method from DFree to 
IFree in real time.  Moreover, because DFree cannot 
mitigate all hazardous ionosphere conditions, an ionosphere 
monitoring is necessary for DFree to meet the stringent 
integrity requirement of CAT III landings.  Hybrid 
dual-frequency LAAS can ensure the integrity against 
ionosphere anomalies by using the monitor to exclude 
threatening satellites, to inflate user error bounds in 
real-time, or to trigger a switch between DFree and IFree.  
 
In this paper, we introduce a method to monitor the 
ionosphere behavior between LGF and users using 
dual-frequency GPS.  This method consists of two 
algorithms which measure different aspects of ionosphere 



delay.  The first algorithm measures the rate of change of 
ionosphere delay over time using dual-frequency 
carrier-phase measurements.  Previous studies [6,7] have 
introduced various methods to estimate temporal gradients 
using both L1 code and carrier measurements together.  In 
contrast with these methods, the proposed algorithm uses 
only carrier measurements to estimate temporal gradients 
very precisely with a simple noise reduction filter. 
 
On the other hand, this algorithm shares a common problem 
with other methods: it does not directly measure the 
ionosphere spatial gradients (or differences) between LGF 
and users.  To evaluate the performance of the algorithm, 
the observed temporal gradients need to be converted to the 
equivalent spatial gradients.  For the mapping, we use a 
conventional model which assumes that a temporal gradient 
result from motion of an ionosphere-pierce-point (IPP) 
through a linear ionosphere spatial gradient (the linear 
gradient is conventionally called an “ionosphere front”).  
Given this mapping model, this algorithm cannot observe a 
particular ionosphere condition in which a large spatial 
gradient “synchronizes” with an IPP; i.e., it moves in the 
same direction and the same speed as the IPP.  Analyzing 
the movement of IPPs for several airports in the United 
States, we have concluded that the algorithm can, in 
practice, detect all ionosphere fronts simultaneously 
affecting three or more satellites.  Hence, the critical 
condition for the DFree LAAS with this monitoring 
algorithm is a severe ionosphere front simultaneously 
affecting two satellites without being detected by the 
monitor.   
 
To compensate for this undetectable condition, we introduce 
the second algorithm.  This algorithm directly computes 
ionosphere spatial differences from the ionosphere delays at 
the LGF and user.  These delays are computed using 
dual-frequency code measurements.  This algorithm has no 
undetectable condition; however, the use of the code 
measurements on two frequencies induces two problems.  
One is the inter-frequency bias (IFB) [8,9] and the other is a 
high amount of noise.  To eliminate the IFB, we take the 
double difference of the delays.  To reduce the noise, we 
apply a carrier-smoothing filter with a long time constant. 
 
Combining these two algorithms gives an ionosphere 
monitor in which the two algorithms work complementarily.  
More specifically, most ionosphere anomalies are detected 
by the first algorithm, while its undetectable conditions, 
which are quite rare but theoretically possible, are mitigated 
by the second.  To evaluate the practical benefit of the 
monitor, we formulate a theoretical Vertical Protection 
Level (VPL), a conservative navigation error bound to 
guarantee the integrity requirement, for the monitor and 
conduct availability simulations using this VPL.  These 
simulations show that the system with the monitor requires 
a smaller Vertical Alert Limit (VAL) to achieve the same 
availability as conventional single-frequency LAAS [10].  

It is also shown that the level of improvement depends 
highly on the level of noise affecting the second algorithm.   
 
2. REVIEW OF HYBRID DUAL-FREQUENCY 
LAAS 
 
Hybrid dual-frequency LAAS uses DFree as its primary 
smoothing filter and switches to IFree when the ionosphere 
state is extremely anomalous.  The main difference 
between DFree and IFree is the degree to which ionosphere 
effects are removed from the measurements.  DFree 
partially removes the effects of ionosphere delays, while 
IFree completely removes the effects.  Because of the 
immunity it offers against ionosphere-related errors, IFree 
appears on the surface to be a better method than DFree; 
however, its critical drawback is the large error size.  Our 
previous study showed that this error is so big that IFree 
cannot achieve acceptable availability.  Therefore, DFree 
should be used unless the ionosphere condition is 
discovered to be extremely anomalous [3]. 
 
To switch from DFree to IFree appropriately, the system 
needs an ionosphere monitor.  Moreover, because DFree 
does not remove all ionosphere effects, it cannot guarantee 
the integrity against ionosphere fault without a monitor.  In 
order to understand what quantities should be monitored, 
this section briefly reviews the theory of DFree and 
highlights the key equations describing ionosphere effects.  
We start with conventional single-frequency carrier- 
smoothing and proceed to DFree so that it can be seen how 
DFree reduces the effect of ionosphere-related errors.  
Detailed explanations of DFree can be found in [3,4,5]. 
 
Single-frequency carrier smoothing and DFree have the 
same filter structure, as shown in Figure 1.  Here, Ψ 
represents the input signal containing code measurements, 
Φ represents the input signal containing carrier 
measurements, and τ (in the transfer function of the 
low-pass filter) is a smoothing time constant conventionally 
set to 100 seconds.  The two filters are constructed so that 
the basic structure is maintained while the input signals are 
varied. 
 
The single-frequency carrier-smoothing filter uses the L1 
code measurement, ρ1, for Ψ and the L1 carrier 
measurement, φ1, for Φ.  They are expressed as follows. 
 
 
 
 
 
 
 
 
 

Figure 1: Block diagram of smoothing filter 
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Here, r includes all common terms between code and carrier 
such as range to the satellite, clock offsets, and the 
troposphere delay.  I1 represents the ionosphere delay, η1 is 
the random noise on code measurements (e.g., thermal 
noise and multipath), and N1 is the integer ambiguity of the 
carrier measurements.  Random noise on carrier 
measurements is ignored, since it is much smaller than that 
on code measurements.  The subscript “1” indicates that 
the measurements are on the L1 frequency. 
 
Feeding these inputs into the filter shown in Figure 1, we 
obtain the following output, expressed in terms of its 
Laplace transform. 
 

11)12( ηFIFr +−+=Ψ      (2) 
 
Here, F is the transfer function of the low-pass filter.  The 
second term on the right-hand side of (2) describes the 
filtered ionosphere delays, and the third term represents the 
filtered random noise.  Here, we are interested in the 
second term—the ionosphere term.   
 
If the ionosphere delay in the input signal is constant, the 
low-pass filter does nothing to it (i.e., 11)12( IIF =− ).  
However, if it varies with time, a “delay” effect is induced 
in the filter.  To observe it, let us examine a case where the 
ionosphere delay has a constant temporal gradient, Id. 
 

01 )( ItItI d +=       (3) 
 
When the ionosphere effect on the raw-code measurements 
has this form, the filtered ionosphere impact, the second 
term in equation (2), becomes the following. 
 

dII τ2 :Ionosphere Filtered 1 −     (4) 
 
This is the key equation for understanding the effect of the 
anomalous ionosphere on single-frequency LAAS.  LAAS 
assumes that the filtered ionosphere is almost identical 
between the LGF and users.  However, if there is a large 
spatial gradient in the ionosphere, meaning I1 in equation 
(4) is significantly different between the LGF and users, it 
might cause a hazardously large error in user position 
estimation.  Moreover, equation (4) shows that if the 
temporal ionosphere variation, Id, is different between the 
LGF and users, it will cause an additional error in the 
position estimation. 
 
In contrast, DFree eliminates the effect of temporal 
gradients due to ionosphere anomalies.  It uses L1 code 
measurements and L1/L2 carrier measurements as inputs to 
the filter.  These inputs are expressed as follows. 
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Here, IFB is the interfrequency bias of the receiver which is 
caused by hardware differences between L1 and L2 signal 
paths, τgd is the interfrequency bias of the satellite 
transmitter which is also caused by the L1/L2 hardware 
differences [8,9], and fL1 and fL2 are the L1 and L2 
frequencies (1575.42 and 1227.6 MHz, respectively). 
 
Feeding these signals into the filter, we obtain the following 
output, again expressed in the Laplace domain. 
 

11 ηFIr ++=Ψ       (6) 
 
Note that the second term in (6) does not depend on the 
filter F, and hence the output does not suffer from the 2τId 
delay effect of (4) when exposed to a ramp ionosphere input.  
Moreover, the random noise on the output is identical in 
DFree and single-frequency carrier smoothing (compare the 
third term in equations (2) and (6)).  By eliminating the 
effect of ionosphere divergence while keeping the noise 
level the same, DFree significantly improves the robustness 
of LAAS against ionosphere anomalies.  On the other hand, 
because the raw-code ionosphere delay, I1, remains in the 
output, large spatial gradients are still a potential threat for 
DFree.  
 
Having specified the ionosphere error model for DFree, the 
quantity to be monitored has been made clear.  We do not 
need to care about the temporal gradient errors that affect 
single frequency LAAS; however, we do care about the 
absolute delay differences because the accuracy of DFree 
still depends on them.  Therefore, the monitor must 
observe absolute ionosphere differences between LGF and 
users. 
 
3. OUTLINE AND ASSUMPTIONS OF THE 
MONITORING METHOD 
 
Before starting the discussion of the monitor algorithms, it 
is important to clarify the assumptions we make in this 
paper.  First, we assume the landing operation illustrated in 
Figure 2.  In this configuration, the “landing threshold” or 
“decision point” is 5 km from the ground receiver and the 
user (an aircraft on final approach to the LGF-equipped 
airport) passes this point with the velocity of 0.07 km/s. 
 
We also assume that anomalous ionosphere fronts are 
described by an ionosphere threat space model with three 



Table 1: Parameter ranges of ionosphere threat space  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Illustration of landing operation with an 
ionosphere front present 

Decision Height

5 km

LGF

Ionosphere Front

GPS Satellite

Spatial Gradient

Front Velocity

0.07 km/s

Decision Height

5 km

LGF

Ionosphere Front

GPS Satellite

Spatial Gradient

Front Velocity

0.07 km/s

Parameter Range Note 
Gradient 35 ~ 400 (mm/km) for all elevations
Velocity (Vfront) 0 ~ 0.75 (km/s) -- 
Width 25 ~ 100 (km) -- 
 
 
 
4. MONITOR ALGORITHM BASED ON 
TEMPORAL GRADIENTS 
 
In Section 2, we noted that we do not need to observe 
temporal ionosphere gradients because the resulting 
divergence is not a threat to DFree.  However, temporal 
gradients include useful information for detecting 
anomalous ionosphere behavior.  Furthermore, they are 
relatively easy to observe and many monitors to detect 
anomalous temporal gradients have been previously 
introduced for use with CAT I LAAS (for example, see 
[6,7,11]).   

 
 
parameters: gradient, velocity with respect to the ground, 
and width.  This model is the same type as the 
recently-finalized “ionosphere anomaly threat model” for 
LAAS CAT I approaches [10]; however, since we are 
considering CAT III approaches, we allow for extra margin 
in the gradient magnitude as compared to the CAT I model.  
Table 1 shows the parameter ranges for this model.   

 
This section discusses an algorithm that detects satellites 
exposed to anomalous ionosphere fronts by estimating 
temporal gradients.  In the algorithm, the LGF and users 
independently detect satellites affected by anomalous 
ionosphere fronts, and the LGF broadcasts the results of its 
screening process to the user.  Based on the identification 
of faulted satellites through a combination of airborne and 
ground monitoring, the user can estimate its position 
excluding the faulted satellites.  We call this algorithm the 
“Rate-based algorithm”.  

 
Furthermore, we assume that both the LGF and users have 
an ionosphere monitor.  This architecture is different from 
that of conventional single-frequency LAAS in which only 
the LGF has a monitor.  Figure 3 shows an overview of the 
monitoring method.  As the figure shows, two algorithms 
operate together: an algorithm based on temporal gradient 
estimation (discussed in Section 4), and an algorithm based 
on ionosphere delay estimation (discussed in Section 5).  
Each algorithm has its own test statistic and threshold; 
satellites whose test statistic exceeds the threshold are not 
used for navigation.  After this threshold check, the 
airborne subsystem computes the Vertical Protection Level 
(VPL) for the remaining satellites (discussed in Section 6) 
and compares it with the Vertical Alert Limit (VAL) to 
decide whether or not to complete the landing.   

 
4.1 Estimation of Ionosphere Temporal Gradients and 
Specification of the Threshold 
 
The Rate-based algorithm estimates ionosphere temporal 
gradients using L1 and L2 carrier-phase measurements.  
First, the algorithm estimates the ionosphere delays using 
these measurements. 
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Figure 3: Monitor overview 
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Here, ε is the noise on the carrier measurements.  
Assuming no cycle slips are detected, instantaneous rates of 
change of these delays are computed as follows.  
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Here, Tid is the sampling period of the carrier measurements, 
which is set to 0.5 seconds, and q is an arbitrary integer that 
is set to 2 (by setting it to 2, we look 1 second backward in 
time).  The raw rates from (8) are then fed into a low-pass 
filter to reduce the noise. 
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Here, τid is the time constant for the low-pass filter, herein 
set to 20 seconds.   
 

The estimated gradient from (9), Î& , is then compared with 
a threshold to detect satellites affected by the anomalous 
ionosphere.  A proper threshold is necessary to detect the 
faulted satellites correctly.  We specify the threshold by 
applying the Gaussian overbound method described in [6,7] 
to the empirical data collected on April 12, May 19, and 
July 27, 2006.  The distribution of the empirical gradients 
estimated by equations (7-9) of the above algorithm is 
shown in Figure 4, where the number of data points is about 
4.5 million.  This figure clearly shows that the gradient 
magnitudes depend on satellite elevation angles.  We  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Distribution of empirical gradients 
 

calculate the sample means and the sample standard 
deviations of the gradients in nine elevation bins of 10 
degrees each.  The discrete means and standard deviations 
are interpolated with a fourth-order polynomial, and 
continuous functions for the mean and standard deviation 
are obtained.  The red and blue curves in Figure 4 show 
these functions.  By normalizing the empirical gradients 
with these functions, gradients independent of elevation 
angles are obtained. 
 
Figure 5 shows the cumulative distribution function (CDF) 
of the normalized gradients.  Ideally, after normalization, 
these data should be distributed according to a Gaussian 
distribution with a standard deviation of 1.  This ideal case 
is drawn as the red line in Figure 5.  The plot shows that 
this Gaussian does not overbound the tails of the empirical 
data.  With a parameter search, we find that if the standard 
deviation of the Gaussian is inflated by a factor of 1.56, the 
inflated Gaussian overbounds the normalized gradients.  
The green line in Figure 5 shows the inflated Gaussian.  
Applying the inflation factor to the original function of the 
sample standard deviations, we obtain a modified function 
which overbound the empirical data.  The red curve in 
Figure 6 shows the inflated function, while the blue curve 
shows the original standard deviation.  
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Figure 5: CDF of normalized gradients 
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Figure 6: Threshold for anomaly detection 
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Finally, the elevation-dependent threshold is: 
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where σig corresponds to the sample standard deviation as a 
function of elevation angle (the blue curve in Figure 6).  
The resulting threshold is shown in Figure 6 as a dashed 
curve.  To obtain this threshold, the multiplier Kffd_ig is set 
to 6 so that the theoretical probability of a fault-free alarm 
is less than 1.98 × 10-9, which is considered sufficient for 
the continuity requirement for CAT III LAAS [12].  
Distribution biases are small enough that they can be 
neglected (see the red curve in Figure 4). 
 
It is also important to evaluate the response speed of the 
algorithm, a speed governed by the response of the low-pass 
filter given by equation (9).  Figure 7 plots the step 
response of this filter, and it shows that the 90% settling 
time is about 23 seconds.  Such a fast response can be 
achieved because only carrier measurements are used in the 
algorithm.  The noise on carrier measurements is small to 
begin with and is further reduced by the 20-second time 
constant of the filter. 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Step response of low-pass filter 
 
 
4.2 Mapping Model from Temporal to Spatial Gradients 
 
In order to analyze the performance of the Rate-based 
algorithm, it is necessary to convert the delay rate 
observation into an equivalent spatial gradient.  For the 
mapping, we use a conventional model which assumes that 
a temporal gradient results from motion of an ionosphere- 
pierce-point (IPP) through an ionosphere front.  Figure 
8 is a schematic of this model.  In this figure, an 
ionosphere front with a gradient of α mm/km is moving 
with a velocity of Vfront km/s.  The IPP is moving with a 
velocity of VIPP km/s within the front.  An angle θ  exists 
between the front movement and IPP movement directions.  
In this case, the ionosphere delay varies with the following 
rate of change.  
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Figure 8: Schematic expression of model that transforms 

temporal gradients into spatial gradients 
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Rearranging and generalizing this equation, we obtain the 
following model connecting temporal and spatial gradients. 
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Here, dVfront/IPP is the ionosphere front velocity with respect 
to the (moving) IPP. 
 
Using this model, the threshold of the temporal gradient 
shown in Figure 6 can be transformed into a spatial-gradient 
threshold.  Figure 9 shows this threshold as a function of 
dVfront/IPP given an elevation angle.  The maximum 
gradient of 400 mm/km in these plots comes from the upper 
bound in the assumed threat space (see Table 1).  The 
upper-right area of each curve corresponds to detectable 
ionosphere fronts, and the lower-left area corresponds to 
undetectable fronts.  Figure 10 shows a different view of 
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ure 10: Threshold of spatial gradients as a function 
of elevation angle 
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Figure 11: Geometrical explanations for cases where an 

ionosphere front affects a satellite 
 
 
(confirm that 400 mm/km is above the red curve in Figure 
10).  Based on this geometrical analysis, it can be said that 
when the front moves with the IPP of the user and hits the 
LGF IPP just as the user passes the decision point, as shown 
in Figure 11(c), both the airborne and ground monitor 
cannot detect the front, and hence this situation is the most 
severe condition for one-satellite-affected cases.  
 
Next, we analyze the case where the front simultaneously 
affects two satellites, say, satellites i and j.  There are four 
pierce points to be considered: IPPi,u, IPPi,g, IPPj,u, and IPPj,g.  
Although IPPi,u and IPPj,u have independent velocities, 
theoretically, there is a front which is synchronized with 
both IPPs and hence cannot be detected by the airborne 
monitor (Figure 12 illustrates such a front).  In most 
circumstances, the ground monitor detects such a front.  
However, as shown in Figure 13, when the front motion 
direction is perpendicular to the baseline of IPPi,u and IPPj,u, 
and the leading edge of the front is less than 5 km from the 
baseline, the ground monitor cannot detect the front either.  
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Figure 12: Geometrical explanation for a front moving 

synchronously with two IPPs 



 
 
 
 
 
 
 
 
 
 

Figure 13: Most-severe condition for the two-satellite- 
affected case 

 
 
This is because IPPi,g and IPPj,g do not “catch up to” the 
front before the user passes the decision point.  If this 
particular situation occurs, the Rate-based algorithm cannot 
detect the front even though it affects two satellites 
simultaneously. 
 
To confirm if such a special condition would occur in 
practice, we investigated actual satellite geometries for 
three airports (Memphis, Los Angeles, and New York).  
We searched for the geometry where the baseline of two 
IPPs was perpendicular to the direction of the undetectable 
front and found some IPP pairs that satisfied the condition 
(detailed explanations of this investigation can be found in 
[13]).  These IPP pairs have potential to experience the 
condition where the Rate-based algorithm can miss 
detecting the fronts affecting these IPP pairs.  Because of 
the existence of the potentially vulnerable geometries, and 
considering the very stringent integrity requirement for 
CAT III LAAS, we cannot neglect the threat of a front 
simultaneously affecting two satellites without being 
detected by the Rate-based algorithm. 
 
Expanding the analysis above, we can also construct the 
theoretical condition where the Rate-based algorithm misses 
detection of fronts simultaneously affecting three satellites.  
In this condition, as shown in Figure 14, three IPPs align on 
a single line.  The front is synchronized with all the three 
IPPs, and the leading edge of the front is less 5 km from the 
baseline of the IPPs.  In the time before the user passes the 
decision point, neither the airborne monitor nor the ground 
monitor can detect the front satisfying this condition. 
 
 
 
 
 
 
 
 
 
 
Figure 14: Most-severe condition for the three-satellite- 

affected case 

To confirm if such a special condition would occur in 
practice, we again investigated the satellite geometries for 
the three airports mentioned above.  We searched for a 
geometry where three IPPs align on a single line and there 
exists a velocity that synchronizes with all the three IPPs.  
This time, we did not find any IPP triplets which satisfied 
the condition.  This result means that, at least for the three 
airports searched in depth, there are no geometries that 
experience the condition where the Rate-based algorithm 
can miss detecting fronts affecting three or more satellites. 
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These simulations do not constitute a formal integrity proof.  
However, considering the very improbable nature of these 
conditions, we conclude that, in practice, the Rate-based 
algorithm always detects an ionosphere front if it 
simultaneously affects three or more satellites, but that the 
algorithm may miss detecting fronts simultaneously 
affecting only two satellites. 
 
As a footnote, in the above analysis, we considered only the 
cases where the front moved with IPPs for the user and hit 
the associated IPPs for the LGF just as the user passed the 
decision point.  The same discussion is applicable to the 
cases where the front moves with IPPs for the LGF and hits 
the IPPs for the user when the user passes the decision point.  
This situation can also be critical for the Rate-based 
algorithm. 
 
5. MONITOR ALGORITHM BASED ON 
IONOSPHERE DELAYS 
 
Another approach to detect anomalous spatial gradients is to 
compare the ionosphere delays estimated by the LGF and 
users.  There is no completely undetectable front in this 
approach.  Moreover, the concept is feasible because the 
use of dual-frequency GPS enables us to directly estimate 
ionosphere delays.  This algorithm is summarized as 
follows.  First, the user and LGF independently estimate 
the ionosphere delays.  Next, the LGF broadcasts its 
delays to the user.  Finally, the user compares the two 
delays and monitors for the possible existence of an 
ionosphere front.  We call this algorithm the “Delay-based 
algorithm”. 
 
5.1 Ionosphere Delay Estimation 
 
Ionosphere delays can be estimated by using dual-frequency 
code/carrier measurements and carrier-smoothing filter 
shown in Figure 1 [4].  The input signals to the filter are 
given as follows. 
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Feeding these inputs into the filter, ionosphere delays are 
estimated using the following equation, expressed in the 
Laplace domain. 
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The algorithm faces two significant problems: large noise 
errors and interfrequency biases.  First, we study in detail 
the noise—the second term in the second line of equation 
(12).  Assuming that the L1/L2 raw code noise terms, η1 
and η2, are white Gaussian, then the filtered noise, Fη1 and 
Fη2, can be modeled as the Gaussian noise whose standard 
deviations, σ1 and σ2, are given as follows [4,5].  
 

τσστσσ ρρ 2/,2/ 2211 TT ==     (13) 
 
Here, T is the sampling period of the code measurements, τ 
is the smoothing time constant of the filter, and σρ1 and σρ2 
are the standard deviations of the L1/L2 raw code noise. 
 
From equations (12) and (13), the standard deviation of the 
random noise on the ionosphere delay estimation, σIhat, is 
given as the following, assuming that the filtered noise on 
L1/L2 frequencies, Fη1 and Fη2, are independent and that 
their standard deviations, σ1 and σ2, are identical. 
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Here, σ1 is theoretically identical to the standard deviation 
of the errors on code measurements smoothed by 
single-frequency carrier-smoothing.  Thus it is possible to 
leverage single-frequency error models to describe σ1.  
Specifically, standard models exist to describe the 
single-frequency carrier-smoothing error for the case of a 
sampling period, T, and smoothing time constant, τ, of 0.5 
seconds and 100 seconds respectively [14].  These models 
are called Airborne Accuracy Designators (AAD) for the 
airborne subsystem and Ground Accuracy Designator 
(GAD) for the ground subsystem.  Equation (14) indicates 
that we can use them to construct an error model for 
ionosphere delay estimation.  The blue curve in Figure 15 
shows the model for the user’s estimation errors (denoted as 
σIhat,u) based on AAD-B, and the red curve shows the one 
for LGF’s estimation errors (denoted as σIhat,g) based on the 
GAD-C4 model (“C4” indicates that a 4-reference-receiver 
ground-system configuration is assumed).  
 
5.2 Test Statistic and Threshold Specification 
 
In this method, the LGF and the user independently  

 
 
 
 
 
 
 
 
 
 

Figure 15: Ionosphere delay estimation error model 
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estimate ionosphere delays, and the LGF broadcasts its 
delay estimates to the user.  Each user then computes the 
difference between the LGF’s delay estimates and its own 
as follows. 
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Here,  represents the true differential range error 
caused by an ionosphere front affecting satellite i, and 

i
ugI∆

i
ugε  

is the random noise.  Note that the interfrequency bias of 
the satellite, τgd in equation (12), is canceled out because it 
is a unique value for each satellite and thus affects the LGF 
and user equally. 
 
Let us denote the standard deviation of i

ugε  as i
I∆σ .  

This term consists of the root-sum-square of random errors 
which independently affect the estimation of i

ugI∆ .  
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Here, σIhat,u and σIhat,g are the estimation errors of 
ionosphere delays at the user and LGF, and σiono is the 
sigma of nominal ionosphere difference between the user 
and LGF which is given as follows.  
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Here, dgu is the distance between the user and LGF (set to 
5 km, recall section 3), σvig is the nominal ionosphere 
spatial gradient in the zenith domain and is set to 5 mm/km, 
and Oqi is the obliquity factor corresponding to the 
elevation of satellite i.  Using AAD-B and GAD-C4 for the 
airborne and ground monitors (i.e., using the models shown 
in Figure 15), σ∆I is plotted in Figure 16. 
 
Having modeled the random part of the , we next need 
to deal with the bias part—∆IFB in equation (15).  To 
cancel out this value, we take a double-difference of .  
Since Figure 16 shows that the estimation error decreases as 
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Figure 16: Test statistic error model 
 
 
the elevation increases, the double-difference should be 
taken between the highest satellite and the other satellites so 
that the noise can be kept small.  Supposing that there are 
N satellites in view and that the indexes of these satellites (i 
= 1,2,…,N) are assigned in the ascending order of elevation, 
the double-difference of  is given as follows. i

ugÎ∆
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This quantity is the test statistic to detect satellites affected 
by an ionosphere front.  Because the differential range 
errors—  and  in equation (17)—are zero under 
the nominal ionosphere conditions (recall that nominal 
ionosphere error is included in the random part: equation 
(16)), the nominal distribution of the test statistic is 
assumed to be a zero-mean Gaussian whose standard 
deviation is given by: 
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where each sigma in the right-hand side of the equation is 
given by equation (16).  Using this sigma, the threshold for 
the test statistic is given as follows. 
 

6
)1,,2,1(

_

_

=

−=±=

∆

∆∆∆

Iffd

i
IIffd

i
I

K
NiTh K Lσ

  (19) 

 
The allocation of 6 for Kffd_∆I is based on the same reasoning 
used to compute the multiplier Kffd_ig for the Rate-based 
algorithm (see Subsection 4.1). 
 
It may be noticed that the test statistic and the threshold are 
defined only for satellite 1 to N−1.  For the highest satellite 
(satellite N), there is no unique monitor statistic.  As such 
we use the same value for satellite N as that for the second 
highest satellite (satellite N−1): 
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The test statistic and the threshold for the highest satellite 
are not used in the detection of faulted satellites; however, 
they are needed in t
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) he computation of VPL (described in 
ubsection 6.3). 

.3 Detection Rule 

ific detection (and exclusion) rule is given as 
llows. 
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The spec
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Detection Rul :  If the test ˆ

clude satellite i and satellite N 
(the highest satellite). 

nge 

mely rare geometry conditions described in Subsection 
.3. 

.4 Sensitivity of the Algorithm  

hresholds must be 
t loose, making detection difficult.   

 

g the time 
nstant to 500 seconds and to 1000 seconds.   

 the 
lgorithm can be seen to be ineffective unless the time 

 statistic I∆∇  exceeds 

the threshold i
ITh∆ , ex

i

 
Note that not only satellite i but also satellite N is excluded, 
because the differential ra errors on both satellites can 
inflate the test statistic iÎ∆∇ , and because it cannot be 
determined which error actually causes the anomalous 
statistic.  Although this rule is somewhat conservative, the 
conservativeness will not be a drawback in practice.  
Because the Rate-based algorithm effectively excludes 
almost all satellites affected by ionosphere fronts, the 
Delay-based algorithm will mostly monitor “clean” 
satellites.  Accordingly, the Delay-based algorithm has the 
responsibility of detecting faulted satellites only under the 
extre
4
 
5
 
It is important to discuss the sensitivity of the algorithm, 
because Figure 16 implies a large noise level for the test 
statistic.  If the test statistic is noisy, the t
se
 
One way to lower the noise is to employ a long time 
constant for the filter that estimates ionosphere delays.  
Equation (13) indicates that the standard deviation of the 
output noise of the filter is in inverse proportion to the 
square-root of the time constant.  Hence, theoretically, as 
the time constant increases by a factor of 4, the output noise 
decreases by a factor of 2, and so does the threshold. 
Figure 17 shows an example of thresholds corresponding to 
a particular geometry.  Figure 17(a) shows three thresholds 
for each satellite whose position in sky is shown in Figure 
17(b).  The largest thresholds (blue circles) are obtained 
using AAD-B and GAD-C4 (with a 100-second time 
constant).  The other two are obtained by settin
co
 
Recall that the maximum error due to an ionosphere 
gradient is 2 m (400 mm/km times 5 km).  Because the 
thresholds for the case of 100-second smoothing are so 
loose that they exceed the 2 m maximum error,
a



 
 
 
 
 
 
 
 
 
 
 
 

Figure 17: Thresholds for a particular geometry 

00 seconds or 
nger is desired for practical applications. 
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message broadcasting—the estimated ionosphere 
elays.  

iono and Relationship between 
PLiono and Integrity Risk 

ites, the fault mode can be reduced to the 
llowing. 

 

 
 
constant parameter is increased.  Availability simulations 
(Section 7) suggest that a time constant of 10
lo
 
6. VPL DE
M
 
We have introduced two algorithms to detect satellites 
affected by anomalous ionosphere fronts.  This section 
derives a Vertical Protection Level (VPL) which is 
customized to the algorithms.  First, we derive a general 
form of the VPL by discussing the relationship between the 
VPL and the integrity risk corresponding to ionosphere 
anomalies.  Next, we derive two VPLs based on two 
systems: one has only the Rate-based algorithm, the other 
has both monitor algorithms.  The first system is 
considered as a baseline because it requires no change to the 
message structure broadcasted by the LGF [12].  The 
second is an enhanced system because we can anticipate 
performance improvement from the baseline system due to 
the Delay-based algorithm, even though it requires an 
additional 
d
 
6.1  Definition of VPL
V
 
In order to determine the VPL, we consider the worst case 
mode in which an ionosphere front harms user’s position 
estimation.  Because the Rate-based algorithm is 
considered to detect all ionosphere fronts affecting three or 
more satell
fo

Fault mode:  A situation where an ionosphere spatial 
gradient simultaneously affects at most two satellites 
without being detected by the Rate-based algorithm. 

ts and the bias induced by 
e undetected ionosphere front. 

 
   (21) 

distribution 
hose standard deviation, σv, is assumed to be: 
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The vertical navigation error, Eiono, under the fault mode is 
expressed as the sum of the random error associated with 
the nominal ranging measuremen
th

),( ji
randomiono IIBiasEE ∆∆+=

 
Here, ∆Ii and ∆Ij represent the differential range errors of 
satellite i and j caused by the ionosphere front, and 
Bias(∆Ii, ∆Ij) is the bias induced by these errors.  The 
random error Erandom has a zero-mean Gaussian 
w

∑
=

=
N

k
kkvv S

1

22
, σσ . 

 
Here, σk is the nominal range error for satellite k which 
includes ground receiver’s noise, airborne receiver’s noise, 
and errors caused by the nominal ionosphere gradient.  
The terms Sv,k are the relevant coefficients from the 
weighted pseudoinverse range-to-position transformation 
matrix S.  The probability distribution for the positioning 
rror, Eiono, is thus given as: 

 
.    (22) 

phere fault (denoted as VPLiono) is defined as 
llows. 
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Considering this positioning error, the VPL accounting for 
the ionos
fo

VPLiono:  A protection level determined such that the 
total probability of occurrence for a vertical positioning 
error (induced by an ionosphere front) beyond the level 
does not exceed the integrity risk allocated for the fault 
mode. 

 section will derive quantitative expression 
r the VPLiono. 

otment, Pa (as noted above, 10-10 is 
llocated to this Pa). 

 

 
Because there is no authorized allocation of the allowable 
integrity risk for the ionosphere fault, we tentatively allot 
10-10 to the integrity risk—10% of the total integrity 
requirement for CAT III approaches (10-9) [12].  The 
remainder of this
fo
 
The risk due to an ionosphere fault involves three events: 
first, an ionosphere anomaly occurs; second, the ionosphere 
monitor fails to detect the anomaly; and finally, VPLiono 
fails to bound the fault-induced error given that the monitor 
has failed.  Each of these events has a probability: Piono, 
the prior probability of ionosphere anomalies; Pmd, the 
conditional probability of missed-detection by the 
ionosphere monitor given the existence of the anomaly; and 
Ppl, the conditional probability that the error exceeds the 
protection level given the missed-detection.  To meet 
integrity, the product of these probabilities must not exceed 
the integrity risk all
a

ionomdpla PPPP ≥ . 
 

(a) Thresholds (b) Satellite Position(a) Thresholds (b) Satellite Position



Because there is no “provable” prior probability of 
ionosphere anomalies, we conservatively set Piono to 1.  
Accordingly, the maximum allowable risk that the error 
exceeds the protection level given the missed-detection is 
xpressed as: 
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sch

e VPLiono is hence mathematically expressed as 
llows. 

    (24) 

hanced sy
Bias(∆I , ∆I )) of equation 

4) on a system-specific basis. 

ure 18: Distribution of positioning error and VPLiono

.2 VPLiono for the Baseline System 

 

quently, the random part of 
PL  becomes 6.3613σ .  

 the current geometry.  
his maximum bias is expressed as: 

 

 
The value of the protection level is set so that the risk of an 
exceedance does not surpass the maximum risk given by the 
above equation.  Accordingly, the probability of the 
vertical positioning error, described by (21), is integrated up 
to ∗

plP  to determine the protection level.  Figure 18 
ematically expresses this derivation of the VPL from 

∗
plP .  The bell-shape curve in the figure shows the 

probability distribution of the positioning error given an 
ionosphere fault which the monitoring algorithms have 
failed to detect.  The gray region in the figure corresponds 
to the probability that the error exceeds the protection level 

en the missed-detection, which is approximately equal to 
∗
plP .  Th

giv

fo
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vpliono IIBiasPQVPL ∆∆+−= ∗− σ .  
 
In the following sections, we customize this VPLiono 
equation for the two systems of interest (the baseline and 
en stems), determining the random term 
( vplPQ σ)(1 ∗−− ) and bias term ( i j

(2
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This section derives VPLiono customized to the baseline 
system in which only the Rate-based algorithm operates.  
The worst-case unobservable geometry for the Rate-based 
algorithm governs performance of this system. 
Specifically, to cover the unobservable conditions, Pmd is set 
to 1.  By setting the probability of missed-detection to 1, it 

appears that the Rate-based algorithm does not contribute to 
mitigation of the ionosphere risk.  However, the monitor 
has already contributed by reducing the set of ionosphere 
threats to cases in which no more than two satellites are 
simultaneously affected by an ionosphere front.  Setting 
Pmd to 1, ∗

plP  becomes equal to Pa which was set to 10-10 
(see equation (23)).  Conse
V iono v
 
The bias part of VPLiono should be the maximum bias in the 
fault mode.  Because we are considering ionosphere fronts 
affecting at most two satellites, the maximum bias occurs 
when a front of the maximum gradient hits the most 
sensitive satellite or satellite pair in
T
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where ∆Imax is the maximum differential range error 
induced by the front, which in this paper is set to 2 m (the 
maximum gradient of 400 mm/km times the user-to-LGF 
separation of 5 km).  In most cases, the maximum error of 
the two-satellite- ffected situation, the second argument of 
the outer max( • ), is larger than that of one-satellite- 
affected situation, the first argument.  Taking the 
maximum between them takes account of geometries like 
the one whose Sv is, for example, given as Sv = [-2.12, 0.67, 
0.54, 0.03, 0.88].  In this example, the maximum bias for 
the two-satellite-affected situation is 4.18 m, while that for 

e one-satellite-affected situation is 4.24 m. 

d bias parts, VPLiono for the 
aseline system is given as: 

 

th
 
Combining the random an
b

Bias(∆I i, ∆I j )

VPLiono-VPLiono

p(Eiono)

max3613.6 BiasVPL viono += σ .     (26) 

ly compute VPLiono at each epoch 
r the baseline system. 

.3 VPLiono for the Enhanced System 

e P  plays an important role in the derivation of VPL . 

) and (20)—the test statistic 
f the Delay-based algorithm. 

 

 
Because σv and Biasmax depends only on the satellite 
geometry, users can easi
fo
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This section specifies the random and bias parts of equation 
(24), to tailor the VPLiono equation for the enhanced system 
which executes both the Rate-based and Delay-based 
algorithms.  Recall that VPLiono is computed after the 
monitoring algorithms have screened out satellites faulted 
by ionosphere fronts.  Because the probability of 
missed-detection relates the fault observability to VPLiono, 
th md iono
 
Let us write again equation (17
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The probability distribution of the test statistic given a 
hypothetical differential range error on the i-th satellite, ∆Ii, 
is mathematically expressed as follows. 
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The standard deviation of the test statistic is given by 
equation (18), and ∆Ii (i = 1,…, N) varies from 0 m to 2 m.  
A missed detection event occurs when the test statistic fails 
to exceed the threshold given during a fault event.  The 
Pmd is thus the integral of distribution (28) for all values 
between the positive and negative thresholds.  This 
integrated probability, illustrated as the gray region of 
Figure 19, is described by the following equation. 
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Here, the threshold is given by equation 19.  Because the 
Rate-based algorithm ensures that ionosphere fronts affect 
at most two satellites, hypothetical range errors for at most 
two satellites, ∆Ii and ∆Ij, need to be considered.  A 
conservative expression for the probability that the 
Delay-based algorithm misses detecting the hypothetical 
front is expressed as:  
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Taking the minimum of Pmd(∆Ii) and Pmd(∆Ij) is justified, 
because it takes credit for only one of the available test 
statistics (the best one).  If in fact the test statistics were 
independent, then we could take credit for the joint Pmd 
being the product of the independent statistics.  Because 
the differential errors are correlated (they are caused by the 
same ionosphere front), it is safest to use the upper bound 
(equation (30)).  Equations (29) and (30) indicate that the  
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19: Probability of missed-detection (shaded gray) 

probability of missed-detection decreases as the 
hypothetical differential range errors increase. 
 
Note that, when one of the two satellites is the highest 
satellite, Pmd(∆IN) is computed by using the test statistic and 
the threshold for the second highest satellite (recall equation 
(20)).  Here, we need a caveat when the two satellites are 
the highest and the second highest satellites.  First, the test 
statistics and the thresholds of these satellites are identical; 
hence, comparing the Pmd of these satellites in equation (30) 
does not make sense for this case.  More seriously, 
non-zero range errors on these satellites (∆IN and ∆IN-1) 
cancel out in the computation of the test statistic (see 
equation (27)).  Because of the cancellation, the 
probability of missed-detection could be inflated even for 
the large range errors.  This unpleasant situation can be 
avoided by introducing a Pmd of another satellite.  Because 
the highest satellite is excluded whenever a test statistic of 
another satellite exceeds its threshold (recall the detection 
rule discussed in Subsection 5.3), Pmd for any satellites in 
view can be used to evaluate the Pmd for the highest satellite.  
Considering that the threshold of the third highest satellite 
(satellite N-2) is tightest in the other satellites, Pmd for the 
front affecting the highest and the second highest satellites 
is given as follows. 
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Substituting Pmd computed by equation (30) or (31) for the 
random part of equation (24) and explicitly evaluating the 
bias part of the equation, the VPL corresponding to a 
particular satellite pair (i and j) and particular 
differential-range-errors on these satellites (∆Ii and ∆Ij) is 
given as follows. 
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VPLiono for the current geometry is the maximum of the 
VPLiono(∆Ii, ∆Ij) in all possible satellite pairs and all 
possible differential-range-error pairs. 
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Compared with VPLiono of the baseline system, computation 
cost is a drawback of VPLiono for the enhanced system.  In 
equation (33), the airborne subsystem has to search for a 
maximum across many satellite pairs and many differential 
error pairs at each epoch, while VPLiono for the baseline 
system is explicitly given by equation (26).  However, 
VPLiono for the enhanced system is theoretically smaller 
than the other: the random part is smaller than that of the 
baseline system because Pmd is less than one, and the bias 



part is obviously no more than the Biasmax of the baseline 
system.  Therefore, we anticipate that the enhanced system 
will achieve higher availability than the baseline system 
does. 
 
7. AVAILABILITY SIMULATIONS 
 
In order to evaluate the effect of the monitoring algorithms, 
we conducted availability simulations for the two systems: 
the baseline system, and the enhanced system.  Assuming 
these two system configurations, we estimated the 
availability for three airports: Memphis, Los Angeles, and 
New York. 
 
System availability was computed as the average of 
“instantaneous” availability for all possible satellite 
geometries [3,15].  The almanac of 24-satellite 
constellation on July 1, 1993 was used to generate the 
geometries [16].  We simulated not only the situations 
where all satellites were healthy but also those where 
multiple satellites were unhealthy, using the “historical” 
probability of satellite malfunction [3,15]. 
 
As discussed in Subsection 5.4, the sensitivity of the 
Delay-based algorithm depends on the time constant of the 
delay-estimation filter.  Specifically, the threshold to detect 
faulted satellites is tightened with longer time constants.  
To evaluate the practical benefit of the long time constant, 
we computed the availability of the enhanced system using 
three time constants: 100 seconds, 500 seconds, and 1000 
seconds. 
 
Table 2 shows the availability assuming 10-meter VAL.  
As shown in the table, the enhanced system with 
100-second time constant achieves the same availability as 
the baseline system for all the airports.  In other words, the 
Delay-based algorithm offers no benefit when the time 
constant is 100 seconds.  This must be due to the very 
large noise of the ionosphere delay estimation in the 
algorithm, noise results in loose thresholds relative to the 
differential range errors (recall Figure 17).  Consequently, 
without a long time constant, the probability of missed 
detection becomes large.  Obviously, with a large 
probability of missed-detection, the effect of the algorithm 
is limited.  According to the simulation result, a time 
constant of 1000 seconds or longer would be necessary to 
obtain conspicuous effect from the Delay-based algorithm. 
 
 

Table 2: Availability (%) for 10 m VAL 
 Memphis LA NY 

Baseline 96.515 98.938 99.983
τ : 100 s 96.515 98.938 99.983
τ : 500 s 96.518 99.286 99.984

 
Enhanced 

τ : 1000 s 97.903 99.982 99.987
 
 

Next, we searched for VALs for which the baseline system 
and enhanced system (with a 1000-second time-constant) 
can achieve 99.9% and 99.999% availabilities.  Here, the 
99.999% availability is desired for CAT III LAAS [12].  
Table 3 gives the results.  As a reference, a prior study [10] 
showed that, under a less severe ionosphere condition than 
that of our simulations, conventional single-frequency 
LAAS would require a VAL over 20 m to achieve 99.9% 
availability in Memphis.  Compared with this estimation, 
both of baseline and enhanced systems need much smaller 
VAL (16.5 m and 14.5 m) to obtain the same availability in 
Memphis.   
 
The performance improvement by the baseline system can 
be explained by two reasons.  One is the use of DFree that 
significantly reduces the differential range errors caused by 
ionosphere fronts, eliminating the effect of the ionosphere 
temporal gradients (2τId in equation (4)).  The other is the 
use of the airborne monitor that limits the threatening 
ionosphere fronts to those unobserved by the ground and 
airborne monitors.  In contrast, lacking the airborne 
monitor, conventional single-frequency LAAS is threatened 
by all ionosphere fronts unobserved by the ground monitor.  
The further performance improvement by the enhanced 
system is obviously caused by adding the Delay-based 
algorithm. 
 
Another interest is to evaluate the sensitivity of these two 
systems to more severe ionosphere threats.  The threat 
space for CAT III LAAS is still under development; hence, 
it is worthwhile to simulate the availability for an expanded 
threat space.  We expanded the maximum gradient from 
400 mm/km to 500 mm/km and then to 600 mm/km.  Note 
that these gradients correspond to 2-meter, 2.5-meter, and 
3-meter differential errors at the decision point.  The 
results are given in Figure 20, in which the subplots in the 
first row show the availability for 10-meter VAL, and the 
subplots in the second row show the VAL to obtain 
99.999% availability.  As shown in the figure, the 
enhanced system (with a 1000-second time constant) keeps 
high availability for the enlarged ionosphere gradients, 
while the baseline system loses significant availability.  
Similarly, the enhanced system keeps VAL less than 26 m 
regardless of gradients, while the baseline system requires 
over 30-meter VAL for the 600 mm/km gradient in some 
airports.   
 
 
Table 3: VAL to obtain 99.9% and 99.999% availability 

The top value in each cell is VAL needed to obtain 99.9% 
availability, and the bottom value is VAL needed to obtain 
99.999% availability. 

 Memphis LA NY 
Baseline 16.5 m 

24.5 m 
11.0 m 
19.0 m 

9.5 m 
26.5 m 

Enhanced 
(τ: 1000 s)

14.5 m 
23.0 m 

9.5 m 
17.0 m 

9.0 m 
25.0 m 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 20: Simulations with expanded threat space 
 
 
This simulation demonstrates the robustness of the 
Delay-based algorithm against ionosphere threats.  This 
robustness can be explained by examining the relationship 
between the differential range error and VPLiono.  Although 
the Delay-based algorithm is insensitive to small 
differential range errors, gradients of 400 mm/km are 
marginally detectable, and gradients of more than 500 
mm/km are easily detectable.  Easier detection 
corresponds to smaller Pmd, and the smaller the Pmd 
becomes, the more the random part of VPLiono is deflated.  
At some point, the deflation of the random part surpasses 
the inflation of the bias part in the computation of VPLiono 
(see equation (32)); consequently, the VPLiono is upper 
bounded.  This mechanism is clearly shown in Figure 21.  
This plot shows how VPLiono varies according to the 
differential range errors on two particular satellites 
(satellites i and j).  The VPLiono hits the ceiling around ∆Ii 
of 2 m and ∆Ij of 2 m and does not increase for larger errors.  
This property results in the robustness of the Delay-based 
algorithm to severe ionosphere conditions. 
 
Although the simulation results are encouraging, limitations 
of the study should be considered.  The most important 
issue might be the adequacy of the noise model of the 
Delay-based algorithm.  Based on the theory discussed in 
Subsection 5.4, we assumed the noise level is reduced by a 
factor of 10  by employing the 1000-second time 
constant.  However, the ideal noise reduction is not 
guaranteed in practice.  Evaluating the noise model is an 
important future task.  Also, it is debatable whether the 
1000-second time constant would be acceptable for 
practical applications.  Further analysis will be needed to 
evaluate the impact of the long time constant. 
 
Another issue is the prior probability of ionosphere 
anomalies.  We set Piono to 1 due to the lack of the 
statistical knowledge about the anomalies; however, this  
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Figure 21: Distribution of VPLiono
 
 
value might be overly conservative.  If further research 
provides plausible evidence for a reduced prior probability, 
higher availability will be obtained. 
 
8.  CONCLUSION AND ONGOING WORK 
 
This paper has introduced two algorithms to detect satellites 
affected by anomalous ionosphere fronts: the Rate-based 
algorithm and the Delay-based algorithm.  The Rate-based 
algorithm is a very sensitive detector but suffers from a 
particular undetectable condition.  The Delay-based 
algorithm is an algorithm that can detect all anomalous 
situations but is not very sensitive.  Combining these 
algorithms, we have formulated a new VPL accounting for 
the ionosphere anomalies in a dual-frequency LAAS 
system. 
 
An important issue remaining from this study is how best to 
integrate the monitoring algorithms into hybrid 
dual-frequency LAAS.  In this study we combined the 
algorithms with DFree LAAS only.  Hence, we will 
continue to work on incorporating the monitor into the 
hybrid system and optimizing the resulting system.  Note 
that the hybrid system adds the option of switching between 
DFree and IFree to the existing options of the satellite 
exclusion and VPL inclusion studied in this paper. 
 
Through the analysis presented in this paper, we have 
quantitatively evaluated the proposed algorithms.  
Simulations have shown that DFree LAAS could achieve 
high availability by using only the Rate-based algorithm, 
given an ionosphere threat space only slightly larger than 
that used in CAT I LAAS.  However, once that threat 
space was expanded, the DFree system lost significant 
availability.  By contrast, enhanced monitoring for DFree 
LAAS using two algorithms showed considerable 
robustness against the expansion of the threat space.  
Because the ionosphere threat space may be re-evaluated 
for CAT III to reflect the stricter integrity risk at the 10-9 



level, this additional robustness is very attractive in the 
development of CAT III LAAS. 
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