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ABSTRACT     
 
The Local Area Augmentation System (LAAS) is a 
ground-based differential GPS system being developed to 
support aircraft precision approach and landing navigation 
with guaranteed integrity. Stanford University has 
designed, implemented and tested a LAAS ground 
Facility (LGF) prototype, known as the Integrity Monitor 
Testbed (IMT), which is used to insure that the LGF 
meets its requirements for navigation integrity. One 
significant integrity risk is that the mean of the 
pseudorange correction error distribution becomes non-
zero or that its standard deviation (sigma) grows to 
exceed the broadcast correction error sigma (σpr_gnd) 
during LAAS operation. Real-time mean and sigma 
monitoring is necessary to help insure that the true error 
distribution is bounded by a zero-mean Gaussian 
distribution with the broadcast sigma value.  
 
In addition to ensuring that the error distribution based on 
the broadcast sigmas overbounds the true error 
distribution under nominal conditions, mean and sigma 
monitoring is needed to detect violations due to 
unexpected anomalies with acceptable residual integrity 
risk. Both mean/sigma estimation and Cumulative Sum 
(CUSUM) methods are useful in this respect. For sigma 
monitoring, estimation more rapidly detects small 
violations of σpr_gnd, but the �fast-impulse-response� (FIR) 
CUSUM variant more promptly detects significant 
violations that would pose a larger threat to user integrity.  
 
Based on these analytical results, mean and sigma 
estimation and CUSUM methods have been implemented 
in the IMT and have been tested under both nominal and 
failure conditions.  Under nominal conditions, both sigma 
estimates and CUSUMs stay below the relevant detection 
thresholds for all visible satellites in the IMT datasets we 
have tested.  In failure testing, both sigma estimation and 
CUSUM methods reliably detect injected sigma 
violations, although both methods are limited by the 200-
second interval between independent B-values. Similar 
results were obtained in testing of the mean monitors. 
Overall, both methods work smoothly and predictably for 

sigma and mean monitoring to maintain user integrity 
under both nominal and failure conditions.  
 
 
1.0 INTRODUCTION  
 
The Local Area Augmentation System (LAAS) will 
support precise and safe navigation that meets the 
requirements of Category I (and later Category II and III) 
aircraft precision approach [7,8,17]. The LAAS Ground 
Facility (LGF) integrity monitoring is responsible for 
detection and removal of anomalies such as ground-based 
or space-based system failures. User navigation integrity 
is quantitatively appraised by the position bounds that can 
be ensured with an acceptable level of integrity risk. In 
this regard, aircraft using LAAS corrections compute the 
vertical protection level (VPL ) and the lateral protection 
level (LPL) at the aircraft as position error limits 
assuming a zero-mean, normally distributed fault-free 
error model for the broadcast pseudorange corrections. 
User integrity thus relies on the standard deviations of 
pseudorange-correction errors that are broadcast to users 
along with the corrections, since these �sigmas� are used 
in the calculation of VPL and LPL. The bounding standard 
deviation of correction error, or σpr_gnd, is broadcast for 
each satellite approved by the LGF [8,13,17]. 
 
To validate the safety of the broadcast σpr_gnd, the LGF 
must verify in real time that a Gaussian distribution with 
zero mean and the broadcast sigma overbounds the true 
(unknown) error distribution. In this process, special care 
must be taken regarding the uncertainty of the true error 
distribution. The main sources of uncertainty are mean 
and sigma estimation error during site installation and 
non-stationary error distributions caused by 
environmental changes that affect multipath, as well as 
the fact that the tails of the true error distribution may not 
be exactly Gaussian. This uncertainty is accounted by 
broadcasting an inflated sigma such that the broadcast 
distribution overbounds all possible error distributions out 
to the probabilities assumed in the computation of VPL 
and LPL [1,2].  
 



Because of the direct connection between the broadcast 
σpr_gnd and user integrity, real-time sigma monitoring is 
necessary to detect anomalies, or failure events where, 
during operation, the true sigma exceeds the broadcast 
σpr_gnd. This paper presents two different sigma 
monitoring algorithms (sigma estimation and CUSUM) 
that have been implemented in the Integrity Monitor 
Testbed (IMT) and also reports the nominal and failure 
test results of these methods. In failure testing, sigma 
violations are induced by modifying stored IMT receiver 
packets collected under nominal conditions to represent 
sigma anomalies, and the altered measurements are 
injected back into the IMT in post-processing mode [10].  
 
For the same reason, monitoring of the true mean in real-
time is needed to detect unforeseen conditions that cause 
the true mean to become substantially non-zero. This 
paper also describes the mean estimation and CUSUM 
algorithms implemented in the IMT and reports their test 
results. The results of both nominal and failure tests 
demonstrate that the sigma-mean monitoring algorithms 
can detect failures large enough to threaten user integrity 
and are integrated smoothly with the Executive 
Monitoring (EXM) Phase II logic in the IMT that 
excludes such anomalies [6,10].  
 
     
2.0  SIGMA MONITORING  
 
Sigma monitoring plays an important role in ensuring that 
the possibility of the true sigma exceeding the broadcast 
sigma poses no significant integrity risk to LAAS users. 
This possibility exists not only because of nominal sigma 
uncertainty but also because real-time sigma monitoring 
is limited by the number of independent samples that can 
be collected in one satellite pass.  Thus, sigma monitoring 
cannot detect all cases in which the broadcast σpr_gnd no 
longer bounds the true sigma. In order to account for this, 
additional sigma inflation beyond that needed to bound 
nominal sigma uncertainty may be necessary to provide 
margin so that sigma monitoring can meet the LAAS 
Ground Facility integrity requirements [8,17].   
 
Among many proposed algorithms for monitoring sigma 
in real-time, the following two different algorithms have 
been implemented in the Stanford IMT. These algorithms, 
combined with inflation of the nominal σpr_gnd, are 
sufficient to accomplish detection of anomalies that cause 
the true sigma to exceed the broadcast sigma during 
LAAS operations.      

2.1   Sigma Estimation Method 
 
The real-time sigma estimation method estimates sample 
standard deviations of the pseudorange correction error 
from LGF B-values computed in the Multiple Reference 
Consistency Check (MRCC) for each visible satellite. 

Since the B-values represent pseudorange correction 
differences across reference receivers (ideally, the 
pseudorange corrections from all reference receivers 
should be the same for a given satellite), the B-values 
represent pseudorange correction errors that would exist if 
a given reference receiver has failed [6,8,9]. The 
normalized values of �

normalprB _
�, or B-values divided by 

their theoretical sigmas ( Bprσ ), are the inputs to sigma 

estimation:  
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Under normal conditions, the estimated sigma (σ� B) has a 
chi-square distribution with A−1 degrees of freedom, 
where A is the number of independent samples used to 
derive the estimate.  .  
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Figure 1:  Chi-Square Distribution of Sigma Estimate 
 
Figure 1 shows the resulting cumulative distributions for 
varying numbers of independent samples. As expected, 
more samples provide tighter distributions on σ� B. The 
detection threshold is set based on this chi-square 
distribution to provide an acceptably low fault-free alarm 
rate (10-7, based on a sub-allocation of the specified 
Category I continuity risk allowed per 15-second interval) 
[2,8]. The estimated sigmas are compared to this time-
dependent threshold, which is lowered as more 
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independent samples are collected. Any alerts are passed 
on to the Executive Monitoring Phase 2 function (EXM-
II) for resolution.  
 
2.2   Cumulative Sum Method 
 
 Cumulative Sum (CUSUM) monitoring is very simple 
and is relatively easy to analyze, and it can be shown to 
be "optimal" in terms of minimizing time-to-alert under 
specified failure conditions [16].  It is thus commonly 
used in manufacturing, where the goal is to detect poor-
quality products with reasonably low missed-detection 
and false-alarm rates (but nowhere near as low as required 
by the LGF).  The idea is to maintain running sums of 
statistically-independent quality metrics with approxi-
mately known distributions under nominal conditions.  A 
'windowing factor' k is subtracted from the running sum at 
each update.  This factor is chosen to minimize the time-
to-alert for a particular failure case with a specific out-of-
control distribution.  If the targeted fault case is a large 
deviation from nominal, k will be large as well to reduce 
the sensitivity of the CUSUM to smaller anomalies.  If the 
targeted fault is closer to nominal performance, k gets 
smaller, but the price is more fault-free alerts unless the 
CUSUM threshold h is increased to compensate. 
 
As implemented in the IMT, the CUSUM method collects 
cumulative sums (Cn

+) of squared and normalized B-
values (Yn) for each receiver channel tracking a GPS 
satellite and is updated every 200 seconds. Note that 
updates must be statistically independent in time, as 
incrementing a CUSUM with highly-correlated inputs 
greater than the k factor will cause it to quickly exceed the 
threshold as similar values are added one after another. In 
this case, each independent epoch corresponds to two 
carrier-smoothing time intervals. The CUSUM starts at 
zero or a head-start value of H+ > 0 and then increments 
each epoch by the size of the monitored input Y minus the 
desired �failure slope� k that is based on a target out of 
control sigma (σ1) that represents �failed� performance. 
Since the CUSUM is sensitive to only one direction, 
separate upward �+� and downward �−� CUSUMs are 
generally used, although this is not true if sigma is the 
input, as decreasing sigma is not a concern.  
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If the CUSUM falls below zero on a given epoch, it is 
reset to zero. If the sum is above zero at any update 
epoch, the CUSUM is compared to a fixed threshold (h) 
that does not vary with time. If it accumulates to above 
the threshold, an alert is issued. 
 
While CUSUM behavior is more complicated than sigma 
estimation, the fact that CUSUMs follow the Markov 
property (since a running sum is incremented every 
epoch, the distribution of the CUSUM state at epoch i 
depends only on its state at the previous epoch i−1 and the 
distribution of the incrementing value at epoch i) makes 
them straightforward to analyze via Markov Chains 
(MCs) [16].  Under either nominal or specified failure 
conditions, a "one-step" MC transition matrix P can be 
derived to give the probability of going from each 
discretized CUSUM state between zero and the threshold 
h on epoch i to each possible state on epoch i+1.  From P, 
one can compute the steady-state distribution of the MC 
and thus determine how long, on average, it takes for the 
MC to exceed a given value (for the threshold h, this 
gives the average run length (ARL)). In addition, 
multiplying P by itself d times (e.g., computing Pd) gives 
the transition probabilities between epoch i and epoch 
i+d, which allows one to determine, from the failure-state 
MC, the number of epochs required to exceed the 
threshold with a given missed-detection probability.   
 
The normal solution process is to guess a threshold value 
h, form the nominal MC, and then solve for the nominal 
ARL, iterating on h until the nominal ARL is the inverse 
of the desired fault-free alert rate.  Then, changing the 
MC to represent the failed or "out-of-control" state, 
compute the out-of-control ARL (or mean time to detect), 
and successively multiply the P matrix by itself until it 
shows a probability of exceeding the threshold that is one 
minus the desired missed-detection probability [2,16]. 
 
For sigma monitoring, Figure 2 shows the CUSUM 
threshold (h), which is set to achieve the desired average 
run length (ARL = 107 independent epochs) under 
nominal conditions based on the sub-allocated LGF 
continuity requirement, and the optimal k given by the 
target out-of-control sigma (σ1). Because the threshold 
must be very large to achieve an ARL of 107 epochs, the 
ARL under nominal conditions is practically the same for 
the zero-start (H+ = 0) and �fast-impulse-response� (FIR; 
H+ = h/2 or 3h/4) CUSUMs. Thus the thresholds are 
almost the same, and there is little continuity penalty for 
using the FIR CUSUM. Under these conditions, the 
CUSUM with the highest H+ that does not give a 
significant increase in the fault-free alarm probability is 
optimal. 
 

 
Figure 2: Thresholds for CUSUM Sigma Monitor  
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For large ARL0, CUSUM threshold is 
approximately the same for zero-

start and FIR CUSUMs. 
 

Nominal mean (µµµµ0) = 0, σσσσ0 = 1, 
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2.3   Comparison of Methods 
 
As noted above, modeling the CUSUM as a Markov chain 
allows us to determine the probability of exceeding the 
threshold h under failure conditions at any future epoch 
and thus to determine how soon the failure is detected 
with a probability of 0.999, or, conversely, a missed-
detection probability (PMD) ≤ 0.001 [1,2]. For sigma 
estimation, to find the sigma increase that can be detected 
with a desired PMD, an additional buffer is added to the 
thresholds in Figure 1. This buffer is determined by 
moving the mean of the distribution to a trial value above 
the detection threshold and moving leftward to determine 
the probability of falling below the threshold until the 
value is found that makes this probability equal to 0.001 
[10].     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Time-to-Alert for CUSUM and Sigma 
Estimation Monitors 

 
Figure 3 compares the times-to-detect with PMD ≤ 0.001 
for these three CUSUMs and the sigma estimation 
monitor based on potential sigma violations as a function 
of the normalized out-of-control sigma, which is the ratio 
between the actual sigma and the theoretical sigma. The 
results show that sigma estimation is best for σ1 < 1.68, 
but the FIR CUSUM H+ = 3h/4 is superior for higher 
sigma values, which is important because larger sigma 
violations lead to larger integrity threats. The FIR 
CUSUM achieves faster detection by initializing the 
CUSUM to a non-zero value closer to the threshold every 
time the CUSUM resets (goes below zero).  The CUSUM 
has an additional advantage not represented in this plot:  
CUSUM monitoring begins immediately, whereas sigma 
estimation in the IMT requires that 18 independent epochs 
be observed before threshold checks can begin (before 
then, the sigma estimate is too unreliable to be compared 
to a chi-square-based threshold). 
 
Note that the existing MRCC screen of IMT B-values on 
an epoch-by-epoch basis (comparing B-values at each 

epoch to fixed thresholds) has some utility as a sigma 
monitor, but its times-to-alert are much longer than those 
for the CUSUM or for sigma estimation.  For example, if 
σ1 = 2, Figure 3 shows that the FIR CUSUM time-to-alert 
with 99.9% probability is about 60 epochs. For MRCC, 
this anomaly translates into an actual normalized B-value 
threshold of 2.8, or half of the specified normalized 
threshold of 5.6 [8,17].  The probability of a normalized 
B-value magnitude exceeding 2.8 is about 0.0051 per 
independent epoch; thus the mean time-to-alert is 
approximately 1/0.0051 ≅  196 epochs, and the time-to-
alert with PMD = 0.001 is the solution for x to (1 � 
0.0051)x = 0.001, which is x ≅  1351 epochs. 
 
 
3.0   NOMINAL TESTING 

Figure 4: Sigma Estimation Results from IMT 
Nominal Data 

 
In order to test these sigma monitor algorithms, sigma 
estimation and CUSUMs are both implemented in the 
Stanford IMT. Figure 4 shows the results of applying the 
sigma estimation algorithm to the IMT under nominal 
conditions. The dark curves show the normalized sigma 
estimate of a satellite (SV 9) on three reference receivers, 
and the light curves show the detection thresholds, which 
get smaller over time as the number of independent 
samples increases. As mentioned above, monitoring starts 
after 18 independent B-values have been collected, which 
corresponds to one hour with a 200-second interval 
between independent updates. The normalized sigma 
estimates stay well below the detection thresholds and 
converge toward 1 over time. Thus, the theoretical 
sigmas, which depend on the satellite elevation angle, 
appear to be good estimates. Very similar results have 
been obtained from the other satellites in this and other 
IMT datasets. 
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Figure 5: Zero-Start CUSUM Results from IMT 
Nominal Data 

 
The �zero-start� CUSUM and FIR CUSUM variants have 
also been tested with the same IMT data under nominal 
conditions. The top plot in Figure 5 displays zero-start 
CUSUM results for satellite 2 and IMT reference receiver 
(RR) 2, and the lower plot shows the normalized B-values 
from (1) that fed the CUSUM.  The CUSUM in this case 
is targeted at an out-of-control sigma twice that of the 
theoretical sigma (σ1 = 2), which gives a high windowing 
factor (k = 1.848). The CUSUM rarely departs far from 
zero due to subtraction of k at each independent B2 update 
and stays well below the threshold (h) of 36. 

Figure 6: FIR CUSUM Results from IMT Nominal 
Data 

 
The FIR CUSUM result of satellite 7 and IMT receiver 1 
is shown on the top plot of Figure 6.  In this case, the 

CUSUM is initialized at h/2 = 18 and is reset there every 
time the CUSUM falls below zero. Recall that the 
CUSUM is updated every 200 seconds so that successive 
updates are statistically independent. Under nominal 
conditions, the CUSUM slowly falls toward zero and is 
then reset, since the normalized B2 is usually below k and 
k is subtracted off at each epoch. The other satellites 
tracked by this IMT dataset show very similar patterns for 
both zero-start CUSUM and head-start CUSUMs. The 
threshold of 36 is never threatened, and no flags are 
observed at all. 
 
 
4.0   FAILURE TESTING 
 
In failure testing, controlled errors are injected into IMT 
to test the detection of anomalies with the current sigma 
monitoring algorithms. Inserting errors into stored 
nominal receiver packets previously collected by the IMT 
antennas induces sigma violations. Modified nominal 
IMT data represent an increased-pseudorange-sigma 
anomaly using code-minus-carrier method. 

 
PRraw(failed)  =  (PRraw-minus-ADR) × (L − 1) + 

PRraw (nominal)                                     (7) 
 
This equation uses pseudorange-minus-carrier 
measurements (with a polynomial fit to ionosphere 
divergence removed) to roughly estimate the nominal 
error in PRraw [18].  By adding (L−1) times this error 
estimate to the nominal measured PRraw, the nominal PR 
error sigma is approximately increased to L times the 
previous value (stored PRraw values are modified and 
input back into the IMT in post-processing mode) [10]. 
 
Figure 7 shows the results of applying the sigma 
estimation algorithm under failure conditions. The PR 
error on a single satellite (SV 2) and a single receiver (RR 
2) is increased to L = 3 times the nominal error. The dark 
line of the second plot in Figure 7 shows the normalized 
sigma estimate, which exceeds the detection threshold 
through the whole IMT run. For the purpose of this test, 
Executive Monitoring (EXM) logic is not active for sigma 
monitoring flags, such that sigma values are estimated 
over time without a reset. After integrating sigma monitor 
flags into EXM, the flagged measurement will be 
excluded by EXM, and its sigma value will be reset upon 
recovery of the measurement. EXM fault-isolation logic 
has been tested and clearly demonstrated by prior and 
current work [3,6]. Since the first check starts when 18 
independent B-values have been collected, sigma 
estimates for RR 1 and RR 3 do not exceed the threshold 
over time (the initial transient is ignored � threshold 
checks must wait until enough independent samples have 
been collected for the sigma estimates to be reliable). 
However, in addition to the sigma estimates of the error-
injected satellite and receiver, the sigma estimates of 
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nominal RR 1 and RR 3 also converge to values over 1 
due to the fact that the B-values are correlated across the 
three receivers (only two of the 3 B-values for a given 
satellite are independent).  

Figure 7: Sigma Estimation Results from Failure Test 
 
IMT sigma failure test has been done with various 
inflated sigma values. Setting the increased error factor L 
to 1.7 on the same satellite (SV 2) and IMT RR 2, the 
sigma estimates remain just under thresholds, meaning 
that no flag is issued before the end of the run. Sigma 
estimates on this satellite for the other two receivers 
appear essentially nominal.  
 
Figure 8 shows the result of applying the FIR CUSUM 
variant to failure-injected IMT data for the same satellite 
shown in the previous plot (SV 2) and IMT reference 
receiver 2. The CUSUM is targeted at an out-of-control 
sigma twice that of the theoretical sigma (σ1 = 2), which 
gives the same windowing factor (k = 1.848) as the 
previous nominal case.  Based on this windowing factor 
and ARL, the detection threshold (h) was determined to 
be 36. The FIR CUSUM, initialized at h/2 = 18, adds up 
the increased normalized B-values due to severe error 
factor L = 3. The CUSUM crosses the threshold on the 
third epoch, which corresponds to 600 seconds (10 
minutes) after fault injection.  This is much faster than 
sigma estimation for a newly-rising satellite because of 
the 1-hour delay before sigma-estimate threshold checks 
can be made.  Since EXM is not active in order to 
demonstrate how CUSUM responds with respect to 
injected failures, SV 2 and RR 2 are not excluded, and the 
CUSUM continually grows regardless of subtraction of 
the windowing factor at each independent B2 update. The 
flat line on the lower plot indicates that the normalized B-
values are isolated by the Multiple Reference Consistency 
Check (MRCC) at this point (EXM is not active on this 
check). In failure tests like this one where severe errors 

are injected, very similar results have been obtained from 
the other satellites tracked by the IMT in this dataset. 

Figure 8: FIR CUSUM Results from IMT Failure Test 

Figure 9: FIR CUSUM Results of Nominal RR from 
IMT Failure Test 

 
The top plot in Figure 9 shows the FIR CUSUM of the 
nominal reference receiver (RR 3) and the same satellite 
(SV 2) affected by injected PR errors on RR 2 and SV 2.  
In this case, the FIR CUSUM slightly exceeds the 
threshold (h = 36) at epoch 21 due to B-value correlation 
among three reference receivers and then declines toward 
a value near zero.  This does not occur when EXM is 
implemented because the source of the failure (SV 2 on 
RR 2) is excluded after 10 minutes, and following this 
exclusion, the B-values on RR 1 and RR 3 return to 
normal. 
 
IMT CUSUM failure testing also has been done with 
various inflated sigma values. With a moderate error 
factor of L = 1.7 on the same satellite (SV 2) and IMT 
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reference receiver 2, the FIR CUSUM exceeds the 
threshold on the 21st epoch (1.1 hours after the CUSUM 
starts). Neither CUSUM nor MRCC flags appear on the 
non-failed receivers (RR 1 and RR 3).  In the L = 1.4 case, 
neither sigma estimation nor CUSUM detects any 
violation. This fault is too small to be reliably detected 
during the 4-hour IMT run used here, as is predicted by 
the theoretical result in Figure 3. 
 
Overall, the CUSUM times-to-detect are much shorter 
(typically well under one hour) for large anomalies than 
those of the sigma estimation method, which requires 
waiting one hour before 18 independent samples are 
collected. Moreover, a FIR CUSUM with a �head start� at 
3h/4 would detect violations quicker than a FIR CUSUM 
with initialization at h/2 under the same failure conditions 
but is slightly less robust under fault-free conditions. We 
have also tested multiple CUSUM monitors tuned to 
target different values of normalized out-of-control sigma 
(σ1 = 1.7 and 2.3), but these do not improve the time-to-
detect measurably over a single CUSUM with σ1 = 2.  A 
subset of these failure tests have been rerun after 
integration with IMT EXM-II logic, and these tests 
confirmed that the IMT properly excludes measurements 
that triggered CUSUM and/or sigma estimation alerts. 
 
 
5.0   MEAN MONITORING 
 
Similar to sigma monitoring, real-time mean monitoring 
is required to detect possible protection-level violations 
due to non-zero means of the true pseudorange-correction 
errors. As with sigma monitoring, a common approach is 
to estimate real-time sample means. In this respect, the 
mean estimation method has been analyzed and compared 
with a mean CUSUM algorithm, which proved to be a 
better way to detect severe sigma violations.  
     
5.1   Mean Estimation Method 
 
The mean estimation method derives sample means from 
LGF B-values for each visible satellite.  As with sigma 
estimation, normalized B-values from (1) are the inputs as 
for sigma estimation. The results are compared to time-
dependent thresholds that are set based on the normal 
distribution of the sample mean (

PRBµ� ) as a function of 

the number of independent measurements (A). 
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Note that using the B-values as inputs to mean monitoring 
(both for estimation and CUSUM) limits the observability 
of non-zero means to cases where mean violations occur 
on only one reference receiver.  A common-mode failure 
that causes the same non-zero mean to occur on all three 

receivers is not observable from B-values and must be 
made extremely improbable to meet the LGF integrity 
allocation to multiple-receiver failures [17]. 
 
5.2   Mean Cumulative Sum Method 
 
The input ( nY ) for the mean CUSUM is the normalized 

BPR, whereas the normalized BPR
2 is the input for the 

sigma CUSUM. 
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A windowing parameter (k) is subtracted from the 
normalized B-values based on the target out of control 
mean (µ1) that represents �failed� performance, and the 
result is reset if the resulting sum falls below zero.  
 

2
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µµ +
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Note that, unlike sigma violations, threatening mean 
violations can be either positive or negative; thus two 
parallel CUSUMs (Cn

+ and Cn
-) are needed for each 

measurement so that violations in either direction will be 
detected. 

Figure 10: Thresholds and Failure-State ARLs for 
CUSUM Mean Monitor 

 
The CUSUM threshold (h) is found by numerical search 
to match the desired average run length (ARL) and k 
value, which is derived in equation (10) given the target 
out-of-control mean (µ1).  As a function of µ1, Figure 10 
shows the resulting thresholds to achieve ARL = 107 
independent epochs for the CUSUM mean monitor on the 
right and the resulting failure-state ARLs for the zero-start 
(H+ = 0) and FIR (H+ = h/2) CUSUMs on the left. The 
out-of-control ARL for the FIR CUSUM is significantly 
better than the zero-start CUSUM; and as with the sigma 
CUSUM, it is possible to increase H+ beyond h/2 to 
decrease detection time further with little nominal ARL 
penalty. Again, the nominal thresholds for these two 
CUSUMs are essentially the same due to the fact that very 



large thresholds needed to achieve ARL = 107 under 
nominal conditions. 
 
Figure 11 compares the performance of mean estimation 
to that of several varieties of CUSUM monitoring based 
on the time to detect potential non-zero means with a 
missed-detection probability of 0.001 or below as a 
function of the out-of-control Mean. The results show that 
FIR CUSUM methods are superior to the mean estimation 
method in detecting any mean violations. Note that the 
zero-start CUSUM is slightly worse than mean 
estimation, but the h/2 FIR CUSUM is significantly better 
for all µ1 and can be improved further (with slight loss of 
robustness under fault-free conditions) by increasing H+ 
above h/2. Both CUSUM and mean estimation methods 
detect larger mean violations almost simultaneously, 
though the FIR CUSUM with a �head start� 3h/4 achieves 
faster detection.  

Figure 11: Mean Estimation and CUSUM Monitor 
Performance 

 
5.3   Mean Monitoring Test Results 
 
5.3.1  Nominal Test Results 
 
Although the analytical results of mean monitoring 
algorithms show that FIR CUSUMs are always superior 
to mean estimation, both approaches are implemented in 
the Stanford IMT for the purpose of testing the theory.  
Figure 12 shows the results of applying the mean 
estimation algorithm to the IMT under nominal 
conditions. A single satellite (SV 2) is shown here on all 
three IMT reference receivers.  The dark curves show the 
normalized mean estimate, and the light curves show the 
detection thresholds (monitoring starts after 6 independent 
B-values have been collected, or after 20 minutes).  Note 
that the normalized mean estimates stay well below the 
detection thresholds (which get smaller over time as the 
number of independent samples increases) and that the 
mean estimates converge over time toward zero. Mean 
estimation restarts when there is no B-value due to the 

GPS satellite 'setting' and lock being lost due to the 
elevation angle dropping too low.  

Figure 12: Mean Estimation Results from IMT 
Nominal Data 

Figure 13: Mean FIR CUSUM Results from IMT 
Nominal Data 

 
The top plot in Figure 13 shows the result of applying the 
Mean FIR CUSUM to the same IMT data shown in the 
previous plot, and the lower plot shows the normalized B-
values that fed the CUSUM.  The Mean CUSUM in this 
case is tuned to an out-of-control mean µ1 = 0.4, which 
gives a windowing factor k = 0.2. Based on the desired 
average run length (ARL) and k value, the Mean CUSUM 
threshold (h = 32.85) is computed by the Markov Chain 
method using numerical search. As before, the CUSUM is 
updated every 200 seconds, which makes each update 
statistically independent. In this case, the CUSUM is 
initialized at h/2 = 16.4 and is reset there every time the 
CUSUM falls below zero.  As shown in the sigma 
CUSUM cases, under nominal conditions, B2 is usually 
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below k; thus the CUSUM slowly falls toward zero and is 
then reset. The same thing occurs to the negative 
CUSUM, which is not shown.  Again, the other satellites 
included in this IMT dataset show very similar results, 
and no flags are generated by either mean estimation or 
mean CUSUM methods. 
 
5.3.2  Failure Test Results  
 
Both mean estimation and mean CUSUMs have been 
tested under failure conditions to verify the capability of 
mean monitoring to detect threatening anomalies.  
Controlled bias errors are inserted into stored nominal 
receiver packets previously collected by the IMT 
antennas, which induces mean violations. The bias added 
to PRraw at every epoch is pre-selected to be L times the 
nominal sigma of the error in PRraw, and stored PRraw 
values with this bias added are input back into the IMT in 
post-processing mode. 

Figure 14: Mean Estimation Results from IMT 
Failure Test 

 
IMT mean monitoring has been tested with three different 
non-zero mean values (L = 0.4, 0.8, and 1.2) with EXM-II 
included (so that flagged measurements are removed).   
Figure 14 shows the results of applying the mean 
estimation algorithm under failure conditions. The PR 
error mean on a single satellite (SV 2) and a single 
receiver (RR 2) is increased to 0.8 times the nominal 
error. Note that even though mean estimate of normalized 
B-values (the dark line of the lower plot in Figure 14) 
does not exceed the detection threshold, it is set to zero 
and starts again at 2.72 hours. This reset time exactly 
matches the time that the CUSUM in Figure 15 (C = 
33.17) exceeds the threshold (h = 32.85). Since EXM 
logic is active, the mean estimate value is reset to zero at 
the same time as the CUSUM is reset to its initialization 
value after being excluded by EXM. The top plot in 
Figure 15 shows that the FIR mean CUSUM of the 

nominal reference receiver (RR 1) and the same satellite 
(SV 2) is not affected much by the injected PR error on 
RR 2 and SV 2.  Since the bias is in the positive direction, 
no flags are seen in the negative CUSUM. 

Figure 15: Mean FIR CUSUM Results from IMT 
Failure Test 

 
When L is lowered to 0.4 on the same satellite (SV 2) and 
IMT RR 2, no flag is generated by either mean estimation 
or CUSUM methods, which matches the predicted 
performance in Figure 11.  With a severe mean error with 
L = 1.2 on the same SV 2 and RR 2, the positive FIR 
CUSUM exceeds its threshold 1.65 hours after the fault 
was injected (and when the CUSUM was started). Neither 
CUSUM nor mean flags appear on the non-failed 
receivers (RR 1 and RR 3).    
 
 
6.0  SUMMARY 
 
This paper demonstrates that the Sigma-Mean monitor 
has been successfully implemented in the Stanford LAAS 
Integrity Monitor Testbed prototype and can detect 
threatening mean or sigma violations such that it provides 
navigation integrity to users. It also summarizes the well-
known algorithms for mean and sigma estimation, and 
analyzes the CUSUM algorithms for mean and sigma 
monitoring. The test results of both methods under 
nominal and failure conditions generally agree with 
analytical predictions. The Sigma-Mean monitor has been 
smoothly integrated with EXM logic within the Stanford 
IMT and accomplishes removal of single-channel 
anomalies, allowing other nominal measurements to 
continue to be used. 
 
We found that, in most cases, FIR CUSUMs are superior 
to mean and sigma estimation, although sigma estimation 
should still be used to detect relatively small sigma 
violations. Further improvement of FIR CUSUM 
performance is possible with higher �head-start� (H+). 

Exclusion by EXM due to 
a flag from FIR CUSUM 

CUSUM flag 
C=33.17 at 2.72 hour

 

h=32.85 

This RR remains nominal 

Excluded by EXM



However this causes the fault-free alarm rate to increase.  
Given this trade-off, the optimum head start is yet to be 
determined, but the h/2 head start implemented in the 
IMT is a reasonable compromise. While CUSUM mean 
times-to-detect are well under one hour for large 
violations. However, the time-to-detection with PMD ≤ 
0.001 is somewhat longer.   
 
Since small mean and sigma violations are not detectable, 
some inflation of the nominal sigma (roughly a factor of 
1.5 � 1.7) is needed to provide margin for sigma-mean 
monitoring so that anomalies too small to be detected are 
not hazardous to users.  With this amount of inflation, the 
performance achieved by the CUSUMs appears good 
enough to meet the LGF Specification requirement that 
"non-minimal-risk" anomalies (those that cause the 
computed protection levels to be well below reality) be 
detected within one to three hours with 99.9% reliability, 
while the mean detection times will be typically under 
one hour. If faster times-to-detect are desired, additional 
sigma inflation could be implemented, but "diminishing 
returns" applies above an inflation factor of 2.0 because 
the CUSUM time-to-detect does not improve much 
further.   
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