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ABSTRACT
The Advanced Receiver Autonomous Integrity Monitoring (ARAIM) concept relies on the characterization of conservative
error bounds of the clock and ephemeris nominal errors to achieve the required level of integrity. [1]. In this paper, we attempt
to investigate the uncertainty inherent in estimating the Gaussian bounding parameters. If the past nominal error bounding
parameters are stable, then we can have some confidence that they will stay stable in the future, a conclusion critical for GNSS
integrity analysis. We used an error bounding algorithm to examine the GPS and Galileo satellite clock and ephemeris error
bounding behavior for the past 12 years. We found that the error distribution overbounding parameter estimation has increased
stability after removing the near-fault data points. We evaluated the uncertainty in the bounding process using both the bootstrap
and the training-validation methods. We found that a larger data set size significantly reduces the uncertainty, and using 12
years for GPS is enough to characterize the bounding parameter behavior due to its stability, whereas the two years of Galileo’s
available data set is not.

I. INTRODUCTION
The Advanced Receiver Autonomous Integrity Monitoring (ARAIM) concept relies on the characterization of conservative
error bounds of the clock and ephemeris nominal errors to achieve the required level of integrity. [1] To have a conservative
bounding, We computed Gaussian overbounds of the sample distribution using the algorithm described in [2] [3] [4], which
takes into account the effect of extreme non-faulted events defined as errors lower than the standard 4.42 time of User Range
Accuracy (σURA) for GPS and 4.17 for Galileo. [5] Here, the Gaussian overbound is a Gaussian distribution that bounds over the
sample error distribution and can be used to replace the sample error distribution when computing user error bounds. Gaussian
bounding is stable through convolution, which means that the convolution of the errors is bounded by the convolution of their
Gaussian bounding distributions [4]. Gaussian distributions only rely on the mean and standard deviation parameters. The
simplicity of the model is suitable for data transmission and mathematical analysis.

This paper investigates the satellite clock and ephemeris errors uncertainty and predictability of the Gaussian bounding parameter,
its mean, and its standard deviation. We refer to those two parameters as bias and σ in the following sections.

We inspect the bounding distribution in section II to characterize the nominal error model. We further characterize the error
bounding uncertainty and predictability by exploring the stability of the bounding parameters. If the parameters are stable
enough in the past several years, we can conclude that the parameter does not vary much and thus can have some confidence
that they will likely stay stable in the future, assuming no drastic changes would occur. We can estimate the uncertainty in the
available error data to have some insight into the data behavior in the future. In this sense, service history can characterize
the parameter behavior. Taking a step further, we can produce simulations to predict future error bounding models using the
existing data. In sections III and IV, we describe the training-validation method for characterizing the bounding uncertainty
and prediction simulation and the bootstrap method for characterizing the error bounding parameter uncertainties. We show the
preliminary results in the experiment section. [2]

II. ERROR SERVICE HISTORY EXAMINATION
This section examines the bounding parameters variation using twelve years of User Projected Error (UPE) from GPS with three
years of the time window for each data point and two years of UPE from Galileo. We applied the standard threshold and later
used a lower threshold of three times the σURA to explore the validity of the standard threshold. The following subsections will
explain the data processing method and show the results.

1. Data process
The data we used is the GNSS clock and ephemeris errors normalized by σURA projected to the line of sight of 200 evenly
distributed users around the globe. We have 12 years of data for GPS and two years for Galileo. There are in total 45 satellites
for GPS and 22 satellites for Galileo. The data sampling rate for GPS is every 15 minutes, and for Galileo is every 5 minutes.

We obtained the nominal errors by thresholding the projected error normalized by σURA using the standard definition of 4.42



for GPS and 4.17 for Galileo. However, as long as the faulty probability does not exceed 10−5 as defined in [6], we can vary the
threshold. We lowered the threshold to 3 to explore the effect of the near-fault data points on the estimated uncertainty.

For GPS, we first selected the error data for one satellite. We computed a common "bias search space" containing possible bias
values for all users using the bounding algorithm. We then found the optimal bias and sigma to minimize the error bounds. Not
all the biases in the search space can produce a feasible bounding. We binary searched the smallest bias that produces feasible
bounding for all the users. Then we took the largest sigma corresponding to that bias across all the users. In this way, we found
the optimal bounding parameters for this particular satellite clock and ephemeris error. We applied a similar process to Galileo
error data. We represent the algorithm in a flow chart in Figure 1 for the case of GPS. We should expect the majority of the

Figure 1: Data process algorithm for GPS. The sampling rate is every 15 minutes, and there are 35040 points in a year.

normalized σ values to be below one since we do not want to nominal error bounding standard deviation to exceed the standard
deviation of the URA.

2. Error time history results
We show the results with data normalized by σURA in Figure 2. We show two years of UPE error bounding parameter histories
from Galileo using 0.5 years of a time window in Figure 3 . Each line represents a satellite. Each data point represents the
bounding parameter applied to three years of error data for GPS and 0.5 years for Galileo. We slid the three-year window by
every six months for GPS and every 0.1 years for Galileo.

The plots show that the bias parameter appears to be stable based on this rough examination. Specifically, all the values are
below 0.3 and with slight variations. For σ, we observe more variable behavior. One IIA satellite’s σ exceeds the normalization
with the standard threshold, and all the satellite bounding parameters stay below the normalization with the lower threshold. In
addition, abrupt jumps occur more often in the standard threshold plot, indicating instability.

If we assume that there are two data points per day, and the probability of a faulty event occurring is 10−5, we likely do not
have enough independent data to generate meaningful statistical results. This effect could potentially cause the error to exceed
the bounding threshold . [5] [6]We mitigated the lack of data issue by aggregating errors from all satellites to obtain enough
data to stabilize the bounding parameters. We reasonably assumed that the satellites should have similar error characteristics
incentivizing us to aggregate the satellite errors. The results are shown in Figure 4. Here, the red lines represent the error data
using the threshold of 3, and the blue lines represent the error data using the standard threshold. The dotted lines are for the σ,
and the solid lines are for the bias.

The plots show that the bias parameter is highly stable, as represented by the blue and red solid lines. The bias parameter also
appears to be stable even with each satellite. For this reason, we focus our study on the σ parameter. Although with the standard
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Figure 2: Parameters for GPS clock and ephemeris errors from the year 2008 to the year 2020 using with three years time window (a) Bias
with the threshold of 4.42 times σURA (b) Bias with the threshold of 3 times σURA (c) σ with the threshold of 4.42 times σURA (d) σ with
the threshold of 3 times σURA

threshold, normalized σ no longer exceeds one as represented by the dotted blue lines, the instability persists, whereas stability
can be observed in the lower threshold plot as represented by the dotted red lines. This result indicates that the near-fault data
points are likely responsible for the variability. This finding requires further investigation not covered in this paper.

We employed the training-validation and bootstrap methods introduced in the following two sections to further explore the
satellite errors’ stability.

III. TRAINING VALIDATION METHOD
To investigate the stability and the predictability in the bounding parameter σ, we applied the training-validation method, an
extension of the training-validation method used in the machine learning algorithm. We designated a part of the data set as
"training data," computed their bounding parameter, and compared the values to the bounding values generated from the rest of
the data set, the validation data. We made those two comparisons to examine how closely the training data bounding parameters
resemble the validation’s. This method can be viewed as a prediction simulation experiment conducted on the available data,
and it gives us insights into what would happen if we use all the available data to predict the future bounding parameters.

We represent the training-validation algorithm in Algorithm 1

1. Training Validation Algorithm
The training-validation algorithm is presented in Algorithm 1 We post-processed the simulated data by plotting the histogram of
the ratio between the training and validation parameters and calculating the standard deviations. The results give us an intuition
of how well the training data approximate the validation data, or in other words, approximate the predictability of the data set.
In addition, the standard deviation will give us an insight into the stability of the parameters. Specifically, this method is applied
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Figure 3: Parameters for Galileo clock and ephemeris errors from the year 2019 to the year 2021 using 0.5 years of the time window(a) Bias
with the threshold of 4.17 times σURA (b) Bias with the threshold of 3 times σURA (c) σ with the threshold of 4.17 times σURA (d) σ with
the threshold of 3 times σURA

(a) (b)

Figure 4: Parameter values plotted against time for aggregated satellite values.(a) Three years time window with the threshold of 4.42 and 3
times σURA for GPS (b)0.5 years time window with the threshold of 4.17 and 3 times σURA for Galileo

to investigate the stability and predictability of the satellites over time using the same set of satellites for training and validation.
The algorithm divides the data into half and half in time and uses them as training and validation sets. The training set is further
divided into units of 6 months to preserve time correlation. We draw the training data from the training set data units. This
method can also examine the effect of training time length on the result by varying it.



Algorithm 1: Training-Validation Method
Result: Training Bounding Parameters and Validation Bounding Parameters
Divide the data into training set and validation set;
Compute the bounding parameters from the validation set;
for m times do

Divide the training set into chunks of data ;
Randomly select the data chunks from the training set as training data;
Compute the bounding parameters correspond to the selected data as training bounding parameters;
Store the calculated parameters;

end
Construct distribution using the stored training and validation parameters.

IV. BOOTSTRAP METHOD
Bootstrap is a resampling method used to evaluate the uncertainty in the estimation. It assumes that the sample we have is
representative of the actual population. We refer to this sample as the original sample in the following paragraphs. The bootstrap
method is, in essence, a simulation using sampling with replacement based on the above assumption. The statistics parameter
distribution generated from the bootstrap simulation should be similar to the one generated from the actual population. [7] [8]
Another way to understand this is that by sampling with replacement, we create alternative history data, and by generating a
large number of alternative history, we can explore the inherent uncertainty in the error data. This section will go through a
simple explanation of the bootstrap theory, why and how we apply the bootstrap method to our problem, and finally, present the
bootstrap algorithm.

1. Bootstrap Theory
This section gives a brief explanation of the mathematics behind the bootstrap method. The bootstrap method computes the
probability distribution of a particular parameter and thus can provide its uncertainty. Suppose we are interested in parameter θ.
First, let us draw n samples from the population to form the original sample. Then we sample with replacements for M times
to generate M new set of sub-samples, each with the length of n. By doing so, we have generated M iid bootstrap samples. For
each of those bootstrap samples, we can compute the bootstrap estimator parameter θ̂∗n. [9]

We represent the distribution of the parameter using the below Equation [9]
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Here, the θ̂n is the estimator for θ. The bootstrap estimation of the distribution can be represented using the below Equation [9]
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Given that we have the original sample as{X1, . . . , Xn}. We can argue that Fn(t) is close to some limiting distribution and that
ˆFn(t) is close to another limiting distribution. The two limiting distributions are close to each other; thus, the distribution and

the bootstrap estimation are close. Furthermore, we can apply the Monte Carlo approximation using the M samples we have
obtained to calculate the distribution represented by the below Equation [9]
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This estimation is also close to F̂n(t), which is close to Fn(t). Thus, we have obtained the original parameter distribution as
long as M is large. [9]A version applied to the mean of the data can be easily proven using the central limit theorem and the law
of large numbers. Further expansion on the theory can be found in Asymptotic Statistics by A. W. van der Vaart. In our case,
we apply the bootstrap method to the overbounding parameter bias and σ.



2. Bootstrap Application to Bounding Parameters
Bootstrap fits our problem as it is a well-developed method to investigate uncertainty within the data series. [10] In addition,
bootstrap does not require a model. Since we do not have an accurate model for the residual bounding parameter distribution, the
bootstrap method is a good candidate for evaluating parameter uncertainty. [11] Also, bootstrap does not make many assumptions
about the distribution. [7]

3. Bootstrap Algorithm
In this section, we present the bootstrap algorithm. A typical bootstrapping method is executed according to the following
Algorithm 2: [7]

Algorithm 2: Bootstrap Method
Result: Statistic Distribution
Draw a sample from population with size n as original sample;
for m times do

Draw sub-samples with size n from original sample with replacements and store the sub-samples;
Calculate the statistics parameter θ for the sub-sample;
Store θ;

end
Construct distribution using θ

In this case, our statistics parameter θ distribution would reflect the θ distribution if we draw the statistics distribution directly
from the population. Our study slightly varies the method by dividing the original sample into smaller units and then drawing
the sub-sample from the units with replacements. We elaborate on the incentive for this change in the experiment section. We
chose the original sample as the available error history.

There are different advantages for using the training validation and the bootstrap method. The training-validation method is
more intuitive than the bootstrap method. It precisely simulates a prediction process of the future error bounding statistics
distribution. On the other hand, mathematics is well established for the bootstrap method. It is a commonly accepted algorithm,
and it is a valid estimator for quantifying uncertainty. The following section lays out the experimental setup and shows the
results.

V. EXPERIMENT
We simulated the training validation and the bootstrap method using the 12 years of clock and ephemeris errors provided by
the International GNSS Service, computed using the difference between the precise and the broadcast data. [2] The results are
normalized by the σURA. The following sections discuss the data process and the two experiments.

1. Data Process
In this experiment, we obtained the 12 years of satellite clock and ephemeris maximum projected error (MPE) and URE,
normalized by the σURA. The MPE is the largest possible projected error onto earth calculated using geometry. We first applied
a threshold of 4.42 to get the nominal error. We computed the bias and σ directly for the MPE values. For URE, we calculated
the smallest bounding bias for all the users and selected the σ that provided bounding for all users as described in the previous
section.

2. Training-Validation
The training-validation experiment was applied using the normalized GPS UPE data. After selecting the training and validation
data, we aggregated the satellites to avoid instability due to a lack of data.

We selected 2 and 5 years of training data for the simulation, computed the training to validation data ratio, and centered
the histogram at 0. We generated a thousand simulation data points and set the thresholds to be 3 and 4.42. The ratios of
trainingσ
validationσ − 1 are plotted in Figure 5

The closer the values are around 0, the better the predictions are. In addition, we want the majority of the data to lie on
the negative side to achieve conservative bounding and want to have a small standard deviation for the bounding parameter
distribution for better stability.

In the plots, the ratio values are close to 0 and have a low standard deviation, which indicates that the prediction method
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Figure 5: Parameters for GPS clock and ephemeris errors from the year 2008 to the year 2020 using with three years time window for σ with
the threshold of 3 times σURA with (a) 2 years training years and standard deviation of 0.0197(b) 5 years of the training year and standard
deviation of with a standard deviation of 0.0146 and with the threshold of 4.42 times σURA with(c) 2 years of the training year and standard
deviation of 0.0590 (d)5 years of the training year and standard deviation of 0.0047

works well with data as little as two years. We can also observe that majority of the data lies in the negative range, implying
overestimation, which is desired to achieve conservative bounding.

With the increase of training data size, we have a lower standard deviation, indicating that more data will likely stabilize the
parameter. However, we observe contradicting effects after lowering the threshold to 3. For training data size of 2 years, the
standard deviation decreased, and for training data size of 5 years, the standard deviation increased. We should not be too
alarmed by this effect. Usually, lowering the threshold might eliminate the variation in the bounding parameter. The unexpected
standard deviation increasing effect is likely due to the inherent behavior of the data. In Figure 4, we can see that for the first four
years, the error data with the threshold of 4.42 seems to behave more stable than error data with the threshold of 3. We draw the
training data from the first six years. In other words, it is not surprising that error data with the threshold of 4.42 exhibit more
stable bounding behavior for a more extended period.

3. Bootstrap
We first took every satellite’s MPE time history for GPS data and divided it into units of 15 minutes, 0.5 days, one day, and
one month. When applying sampling with replacement to the original sample, we used these units as sampling units. Then we
took the original sample to be the later six years, nine years, and 12 years to explore the effect of the original sample size on the
bootstrapping result. We then sample the units with replacement from the original sample many times.

We gradually relaxed the time independence assumption by increasing the sampling unit size. In the bootstrapping method, we
have the underlying assumption that the sampling units are independent of each other. In other words, if we choose every 15
minutes as unit sample size, we assume that every 15 minutes, we have a data set independent of the previous 15 minutes. We
incorporated time correlation into the data set by increasing the unit size, thus relaxing the strong time independence assumption.

We chose every 15 minutes because this is the error sampling rate. We chose 0.5 days based on the number of ephemeris uploads
to the satellites. We chose one day and one month to explore the effect of expanding the time units. We selected 6 years and
12 years as the original sample size to show the impact of the original sample size. We then applied the same method to the
aggregated satellites, expanding the data size by 45.



a). Individual satellite
In Figure 6 and 7, we show the results obtained from satellite with svn 67 and 71. These are normalized histograms. It turns
out that the threshold does not matter for these two satellites due to the lack of near-fault data points. Thus we are only showing
the results for the threshold of 4.42. In addition, for each satellite, due to the limited operation period, for example, svn 67 and
71’s operation data are mostly available in the later six years, it turns out that the result for the later six years and total 12 years
are very similar. So we only show the result for 12 years with 1000 samples. The difference between the different original
samples size is more obvious for the aggregated error plot since there are always satellites operating, so we do not have the
limited operation period issue.

(a) (b)

(c) (d)

Figure 6: Satellite svn 67 bootstrap result for σ = 0.333 for GPS clock and ephemeris MPE for 12 years with units of (a) 15 minutes with a
standard deviation of 0.00825 (b) 0.5 day with a standard deviation of 0.0512 (c) 1 day with a standard deviation of 0.0517 (d)30 days with a
standard deviation of 0.0536

In Figure 6 (a), we observe a mono-peak histogram with a small standard deviation for the bounding parameter distribution.
This result indicates stability or small uncertainty in the bounding parameter. However, as we increased the sampling unit’s size,
the parameter’s standard deviation started to increase. Moreover, we see two distinct peaks in the distribution. The two peaks
become more evident as the sampling unit size grows. After grouping the time steps into units, we added the time correlation
when applying the re-sampling method and added time correlation. We create a second peak, presenting the two modes in
the error bounding parameter behavior. The result implies that we could have under or overestimated the parameter with the
multi-modal behavior. For example, we could have gotten a value close to the lower peak, whereas the actual result is closer to
the higher peak. This bi-modal behavior shows that the error bounding parameter likely has a larger uncertainty when we do
not assume that the data points sampled every 15 minutes are independent.

Similar result is shown in Figure 7. As the unit size increased, we increased the time correlation to relax the assumption that
error data points sampled every 15 minutes are independent, creating more peaks and a larger standard deviation. This result
has the important implication that the uncertainty in the parameter tends to be larger than the result without the data point
independence assumption. Even with a small degree of time correlation introduced, taking units every 0.5 days, we could
potentially still get large uncertainty in the bounding parameter for a single satellite. Here, by applying the bootstrap method, we
created an alternative history of error data that could have happened and can happen in the future, suggesting that the inherent
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Figure 7: Satellite svn 71 bootstrap result for σ = 0.333 for GPS clock and ephemeris MPE for 12 years with units of (a) 15 minutes with
a standard deviation of 0.00805(b) 0.5 day with a standard deviation of 0.0110(c) 1 day with standard deviation of 0.0145 (d)30 days with a
standard deviation of 0.0183

uncertainty might be larger than it appears in the actual time series data.

b). Aggregated satellites
As indicated in the time history plot, we tend to create a more stable parameter with more independent data points by aggregating
the satellites together. We examine the bootstrap result from the aggregated satellites with 10000 samples. In Figure 8, we plot
the result using a threshold of 4.42 and with the original sample size of 6 years.

Here, we observe the same multi-modal behavior in the plots. The peaks become more distinct than before, and the standard
deviation grows with the increasing unit size from 15 minutes to 12 hours, consistent with each satellite’s result. The time
correlation effect becomes less evident among the unit size of 12 hours, one day, and one month. The peaks and the large
standard deviation are likely caused due to the introduced time correlation described in the above sections. Notice that we
should not compare the standard deviation of the aggregated satellite bounding parameter distribution with the single satellite
since the satellites we selected are newer and thus are likely to produce a better result than the other satellites.
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Figure 8: Satellite aggregated bootstrap result for σ = 0.776 for GPS clock and ephemeris MPE for six years with the threshold of 4.42
units of (a) 15 minutes with a standard deviation of 0.0783 (b) 0.5 day with a standard deviation of 0.125(c) 1 day with standard deviation of
0.124(d)30 days with a standard deviation of 0.124

One important factor we wish to explore is the effect of the original sample size on the bootstrapping result. We took to expand
the original sample size to the later nine years and plotted it in Figure 9

As we can observe, the standard deviation of the σ parameter distribution is significantly reduced with a larger original sample
size, which is more representative of the whole population, in our case, the entire time of service of the satellites. In addition,
we observe that the multi-modal behaviors are less noticeable. Both results indicate a potential decrease in the parameter
uncertainty as we increase the original sample size.
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Figure 9: Satellite aggregated bootstrap result for σ = 0.768 for GPS clock and ephemeris MPE for nine years with the threshold of 4.42
units of (a) 15 minutes with a standard deviation of 0.0415 (b) 0.5 day with a standard deviation of 0.0409(c) 1 day with standard deviation of
0.0415(d)30 days with a standard deviation of 0.0428

Now we can further expand the original sample size to 12 years of data and apply bootstrap to the aggregated satellite MPE with
units of 15 minutes, 0.5 days, one day, and 30 days. The results are plotted in Figure 10. This bootstrap result should represent
the whole population more since we expand the bootstrap sample size.

The plot shows that the multi-modal behavior becomes less noticeable with more data available. The standard deviations also
significantly decreased compared to the results obtained using a smaller original sample. This result indicates that the bounding
parameter for the aggregated satellite error is stable and will likely stay stable in the future.
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Figure 10: Satellite aggregated bootstrap result for σ for GPS clock and ephemeris MPE for 12 years with the threshold of 3 units of (a) 15
minutes with a standard deviation of 0.03041(b) 0.5 day with a standard deviation of 0.04124(c) 1 day with standard deviation of 0.03352(d)30
days with a standard deviation of 0.03503

As suggested by the time history study, the near-fault data points increase the bounding parameter variability. We thus choose
to eliminate these bad players in the bootstrapping process by lowering the threshold to 3. The results are shown in Figure 11.

As shown in Figure 11, the multi-modal behavior becomes less noticeable compared to the bootstrap result obtained before
near-fault data point elimination. This result is a good indication that the multi-modal behavior is likely caused by the few
near-fault data points in the aggregated satellite error data. After eliminating the near-fault data points, the bounding parameter
tends to exhibit more stable behavior.
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Figure 11: Satellite aggregated bootstrap result for σ for GPS clock and ephemeris MPE for six years with the threshold of 3 units of (a) 15
minutes with a standard deviation of 0.0226(b) 0.5 day with a standard deviation of 0.0375(c) 1 day with standard deviation of 0.0379(d)30
days with a standard deviation of 0.0380

Now, we increase the original sample size as we did before. The results are shown in Figure 12
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Figure 12: Satellite aggregated bootstrap result for σ for GPS clock and ephemeris MPE for nine years with the threshold of 3 units of (a) 15
minutes with a standard deviation of 0.00878(b) 0.5 day with a standard deviation of 0.0112(c) 1 day with standard deviation of 0.0112(d)30
days with a standard deviation of 0.0106

As we can observe from the result, the multi-modal behavior nearly vanishes, and we are left with highly stable parameter
statistics. Finally, we increased the original size to 12 years with the threshold of 3. The result is shown in Figure 13

We can barely observe the multi-modal behavior after we lower the threshold to 3 and increase the original sample size to 12
years. The standard deviation of the parameter distribution significantly decreased. This result again shows that the near-fault
data points likely contribute to the uncertainties in the bounding parameter, and by expanding the original sample size, the
parameter is stabilized. In Figure 13, we see little variation in the error bonding parameter. This result represents the inherent
uncertainty of the Gaussian bounding estimates since it is not affected by the few near-fault data points and uses all the error
data available. The plot shows that different sampling units produce similar distribution and standard deviation, suggesting that
the time correlation no longer has a significant impact. The σ, as shown in the plot, has a small variation ranging from 0.542 to
0.628. The standard deviation is lower than 0.0095.
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Figure 13: Satellite aggregated bootstrap result for σ for GPS clock and ephemeris MPE for 12 years with the threshold of 3 units of (a) 15
minutes with a standard deviation of 0.00866(b) 0.5 day with standard deviation of0.00920(c) 1 day with standard deviation of 0.0094(d)30
days with a standard deviation of 0.00918

c). Galileo
For Galileo, we have two years of data taken every 5 minutes as indicated in the time history study. We applied the same
comparison metric to the Galileo bootstrapping results. In Figure 14 we show the bootstrap result with sampling units of 5
minutes, 12 hours, 1 day, and 1 month for svn 205 using 2 years of data.

The σ for this satellite is 0.17122. We observe similar behavior as the ones we saw in GPS satellites. The uncertainty significantly
increased, jumping from 5 minutes unit size to 12 hours unit size. We also observe the apparent multi-model behavior. Thus,
we can reach the same conclusion as we did in the GPS case.
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Figure 14: svn 205 bootstrap result for σ = 0.171 for Galileo clock and ephemeris MPE for 2 years with the threshold of 4.17 units of (a)
5 minutes with a standard deviation of 0.0129(b) 0.5 day with standard deviation of 0.0363(c) 1 day with standard deviation of 0.0375(d)30
days with a standard deviation of 0.0367

Then we plotted the bootstrap result for aggregated Galileo satellite errors. In Figure 15 and 16, we plotted the bootstrap results
using the 4.17 threshold and 1.5 years and 2 years of original sample sizes, respectively, with the different unit sizes.
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Figure 15: Aggregated bootstrap result for σ = 0.921 for Galileo clock and ephemeris MPE for 1.5 years with the threshold of 4.17 units of
(a) 5 minutes with a standard deviation of 0.258(b) 0.5 day with standard deviation of 0.290(c) 1 day with standard deviation of 0.290(d)30
days with a standard deviation of 0.286

As we can see, the uncertainty decreased with a larger original sample size. The uncertainty increased when we increased the
unit size from 5 minutes to 12 hours. However, unlike the GPS case, using the largest original sample size for Galileo did not
eliminate the multi-modal behavior. The lack of total data likely caused this behavior. Even after we lower the threshold and
eliminate the near-fault data points, we do not observe stable behavior as shown in Figure 17 and 18.
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Figure 16: Aggregated bootstrap result for σ = 0.867 for Galileo clock and ephemeris MPE for 1.5 years with the threshold of 4.17 units of
(a) 5 minutes with a standard deviation of 0.107(b) 0.5 day with standard deviation of 0.187(c) 1 day with standard deviation of 0.185(d)30
days with a standard deviation of 0.184

We observe a significant drop in the standard deviation from the plots after eliminating the near-fault data points. This result
again shows that the near-fault data points are likely responsible for the instability in the bounding parameter. However, possibly
due to the small original sample size, we do not observe a highly stable behavior as we did in the GPS case since in this case,
we were only using two years of data.
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Figure 17: Aggregated bootstrap result for σ = 0.921 for Galileo clock and ephemeris MPE for 1.5 years with the threshold of 4.17 units of (a)
5 minutes with a standard deviation of 0.03828(b) 0.5 day with standard deviation of 0.0825(c) 1 day with standard deviation of 0.0825(d)30
days with a standard deviation of 0.0831

VI. CONCLUSION
Our study shows that three years of data for each satellite likely provides too few independent data points for time series analysis.
Thus, we should use the aggregated satellite error for the time history error analysis of the bounding parameter. The time history
plots show that the bias parameter is highly stable, and the parameter is less stable. This result is likely caused due to the
near-fault data points.

We then explore using the training-validation method to simulate the data prediction process and find that the past aggregated
UPE data for GPS has good stability and predictability and will likely produce conservative bounds for the future errors using
as little as two years of data.

Finally, we used the bootstrap to evaluate the uncertainty in our bounding estimate. By varying the sampling units, we include
the temporal correlation. The result shows that the past error estimates have acceptable uncertainty even with a high degree of
time correlation assumption. The standard deviation of the Gaussian bounding distribution ranges from 0.542 to 0.627, with
high stability for GPS. This result shows that the GPS clock and ephemeris error bounding parameter is highly stable and can
be well characterized with the available data. For Galileo, on the other hand, with the currently available data, the bounding
parameters do not appear to be stable. We suspect that this is due to the lack of data.



(a) (b)

(c) (d)

Figure 18: Aggregated bootstrap result for σ = 0.867 for Galileo clock and ephemeris MPE for 1.5 years with the threshold of 4.17 units of
(a) 5 minutes with a standard deviation of 0.0298(b) 0.5 day with standard deviation of 0.133(c) 1 day with standard deviation of 0.135(d)30
days with a standard deviation of 0.132
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