
_______________________________
Presented at ION 51st Annual Meeting, Colorado Springs, Colorado, June 5-7, 1995

ABSTRACT
Recent flight tests of the Integrity Beacon Landing
System (IBLS) have demonstrated the feasibility of using
GPS for Category III precision landing.  To achieve these
results, an airborne architecture that provided position
solutions in real-time was developed.  Centimeter-level
positioning accuracy was achieved using a single-
frequency receiver without using integer search
techniques.  This capability distinguishes the Integrity
Beacon Landing System from other proposed kinematic
GPS landing systems.

At the heart of the real-time architecture is a cycle
ambiguity estimator.  This estimator makes use of all
available information to arrive at floating estimates of the
integer biases associated with the GPS carrier phase
measurements.  The uncertainty in these estimates is
stored in a covariance matrix.  The estimates are updated
in several ways:
1)  After each carrier phase measurement epoch, the
satellite phase measurements are transformed to a
reduced measurement set that is only a function of the
integers.  The position and clock error terms are
eliminated from the measurement, thereby partitioning
the estimation of the constant integers from the
estimation of the changing position.
2)  Code DGPS measurements are incorporated into the
estimates, achieving an effect similar to carrier-
smoothed-code.
3)  Phase measurements from the Integrity Beacons (low-
power pseudolite transmitters placed under the approach
path) provide a high-accuracy, high integrity update to
the estimator.

New satellites are added to the estimate and lost satellites
are removed from the estimate with ease.  Given

redundant satellites, the estimator will converge toward
the cycle ambiguities using satellite motion.  With 7
satellites, the integer estimates typically converge to the
cycle level in 15 minutes.  During the pseudolite
overpass, the estimates converge to the centimeter level
in a matter of seconds.  Receiver Autonomous Integrity
Monitoring (RAIM) is performed during the pseudolite
overpass to verify the consistency of the satellite and
pseudolite measurements.  Additionally, in all phases of
flight RAIM is performed before each integer update to
verify that the update is consistent with the existing
integer estimates.  Despite the flexibility of this
architecture, it is straightforward to implement.  The
details of this implementation are presented.

1.0  INTRODUCTION
Stanford University has been developing IBLS as a
means of augmenting GPS to provide the performance
required to achieve Category III specifications [1-4].
Figure 1 shows the IBLS concept.  The system consists of
a differential reference station located at or near the
airport tower and two pseudolites located on the ground
beneath the approach path.  These pseudolites are called
Integrity Beacons.  The low-power Integrity Beacon
signal is detectable only within the low power broadcast
“bubble” shown in the figure.  Initially, the aircraft
navigates using traditional code-based differential GPS.
As the aircraft passes through the bubble, the rapid
geometry change allows the cycle ambiguities associated
with the carrier phase to be estimated with high accuracy
and integrity.  These estimates provide high accuracy
position solution for the remainder of the approach, even
after the aircraft exits the bubble.  A patent application
has been submitted for the Integrity Beacon Landing
System.



For early flight tests of IBLS [1], system evaluation was
performed entirely in post-processing.  The next step in
the development of the IBLS test platform was to add a
data link and allow position solutions to be calculated in
flight [2].  However, the system still had several
limitations:
• Positions were only available at the data uplink
frequency and were delayed by the data link latency.
• Positions were only calculated when the integers were
known; no positions were available before the bubble.

Since the ultimate goal of the IBLS flight tests was to
demonstrate automatic approaches and landings, these
limitations had to be overcome.  The current version of
the IBLS architecture does overcome these limitations
and Category III feasibility demonstrations were
presented in [3,4].

2.0  AIRBORNE ARCHITECTURE
The current version of the IBLS architecture is shown in
Figure 2.  The inputs to the airborne software come from
the aircraft GPS receiver, the data link, and an attitude
source (attitude is required to account for the lever arm
from the top GPS antenna to the pseudolite receive
antenna).  The time-tagged data from each of these
inputs is stored in ring buffers.  The newest data on the
aircraft receiver ring buffer is used immediately to obtain
a position solution.  Because the reference phase is
delayed and available only at the uplink frequency, its
value must be predicted from the reference phase history
in the data link ring buffer.  Also, an estimate of the
integers is required to perform a carrier phase position

solution.  This estimate is continuously updated using
aligned data from the ring buffers.  That is, when a
timetag is found that is common to all of the ring buffers,
the synchronous data is used to improve the estimate of
the integers.  This process is described in more detail in
the “Integer Estimation” section.
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Figure 2: IBLS Airborne Architecture

2.1  REFERENCE PHASE PREDICTOR
Instead of waiting for the data link to send up the carrier
phase measured at the reference station, the reference
phase can be predicted based on the history of the
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Figure 1: Integrity Beacon Landing System Diagram



reference phase.  Because the reference phase is
relatively slowly changing (satellite motion and SA
dominate the dynamics of the reference signal), it can be
accurately predicted several seconds into the future.  The
goal of the reference phase predictor was to perform this
prediction in a simple yet robust manner.  Although it is
possible to predict more than several seconds in advance,
a data latency or data dropout of that magnitude would
most likely be unacceptable for the precision landing
application.  Therefore, the requirements for the
predictor were derived to be:
• Predict the reference phase several seconds with error
on the order of centimeters.
• Be robustness to data dropouts.
• Be easy to implement.
• Predict phase at arbitrary timetags (i.e. - not just at
reference sample times).

Although several types of predictors were evaluated, a
least-squares quadratic predictor was chosen because it
was simple, yet it performed quite well.  A quadratic
function of time is fit to the previous m reference phases
(m>=3).  Given the timetag of an aircraft receiver
measurement, the corresponding reference phase can be
predicted.  The performance of the predictor is given in
Table 1.  The table was generated by finding the
difference between the predicted phase and the actual
phase for different values of m and different data
latencies.  The data uplink frequency was one hertz.  The
predictor errors are quite acceptable for data latencies
less than 5 seconds and m between five and seven.  As
expected, the prediction error starts increasing for larger
values of m because older data is weighted the same as
more recent data.  A weighted least-squares predictor
which decreased the weights with the age of the data was
also evaluated.  The performance improved slightly, but
the improvement was not worth the additional
complexity.

Table 1: Reference Phase Predictor Error Versus
 Data Latency and m.

1 σ Error (cm) 1 sec 2 sec 3 sec 5 sec 10 sec
m=3 1.09 2.58 4.68 10.74 36.70
m=4 0.75 1.53 2.55 5.57 18.50
m=5 0.63 1.12 1.82 3.86 13.08
m=6 0.56 0.95 1.52 3.24 11.32
m=7 0.55 0.93 1.47 3.15 11.14
m=8 0.56 0.95 1.52 3.24 11.43

2.2  INTEGER ESTIMATION
To use the differential carrier phase to perform position
solutions, an estimate of the integer cycle ambiguities is

required.  The carrier phase measurement equation can
be written:
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where φ (ns×1) is the single-difference carrier phase
measurement (expressed in L1 wavelengths), G (ns×4) is
the traditional GPS geometry matrix, I (ns×ns) is the
identity matrix, x (3×1) is the position, τ  (scalar) is the
differential receiver clock bias, N (ns×1) are the integers,
δφ (ns×1) are the measurement errors (including
reference phase prediction errors), and ns is the number
of satellites.

If an integer estimate, $N , and the corresponding

covariance, PN , are available, this equation may be

rewritten:
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It is therefore convenient to keep a running estimate of
the integers.  An integer estimator was developed with
the following goals in mind:
• Eliminate the need for mode switching from code to
carrier differential GPS after the bubble pass.
• Maintain an estimate and covariance of the integers.
• Update estimates using all available information,
including integrity beacon results.
• Bring satellites on and off line gracefully as they are
acquired and lost.
• Allow for continuous RAIM.
• Be easy to implement.

Implementing the estimator as described here, these
primary goals are met, and the following advantages are
also achieved:
• Integer estimates converge from satellite motion.
• Flexible architecture allows simple extensions
described later.



2.2.1  ESTIMATE INITIALIZATION
When the program is first started, the integer estimates
are initialized using the differential code phase
measurements:
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where φ code is the code phase expressed in L1 cycles.

2.2.2  INTEGER MEASUREMENT UPDATES
After the integer estimates are initialized in this manner,
they are refined from a variety of sources.  It is important
to note that only the aligned measurements from Figure 2
are used to update the integer estimates (error in the
reference phase predictor does not corrupt the estimates).
In all cases, the estimate update is performed by casting
the new information into the following form:
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In this form, the measurement is used in a minimum
variance measurement update:
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where the ‘-’ and ‘+’ in the superscripts indicate before
and after the measurement update.  No process update is
necessary, because the states being estimated are
constants.  The measurement update process is shown in
Figure 3.
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Figure 3: Measurement Update Process

CARRIER PHASE UPDATE
If there are more than four satellites, each differential
carrier phase measurement can be cast into the form of
equation 2.  Pre-multiplying equation 1 by L, an
orthonormal basis for the left null space of G:
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CODE PHASE UPDATE
The code phase measurements can be used to update the
integers by subtracting them from the carrier phase
measurements in equation 1.  This equation is already in
the desired form.
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Updating the carrier phase cycle ambiguity estimates
using code phase measurements is similar to carrier
smoothed code.  Both techniques make use of the
advantages of each measurement.  The carrier phase has
low noise but an integer bias; the code phase has high
noise but no bias.  One technique uses code phase
measurements smoothed by the carrier, while the other
uses the carrier phase gravitated toward the code.

INTEGRITY BEACON UPDATE
The rapid geometry change the occurs during an integrity
beacon overpass provides another update to the integer
estimator.  The output of the integrity beacon processing
software is a high accuracy estimate of the individual
satellite integer differences along with the corresponding
covariances.  The integers themselves are unobservable,
but only the integer differences affect the position
solutions.  Any common bias affects only the clock
solution.  The details of calculating the integer
differences from the integrity beacon measurements are
given in the “Integrity Beacon Processing” section.  As
with the other integer updates, the new information can
be written in the form of equation 2:
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H (ns-1×ns) reflects the fact only integer differences are
output; the integer of an arbitrary satellite is subtracted



from all of the rest.  The R used in the update equations
is simply the integer difference covariance output by the
integrity beacon processing code.  R is a function of the
overpass geometry.
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Figure 4: Integrity Beacon Geometry

2.2.3  INTEGRITY BEACON PROCESSING
The geometry change that occurs as an aircraft flies over
a pair of integrity beacons provides information similar
to several hours of satellite motion in a matter of seconds.
However, due to the nonlinear nature of this geometry
change (G is a function of x for the integrity beacons),
this information must be processed separately.
Expanding the single difference carrier phase
measurement equation for SV i at epoch k, we obtain

φ τ εik ik k k i
s

ik
ss x N= − + + +$ ,T

where φ ik  is the single-differenced phase, $sik  is the line-

of-sight vector, xk  is the displacement vector from the

differential station to the aircraft, τk  is the difference in

the aircraft and reference receiver clock biases, Ni
s is the

integer cycle ambiguity, and εik
s  is the measurement error

due to multipath and receiver noise.  Similarly for
pseudolite j at epoch k
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p
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where ϕ jk  is the single-differenced phase and pj  is the

vector from the differential station to pseudolite j as
shown in Figure 4.

Given an approximate trajectory xk  obtained from code-

based differential GPS, the equations above can be
expressed in terms of  the deviation from the approximate
trajectory: δx x xk k k≡ − .  Keeping first order terms
only, the result is
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the value of one integer must be specified to due to the
existence of the clock bias τk  which is common to all

measurements at epoch k.  For simplicity, we choose
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we stack all n measurements collected during pseudolite
overpass to obtain



δ

δ

δ

δ

δ ε

Φ

Φ

Φ

1 1 10 0 0

0 0 0

0 0 0

0 0 0

M

M

L

O O M

M O O M

L O M

L

M

M

k

n

k

n

k

S I

S I

S I

x

x

N























=













































+

$

$

$

*

*

*

where

[ ]δ δ τx xk k k
* ,≡ T T

[ ]N N N N Ns
m
s p p* ,≡ 2 1 2L

T

and ε is the measurement error.
The least-squares solution to the above can be obtained
efficiently by sparse matrix batch algorithms or
equivalently by sequential forward-backward smoothing.
Due to nonlinear nature of the problem, the approximate
trajectory and observation matrix is improved by the
computed estimate of δxk , and the process above is

repeated through convergence.  The residuals of this
solution provide a high level of integrity as described in
[7].  The result of this process is a high accuracy, high
integrity estimate of the integer differences.  This
estimate is used to update the overall integer estimate, as
described in the “Integrity Beacon Update” section.

2.2.4 CONSTELLATION SWITCHES
As an aircraft banks, it may lose the signal from some
satellites and acquire the signal from others.  Satellites
may also be acquired or lost as they pass the receiver
elevation mask angle.  It is therefore desirable to remove
satellites and add satellites to the integer estimate.  The
covariance form of the estimator was chosen primarily
because it makes this task quite simple.  To remove a
satellite, the corresponding state is removed.  The
element of the estimate and the row and column of the
covariance are simply discarded.  To bring a new satellite
on-line, the integer is initialized using a the code phase
measurement for that satellite:

$Nnew new
code
new= −φ φ

The variance for the new integer is set consistent with the
code phase measurement noise; the cross covariance for
the other integer states is set to zero:
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After one carrier phase measurement update, the state
estimate and covariance for the new satellite are

consistent with the other integer estimates.  This
technique has proven to be an efficient method for
handing-off satellite integer estimates.

2.2.5  RAIM
RAIM is performed before each integer update to verify
that the new measurement is consistent with the existing
integer estimates.  If the measurement does not pass this
check, the approach can be aborted.  In some cases, the
failure may be isolated.  Isolation has not yet been
implemented in the real-time software.

In preparation for an integer update, the new
measurement is already in the form of equation 2.  The
difference between the expected measurement and the
actual measurement is calculated:
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This residual quantity, r, is a random vector with zero
mean and covariance given by:

P HP H Rr N
T= +

A measure of the consistency of the new measurement is
the weighted residual:

w r P rT
r= −1

If this weighted residual is greater than some
predetermined threshold, a RAIM alert is issued.  The
threshold is a function of the number of the dimension of
r and the desired continuity.

2.2.6  OTHER FEATURES

SATELLITE MOTION
Loomis [5] and Hwang [6] pointed out that the
differences between the integers are observable in a
dynamic environment because of satellite motion.  A
welcome side-effect of this airborne architecture is that
the integer differences will tend to converge using
satellite motion.  This convergence results from the
carrier phase measurement updates described earlier.
Satellite motion is automatically taken into account each
time there is a carrier phase measurement update,
because the L matrix in equation 4 changes with time.
Although the implementation of the carrier phase
updates are performed sequentially, the observability
analysis is shown below for a batch solution.

As the satellite geometry changes, the L matrix in
equation 4 also changes.  Grouping an arbitrary satellite
integer with the clock bias term, equation 1 may be
rewritten:
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The reason that only integer differences are observable
while the integers themselves are unobservable is that
L*  never has rank greater than (ns-1).  The columns of L

always sum to zero, as can be seen by manipulating the
definition of the left null space of G:
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Therefore, the sum of the columns of L*  are also

constrained to sum to zero, and the maximum rank is
(ns-1).  However, only integer differences are required to
solve for position.  Given sufficient geometry change and

enough redundant satellites, the matrix L I*  will have

rank (ns-1) and equation 5 may be used to estimate ′N :
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If the measurement samples are widely spaced enough in
time, the noise will be uncorrelated and the estimate
error covariance reduces to:
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The matrix D is similar to dilution of precision (DOP).
The square root of the trace of D is analogous to PDOP
and is referred to as NDOP.  The quantity (NDOP×σ )
approximates the one-sigma integer estimate error.  A
typical value of NDOP using seven or more satellites and
two measurements separated by 15 minutes is 20.
Assuming a carrier phase measurement error of 0.5 cm,
the one-sigma integer estimate is 10 cm after 15 minutes
of satellite motion.  In contrast, NDOP for a 10 second
integrity beacon overpass is about 2.  The information
provided by the integrity beacon clearly dwarfs that
provided by satellite motion.  However, satellite motion is
a welcome complement to the integrity beacon overpass.

In the sequential implementation of the carrier phase
measurement update, it is not necessary to group one
satellite with the clock bias.  Although only integer
differences are observable from satellite motion, the
integers themselves are initialized from code phase
measurements.  The implication is that one direction of
the integer covariance will remain at its initial value
(neglecting code phase measurement updates).  Scaling
problems could arise as the minimum eigenvalue
decreases while the maximum eigenvalue remains the
same.  This issue does not present a practical limitation
because adding a small amount of process noise to the
covariance prevents the minimum eigenvalue from
decreasing without bound.

STATIC SURVEY
For experimental purposes, it is often convenient to know
the integers before the aircraft takes off.  For this reason,
a static survey mode was added to the estimator.  When
the user changes to this mode, the estimator assumes the
aircraft is not moving.  This static constraint allows the
estimator to converge faster and with fewer satellites.
When the static constraint is imposed, the integer state is
augmented with the position.  Breaking the geometry
matrix into the satellite line-of-sight matrix, Gx , and the

column of ones that multiply the clock bias, equation 1
can be rewritten:
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The clock bias is removed from this measurement by pre-
multiplying by Lτ ,
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This is of the form of equation 2, but now the state
contains both position and integers.  As before, the state
is updated using equations 3 with:
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Convergence in static mode is typically two or three
times faster than dynamic mode.  Integer estimates are
often within a cycle of their true value in less than five
minutes.  Before the aircraft starts moving, position is
simply discarded from the state estimate.

UPDATES AT A KNOWN POSITION
If the user knows the aircraft’s position, this position can
be incorporated into the integer estimate.  In static mode,
this update is straightforward.  The position
“measurement” can be written in the form of equation 2:
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where [ ]H I= 0
The “measurement noise” is the uncertainty in the
position.  The user enters the position and a covariance
matrix representing this uncertainty.  An example of
when this feature is useful is when the aircraft parked at
the tie-down location.  Each time the aircraft is there, its
vertical position is the same to within a few centimeters;
the horizontal position may be different by a meter.  This
uncertainty can be accurately entered into the estimate.
After leaving the tie-down, the vertical position error and
covariance will remain small, while the horizontal error
will slowly converge.  This feature was used during a
flight test discussed later.

3.0  SYSTEM PERFORMANCE
This real-time system has been tested extensively.  In
July of 1994, it was used to perform 49 autocoupled
approaches of an FAA King Air [3].  The most
impressive results came in October of 1994 when this
system was used to perform 110 automatic landings of a
United Airlines Boeing 737-300 [4].  The following
sections describe experiments designed to exercise
several aspects of the system.

3.1  24 HOUR POSITIONING TEST
The real-time system was set up in the lab; the reference
station and aircraft receivers were connected to separate
antennas on the roof.  To accentuate multi-path errors,

ground planes were not used.  Due to the antenna gain
pattern and cable loss, satellites were not acquired until
they reached an elevation angle of about fifteen degrees.
The system was initialized and data was collected for 24
hours.  The first goal of this experiment was to
demonstrate the integer estimator convergence using
satellite motion.  Although the baseline was static, the
static survey mode of the estimator was not used.  The
second goal was to smoothly hand-off integer estimates
for 24 hours.

Figure 5 plots the magnitude of the 3-D position error
over the 24 hour period.  The initial error was about three
meters (off the vertical scale of the plot).  Using satellite
motion, the position error converged to the cycle level in
about fifteen minutes.  In less than an hour, it converged
to less than ten centimeters where it stayed for the
remainder of the test.  After the first hour, the mean
value of the magnitude of the position error was 2.2 cm.

Twenty-five different satellites were used during the 24
hours.  Some satellites were brought on and off line
several times while their signal strength was low.
Satellite integer estimates were brought on-line a total of
192 times.  These hand-offs were performed seamlessly
as evidenced by the position error plot of Figure 5.  After
the estimator converged on the integers for one set of
satellites, the position error remained small using entirely
different sets of satellites.  By the end of the test, the
original satellites returned to their initial positions in the
sky.  The implication of this periodic geometry is that the
satellites could be handed off indefinitely while retaining
centimeter-level positioning accuracy.

3.2  AIRBORNE PERFORMANCE
To exercise the system in an airborne environment, a
flight test was performed in a Piper Dakota.  In contrast
to the static test discussed earlier, the true position of the
aircraft in flight is not known exactly.  However, if a
separate process knows the correct values of the rounded
integers, a centimeter-level truth trajectory can be found.
This trajectory can be compared with the trajectory
estimate calculated using the integer estimator and
reference phase predictor to evaluate the system
performance.

To find the integer differences for the truth trajectory, the
static survey mode of the estimator was used while the
aircraft was at the tie-down.  In about fifteen minutes, the
estimator converged to within a half-cycle of the correct
integer differences.  The integer difference were rounded
to the correct values.  The measurement residual was
monitored for another fifteen minutes to verify that they
were correct. The flight test was performed when the
satellite geometry was such that six satellites could be



continuously tracked, even when the aircraft banked.
This ensured that the integer differences used for the
truth trajectory were constant throughout the flight.

The real-time system was reset before the flight (the
integer differences found from the static survey were only
used to find the truth trajectory). The integers were
initialized as usual, using differential code phase
measurements.  As mentioned earlier, the vertical
position at the tie-down is well known.  To demonstrate
the “known position update” feature described earlier,
this vertical information was incorporated into the
estimate.  After the position update, the vertical position
was accurate to a few centimeters, while the horizontal
position was wrong by several meters (as intended).
During the flight, the horizontal position should
converge toward the correct value, while the vertical
position should remain accurate.

Six spacecraft were in view during the entire flight.
However, to provide more of a challenge to the system,
satellite outages were simulated in software.  Every four
minutes, one satellite was removed for a period of thirty
seconds.  During the 26 minute flight, each satellite was
removed once.  Therefore, each integer was taken off-line
and brought back on-line.

The flight test consisted of three take-offs and landings.
Figure 6 plots the horizontal and vertical position error
and the 1σ  horizontal position error bound.  The times
of the simulated satellite outages are marked with an “x”
on the time axis.  As expected, the vertical error
remained small while the horizontal error converged.
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Figure 5: Position Error for 24 Positioning Test
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4.0  CONCLUSIONS
The real-time system developed to demonstrate the
Integrity Beacon Landing System was designed to be easy
to implement yet provide the flexibility required of a
research tool.  Distinguishing features of this architecture
include:
• Only the L1 carrier and C/A code are used.
• Kinematic position solutions are provided with
minimal delay in all phases of flight.  Integer estimates
are continuously refined.
• Several layers of RAIM provide high-integrity.  The
Integrity Beacon information is particularly powerful in
this respect.
• Cycle ambiguities are found without using integer
searches.
• Integer estimates are smoothly handed off as satellites
are acquired and lost.
• Additional information such as static constraints is
easily incorporated into the system.
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