Evaluation of Satellite Clock and Ephemeris
Error Bounding Predictability for Integrity
Applications

Xinwei Liu, Rebecca Wang, Juan Blanch, Todd Walter
Stanford University GPS Lab

ABSTRACT

The Advanced Receiver Autonomous Integrity Monitoring (ARAIM) concept requires a conservative characterization of the
nominal pseudorange error bounds. This paper explores the behavior of the Gaussian bounding parameters of the user projected
clock and ephemeris errors. In a previous study [4], we quantified the inherent uncertainties in the bounding parameters by using
the bootstrap probability distributions for the maximum projected clock and ephemeris errors. This paper presents a single set
of parameters that captures the inherent variability of the bounding parameters. In addition, we reduce the computational cost
by using the direct bounding method. We then partition the data for different observable conditions and examine the differences
among the bounding parameters to determine whether the current bounding behavior is representative of future data. Our study
shows that the means of the Gaussian bounding are small, most of the standard deviations are below the user range accuracy,
and the near-fault data points affect the stability of the bounding parameters for different observable conditions.

I. INTRODUCTION

The Advanced Receiver Autonomous Integrity Monitoring (ARAIM) concept relies on characterizing errors from the space
segment, the user segment, and the control segment. With the introduction of dual-frequency signals, the satellite clock and
ephemeris nominal error characterization will become more critical after eliminating the ionospheric error bound. The nominal
errors are the error values less than a constant multiplied by the User Range Accuracy (0iyra). To ensure the integrity is
met, we need to guarantee that we are conservatively bounding over the nominal errors (error less than 4.42 times oy ra for
GPS). We use an algorithm to calculate a conservative Gaussian bound over the errors that is stable through convolution [2]] [3]].
The bounding algorithm first computes a symmetric unimodal (SU) distribution to bound over the nominal errors, then uses
a Gaussian distribution to bound over the SU distribution. In doing so, we generate two bounding parameters, bias as the
Gaussian mean and o as the Gaussian standard deviation.

Satellite nominal clock and ephemeris errors bounding parameters have inherent variability with different satellites, time,
satellite block, oy r 4, and the age of data or time since the last upload (TSLU). Our previous work investigated this variability
by examining the bounding parameters over time [4]]. To further explore this effect, we applied the bootstrap method to explore the
inherent variability in the bounding parameters applied mainly to the GPS constellation, which allows us to compute probability
distributions of the bounding parameters [4]. Our previous study estimated the amount of data required for a relatively stable
characterization of the constellation errors. Furthermore, we found that the near-fault data points affect the bounding parameter
stability [4]].

The bootstrap method measures our uncertainty in the bounding distributions by generating a probability distribution of the
bounding parameters. However, we also need to provide the user with a single set of Gaussian bounding parameters that
incorporates the uncertainty in the bounding process. To solve this problem, we develop a method for computing a single set
of Gaussian bounding parameters that accounts for its probability distribution. We introduce the mathematical formulation in
section II.

With this new development, we seek to utilize the User Projected Error(UPE) to compute the bootstrap statistics. In [4], we
applied the bootstrap method to the maximum projected error(MPE). However, MPE values are generally bimodal and thus
lead to artificially large bias due to this bimodal effect [5]. By using UPE, we can eliminate the bimodal effect of the MPE.
To apply the bootstrap algorithm to UPE, we reduce the computation time by replacing the original bounding algorithm with a
direct bounding algorithm, which reduces the computation cost of the UPE bootstrap process. We elaborate on the UPE direct
bounding bootstrap algorithm and the justification in section III.

In this paper, we also expand our study of variability to different satellites, satellite blocks, oy g4, and TSLU to see how bounding
parameters changes with the above variables. We elaborate on the different partitions in section IV. These partitions give us
insights into whether the current error bounding parameter values are representative of the future error bounding parameter

behavior. The experiment results are presented in section IV with the GPS data from 2008 to 2021.

II. BOOTSTRAP SINGLE GAUSSIAN BOUNDING PARAMETER

In our previous study, we utilize the bootstrap method to generate possible alternative error histories to explore the data’s
inherent variability. As a result, we obtain the probability distribution of the bounding parameters. Depending on the spread of
the distribution, we can estimate the stability of the parameters. However, the probability distributions are hard to use; thus, we
present a way to formulate a single parameter that captures all the variabilities explored in the bootstrap process in this section.

Our error bounding distributions are Gaussian distributions with certain means and standard deviations equal to os as
error bound ~ N (bias,c). The probability bound of the absolute value of an error larger than some bounding value L,
using the Gaussian bound as its probability, can be written as 2(1 — Q(£=%45)) where () is the CDF of the Gaussian distribu-
tion. Following the bootstrapping step, we obtain the probability distribution for the set of bounding parameters bias and o as
py(bias, o). Then equation can be used to express the probability of the absolute value of the error ¢ larger than L

P(lel > 1) <2 (1 - (%) m

From the bootstrap process, we obtained the probability distribution of the bounding parameters. Each set of bounding
parameter value (bias, o) has a probability of p,(bias, o). In order to capture this probability distribution or the variabilities of
the parameters, we apply marginalization. We rewrite the expression in the following form

Pel>)< [2x (1= Q) pybias, a)d(bias, o) @
bias,o

Furthermore, we wish to express our probability distribution P(|e > L|) as a single Gaussian distribution CDF using the
following equation

L — Bias
=))

Here, Bias and X are the Gaussian bounding parameters. We equate the left hand side of equation [2| and [3| and formulate
equation [4]

P(le] > L) <2 x (1 —-Q(

L—bi L — Bi
2 (1= Q(=—"=))py(bias, o)d(bias, o) =2 x (1 - Q(=———
bias,o g

) “4)

Equating the two sides of the equation allows Bias and X to account for the probability distribution on the left-hand side of
the equation. In this way, Bias and X are the new Gaussian distribution parameters that cai)ture the inherent varlablhty in the

bounding parameters. The Gaussian CDF can be expressed as Q (£ mes) = (1 + er f(#=%22)).The above expression can be
simplified to
L— Bi — bi
LTS 67"f71(/ erf zas Ypy(bias, o)d(bias, o)) ®)
by bias,o \/2

Knowing p;(bias, o) provided by bootstrap simulation, the parameter % can be computed numerically. This method

gives us the relation between the three parameters L, Bias, and ¥, with the latter being the Gaussian bounding parameters that
capture the inherent variability in the data set.

III. UPE DIRECT BOUNDING BOOTSTRAP ALGORITHM

One downside of using a statistical method such as bootstrap is the computational cost. Since the bounding procedure is repeated
many times for bootstrap, we need to guarantee that each bounding step is computationally cheap. The most computationally
expensive step is a procedure we refer to as the symmetric unimodal(SU) condition checking. This process stems from the
Gaussian bounding algorithm. The bounding algorithm first computes an empirical CDF based on the distribution. Then it
applies a symmetric unimodal (SU) bounding algorithm to produce a SU CDF distribution over the empirical CDF. Finally, the
algorithm produces a Gaussian bound over the SU CDF. The SU bounding used in the algorithm relies on linear programming
and is conditioned on excess mass. This bounding step is necessary as it guarantees stability through convolution for Gaussian
bounding. [2] The bias we use has to satisfy the SU bounding conditions simultaneously for all the users [2]]. The process is
shown in figureT]

Symmetric

Gaussian

Unimodal e

bound

Figure 1: Bounding process achieved by two steps: the SU bounding and the Gaussian bounding

Since we are working with 200 users, we need to find the smallest bias that satisfies all users’ SU conditions. We use the binary
search to find the bias. We apply a bias to all 200 users each time to check if this bias satisfies the SU condition for all 200 users.
Using binary search, we can find the smallest possible bias to achieve the SU condition for all the users.

We then use this bias as the input for the bounding algorithm, compute the os that correspond to each user, and take the largest
o as the bounding parameter. This process is shown in figure?)]

ouserl

Check SU \

condition

Smallest bias Largest o
that works for all
users

Binary search loop
for finding bias

User 200 Chec.k‘SU o user 200
{ condition

Figure 2: Process to find the smallest feasible bias and the corresponding largest o among the users

This search step requires O(log(n)) computation step given the possible bias range length to be n. Each step checks the
SU conditions 200 times since we have 200 users, making it the most computationally expensive step. This step is further
applied to all 49 SVNs. The entire procedure is repeated 1000 times for bootstrap, which becomes time-consuming. To reduce
computational time, we apply the direct bounding algorithm.

The essential idea behind this algorithm is that we neglect the SU bounding and directly apply the Gaussian bounding to the
empirical CDF. In this way, we no longer need to check for SU conditions. Thus, we can remove the binary search. We refer to
this method as the direct bounding method. We refer to the original bounding method as the two-step bounding method.

One shortcoming of the direct bounding algorithm is that it relies on the user to provide the bias value. Here, we recommend
that the user pick the median of the given data set. Specifically, we compute the median for the "right" and "left" empirical
CDF and pick the larger one. We do not elaborate on the bounding algorithm further. The detail of the bounding process can
be found in the previous study "Gaussian Bounds of Sample Distributions for Integrity Analysis" [3].

In order to justify this simplification, we check experimentally to ensure that given the same bias value, the two methods produce
similar os. The results are shown in the experimental section. Based on the provided plots, the o values generated by the two
methods are close. In other words, we could substitute the two-step bounding with the direct bounding without affecting the
bootstrap result for the given data set severely. This replacement is not always valid, but it appears to hold for the data sets we
are analyzing.

IV. THREE PARAMETERS COMPARISON AND ALGORITHM

In the previous sections, we have established the mathematical tools for computing the single bounding parameter that accounts
for the variability in the bounding parameters and the bootstrap computation simplification utilizing the direct bounding
algorithm. We can compute the following three sets of bounding parameters given a set of data: the two-step bounding
parameters, the direct bounding parameters, and the single bootstrap bounding parameters.

1. Two-step bounding algorithm

The first parameter is computed by applying the two-step Gaussian bounding algorithm. Taking the example of computing the
bounding parameter corresponding to one SVN, we show the algorithm in{T]

Algorithm 1: Two Step Gaussian Bounding for One SVN

Result: Two Step Gaussian Bounding bias and o for one SVN
Take the 200 user data corresponding to the SVN;
for all the users do
Compute the right and left medians of the empirical CDF;
Take the largest of the two values to be the lower bound for bias;
Compute the right and left maximum value for the empirical CDF;
Take the smallest of the two values to be the higher bound for bias;
Gather the lower and higher bound for bias give the bias range for this particular user;
end
Compute the union of the ranges for all users;
while upper bias bound and lower bias bound difference smaller than a small value € do
Set bias to be the median of the bias range;
Check the SU condition for all users corresponding to the bias;
if all users satisfy the SU condition then
| Set the current bias as the upper bias bound;
else
\ Set the current bias as the lower bias bound;
end

end
Get the final bias after the while loop condition is met;
for all the users do
\ Compute the o corresponding to the bias using the two-step bounding algorithm;
end
Take the largest of the os to be the bounding parameter

2. Direct bounding algorithm

The direct bounding algorithm is a simplification of the two-step bounding algorithm. The algorithm is shown in Algorithm 2]
In our experiment, rather than computing the bias, we directly use the bias computed from the two-step bounding to compare o

Algorithm 2: Direct Gaussian Bounding for One SVN

Result: Direct Gaussian Bounding bias and ¢ for One SVN
Take out the 200 user data corresponding to the SVN;
for all the users do
Compute the right and left medians of the empirical CDF;
Take the largest of the two values to be the bias;
end
for all the users do
\ Compute the o corresponding to the bias using the direct bounding algorithm;
end
Take the largest of the os to be the bounding parameter

values with the same bias.

3. Bootstrap bounding algorithm

The bootstrap algorithm combines the bootstrap process, the direct bounding algorithm, and the overall bounding algorithm
shown in section II. We first divide the error data into units. Then we do a sample with replacements on the units, getting a
new set of data that is the same size as the original data set. We apply the direct bounding algorithm to the new data set. This
process is repeated 1000 times, which gives us 1000 bias and o values. Let the number of bootstrap resamples be N. We
discretize equation [4{ and set the p;, for each set of bounding parameter to be % We get equation |§] through some algebraic
manipulation.We then apply equation[6]to compute the single set of bounding parameters that captures the bootstrap probability

distribution. N
L—-BIAS (1 L — bias(i)
—5 =@ (N;Q (U(i))) ©6)

Here, N is the bootstrap time, which is 1000 in our case. Each bootstrap result generates a set of bias(i) and o(i). We then
take the Gaussian CDF @ and sum the results. After dividing the result by N, we take the inverse of Gaussian CDF, which
gives us the left-hand side of the equation. With the given relation for L, Bias, and X, we need to guarantee that the bounding
parameters Btias and X work for all possible bounding value L, and we need to eliminate one extra degree of freedom in the
equation.

a) parameter selection

To eliminate the extra degree of freedom, we choose to set Bias to be the same as the bias computed from the two-step bounding
process using the original data before bootstrapping. To guarantee that the bounding parameters work for all L values, we loop
through different Ls and compute their corresponding >s. The largest X is used as the overall bootstrap bounding parameter.
The range of L we pick here is from the bias computed using the two-step bounding process applied to all the data to the
maximum error value. The algorithm is shown in[3]

Algorithm 3: Bootstrap Overall Bounding for One SVN

Result: Bootstrap Overall Bounding bias and o for one SVN
Take one SVN error data with 200 users as the original sample;
Designate the length of sampling units;
Divide the data into units by time periods; each consists of 200 user data;
for 7000 times do
Sample with replacements on the units, producing resamples with the same size as the original sample;
Apply direct bounding algorithm to the new sample, compute and store the bias and o;
end
Designate the L range from the bias computed using the two-step bounding algorithm applied to the original sample to the
largest error data value from the original sample;
Set the Bias to be the bias computed using the two-step bounding algorithm applied to the original sample;
for all the possible L values do
| Compute the ¥ value using equation [0]
end
Use the largest 3 as the bounding parameter

In this way, we have obtained three sets of bounding parameters, the two-step bounding, the direct bounding, and the bootstrap
bounding. Here, the bias values are set to be the same for comparison purposes for all the bounding methods.

V. DATA PARTITION AND EXPERIMENTAL RESULTS

With the bounding algorithm, we can produce a single set of bounding parameters that captures the inherent variability. Given
the available data, we further explore how the bounding parameters vary with different observable conditions. In this sense, we
can evaluate the stability over different observable condition values. The observable conditions we are interested in are time
period, satellite vehicle number (SVN), satellite blocks, user range accuracy, and the age of data. This section elaborates on
how we partition the data and its motivation.

1. Time period

The first variable is the time period. Given the time series of the satellite clock and ephemeris errors, we want to know how it
evolves with time. In other words, we wish to evaluate the stability of the bounding parameters over time. Here, we take the
error data for a certain time window. We then slide the time window to get the corresponding data. For example, we set the

time window for GPS to be 3 years. We take the data from 2008 to 2010 and compute the corresponding bounding parameters.
We then slide the time window by 1 year, take the data from 2009 to 2011 and compute the bounding parameters again. We
repeat the process until we get to the year 2021. Particularly, we aggregate all satellites together. The process is shown in figure
[3]If we observe similar bounding parameter values corresponding to each period, we can draw some preliminary conclusions

PERIOD END 3
years

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
Years

Figure 3: Time period division
regarding the stability of the bounding parameters over time and use this information to predict future error-bounding behavior.

2. Satellite vehicle number(SVN)

The second variable is the satellite vehicle number. SVN is one of the observable conditions available to the users. For a given
SVN, we seek to provide a valid upper bound corresponding to the SVN condition such that the bounding parameters can be
provided to the user if the observable condition is specified. In addition, we want to know if the given set of SVN error data
is representative of SVN error data that are yet to be collected. To make rough predictions of the future error data, we need to
explore how the bounding parameters vary with different SVNs and whether the bounding parameters are stable for different
SVNs. To achieve this evaluation, we partition the error data by SVN. Here, for each satellite, we take the entire error history
from 2008 to 2021 and apply the bounding algorithm. We set the bias to be the same for all the SVNs and compute the different
SVN’s ¢ bounding values.

3. Satellite blocks

The third variable is satellite block. For GPS, the satellites are divided into several blocks. The users can choose which satellite
block they are interested in. With the satellite block being another observable condition, we need to provide the users with a
valid upper bound for each block. We take the entire time span for each block and aggregate all the satellites in the block to
compute the error bounding parameters. We repeat this process for all the blocks and compare among the blocks.

4. User range accuracy (URA)

The fourth variable is the URA, which is another observable condition. Following the reasoning for the other two observable
conditions, we want to provide the valid upper bound for a given URA value. We compute the error bounding parameters for
each URA error data point. Each error data point corresponds to a particular URA, and the users have the freedom to choose
which URA they are interested in. We take the entire time span of data and divide the errors by different URA values. Each set
contains all 200 users’ data points corresponding to that URA. Here, we aggregate the error data for entire time period and for
all satellites.

5. Time since last update (TSLU)

Finally, we repeat the process for the age of data or TSLU by dividing the error data by different TSLU and computing their
corresponding bounding parameters. If relative consistency is achieved for each variation’s error bounding parameters, we can
conclude that high stability exists in the data and draw conclusion regarding the data yet to be collected.

6. Near-fault data elimination

In the previous study [4]], we found that the near-fault data points affect the stability of the error bounding parameters. In
this study, we explore this effect by regarding the near-fault data points as faulted and evaluate their impact on the bounding
parameter stability with respect to different observable condition values.

7. Experiment and result

This subsection shows the experiment results for the three types of bounding parameters computed for different partitions. We
are given the GPS satellite clock and ephemeris error data normalized by oy g4 from 2008 to 2021 for each SVN. We are further
given the URA and TSLU data corresponding to each epoch and satellite. For a single SVN, we are given 200 users projected
errors, the error vector projected to the user line of sight. There are 200 users evenly distributed around the globe.

We first compute the two-step, direct, and bootstrap bounding parameters for time period variation with a 3 years time window
and slide every 1 year. The data is computed for GPS satellite clock and ephemeris nominal UPE from 2008 to 2021. We set
the bias for the three types of bounding to be the same for better o comparisons. The results are shown in figure [

2019-2022 2019-2022 X
2018-2021 { 2018-2021 x
2017-2020 i 2017-2020 'y
2016-2019 e 2016-2019 x
5 2015-2018 A » 2015-2018 x
© 2014-2017 + Direct bound & o & 2014-2017 A
$ 2013-2016 4 Two step bound o L S 2013-2016 -
2012-2015 Bootstrap bound & 2012-2015 L
2011-2014 s Direct bound bias 2011-2014 =
2010-2013 & Two step bound bias 4 2010-2013 =
2009-2012 © Bootstrap bound bias A 2009-2012 & *
2008-2011 o— 2008-2011 s * Lo : .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
normalized bounding parameter value normalized bounding parameter value
(a) nominal threshold with 4.42 X oy raA (b) threshold with 3 X oy rA

Figure 4: Bounding parameter results for direct, two-step and bootstrap bounding processes varying in time. The blue dots are the direct
bounding os computed using the designated 3 years of data. The red dots are the two-step bounding os computed using the designated 3
years of data, and the green dots are the bootstrap bounding os computed using the abovementioned method. The black circles are the biases.
Since we set them to be the same for three bounding methods, they overlap.

The left figure is the temporal variation of the bounding parameters for nominal errors normalized by o ga. As we can observe
from the plots, the bias values are small, with the largest value being 0.034. All the os are below 0.91. The three processes
produce o with similar values, with the largest difference being 0.0084. The standard deviation of the two-step o bounding
parameter value is 0.16.

The right figure is the temporal variation of the bounding parameters for nominal errors normalized by oy g4 excluding the
near-fault data points by eliminating the normalized error data points larger than 3. This plot does not contain the bootstrap data
points. As we can observe from the plots, the bias values are small, with the largest value being 0.031. All the os are below
0.64. The three processes produce ¢ with similar values, with the largest difference being 0.019. In addition, the bounding
parameter o becomes more stable for different time periods. The standard deviation of the two-step o bounding parameter value
is 0.048. In other words, the o parameter’s variation for time decreases and becomes more stable by regarding the near-fault
data points as faulted.

From the result, we can make 5 observations. First, the biases are small. Second, all o values are below 1. Third, if we regard
the near-fault data points as faulted, the bounding parameter o becomes more stable. Since the ¢ parameter is stable through
time, it might be possible for us to make predictions of the future data and regard the past data as relatively representative.
Fourth, the two-step bounding ¢ and the direct bounding o are close to each other, which makes it possible to use the direct
bounding method for bootstrap for the sole purpose of computational cost reduction. Fifth, the small differences among the
three bounding methods indicate that there might be a possibility that we could potentially substitute the bootstrap and the
two-step bounding processes with the direct bounding process. The bootstrap bounding gives the bounding parameters that take
into account the inherent variability, and the two-step bounding guarantees that the bounding is stable through convolution [J3].
Although applying the two-step bounding algorithm is not computationally costly, this process is repeated for 200000 times,
200 times for 200 users, and 1000 times for 1000 bootstrap resamples.

We also computed similar bounding parameters for each SVN. Here we use 14 years of UPE data for GPS, each with 200 users.
The results are shown in figure [3]

Q
3
e S &
1 A
A 0 A
P 8 L —
i o 0
L ‘ [+ ¢ .
I o r .
. o ‘ P *
. e - 1
; F3 y
- A o A
r » feo A
z * 2 B2F 4
> > »
(2 "0 2 "
3 e
AA _o "N
A - 0 A
3 -0 A
& :% %
b 0
1 4
._8 A
N *
1 3 e
- O A
» % »
- .
4 [0 L
o » g % o Ao
1 1 4 1 - 1 1 :e o 1 1 o 1 ‘ 1 J
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
normalized bounding parameter value normalized bounding parameter value
(a) nominal threshold with 4.42 X oy raA (b) threshold with 3 X oy rA

Figure 5: Bounding parameters for error data partitioned by SVN. On the left, we have the nominal error, and on the right, we use a lower
threshold to explore the near-fault error data point effect

The normalized nominal error biases are below 0.14, with the largest bias associated with SVN 25, 47, and 57. The o values are
all below 1.02. The largest difference among the three bounding o's is 0.17 from SVN 75. The standard deviation of the two-step
o values is 0.22.After eliminating the near-fault data points, the largest bias is 0.20. The o values are all smaller than 0.77.
The largest difference among the three bounding os is 0.1690 from SVN 75. The standard deviation of the two-step o values is
0.16.Here, most error data have small biases, o values are below 1, and the different bounding os have small differences with a
few exceptions. The standard deviation of the two-step o values decreased after eliminating the near-fault data points.

We now show the results for each satellite blocks for GPS in figure[6]

Here, we observe similar behavior as in the case with varying time periods. For the nominal error, the largest bias is 0.033, the
largest o is 0.91, and the largest o difference is 0.0084. The standard deviation of the two-step o values is 0.29. For the error
data after eliminating the near-fault data points, the largest bias is 0.033, the largest o is 0.64, and the largest o difference is
0.019. The standard deviation of the two-step ¢ values is 0.19.

We then plot the data partition by URA in figure7]

For this partition, for the nominal error, the largest bias is 0.094, the largest o is 0.86, and the largest o difference is 0.0081.
The standard deviation of the two-step o values is 0.27. For the error data after eliminating the 0.0081 near-fault data points,
the largest bias is 0.072, the largest o is 0.60, and the largest o difference is 0.0081. The standard deviation of the two-step o
values is 0.21.

Finally, in figure[8] we show the error bounding parameters partitioned by the time since last upload.

Block IIIA & > Block 1A & &
Block IIF & Block IIF [*
X X
Q &)
2 =
i) [l
Block IIR | 4 Block IIR f& *
Block IIA ' . . * * r— Block I1A % * * e * !
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
normalized bounding parameter value normalized bounding parameter value
(a) nominal threshold with 4.42 X oy raA (b) threshold with 3 X oy rA

Figure 6: Bounding parameters for error data partitioned by satellite blocks. On the left, we have the nominal error, and on the right, we use
a lower threshold to explore the near-fault error data point effect

4800 & 48.00 [*&
2400 A 2400 s
1365 & e 13.65 & -
i 3
[} | @ L
§ 965r& . £ oesfa A
E E
<
5 685 A L] *
= D
4.85 M & 4.85 M &
3.40 px - 3.40 & A
240 L L L . . 240 L L - L .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
normalized bounding parameter value normalized bounding parameter value
(a) nominal threshold with 4.42 X oy rA (b) threshold with 3 X oy rA

Figure 7: Bounding parameters for error data partitioned by user range accuracy. On the left, we have the nominal error, and on the right, we
use a lower threshold to explore the near-fault error data point effect

For this partition, for the nominal error, the largest bias is 0.034, the largest ¢ is 0.82, and the largest o difference is 0.0073. The
standard deviation of the two-step o values is 0.13. For the error data after eliminating the near-fault data points, the largest bias
is 0.034, the largest o is 0.66, and the largest ¢ difference is 0.0073. The standard deviation of the two-step o values is 0.076.

The above results suggest that the bias value is small for most partitions. The normalized os are below 1 except for SVN 39, the
differences among the two-step bounding, direct bounding, and bootstrap bounding s are small, with the largest being 0.17 for
SVN 75, but overall the differences are smaller than 0.01. The standard deviation of the o bounding parameter decreases after
eliminating the near-fault data points. However, the small difference between the two-step and the direct bounding algorithm
is due to the nature of the data being symmetric and unimodal. The two methods are not equivalent mathematically and will
possibly produce different results given another set of data with different properties . The above results suggest that the near-fault
data points could potentially increase the stability of the bounding parameters.

21-23 & 21-23 &
19-21 * 19-21 *
'® 17-19 A ‘@ 17-19 "
3 15-17 . 31517 -
£, 13-15a & £, 13-15a e
S 11-13 . o 11-13 *
= 9-11 * - 9-11 A
2 79 A 2 7.9 A
5-7 & 5-7 A
3-5 * 3-5 &
1-3 " L L e 1 1-3 " " e " :
0 0.2 0.4 0.6 0.8 1 0 0.2 04 0.6 0.8 1
normalized bounding parameter value normalized bounding parameter value
(a) nominal threshold with 4.42 X oy raA (b) threshold with 3 X oy ra

Figure 8: Bounding parameters for error data partitioned by user time since last update. On the left, we have the nominal error, and on the
right, we use a lower threshold to explore the near-fault error data point effect

VI. CONCLUSION

This study introduces a new way to capture the inherent variability in the satellite clock and ephemeris bounding parameters
associated to the bootstrap algorithm. We then review the two-step bounding algorithm and reduced the computational cost by
introducing the direct bounding algorithm. Furthermore, we present different ways to partition the error data. The result shows
that for GPS satellite clock and ephemeris errors from 2008 to 2021, partitioned by time, SVN, satellite blocks, URA, and
TSLU, the bias bounding parameter values are small, with a few exceptions. The o values are all below 1 except for SVN 39.
The near-fault data points affect the bounding parameter stability for the observable conditions. The differences among the os
produced by the two-step bounding algorithm, the direct bounding algorithm, and the bootstrap bounding algorithm are small.

ACKNOWLEDGEMENTS
We gratefully acknowledge the support of the FAA for funding this work.

REFERENCES

[1] Pullen, Sam, Lo, Sherman, Katz, Alec, Blanch, Juan, Walter, Todd, Katronick, Andrew, Crews, Mark, Jackson, Robert,
"Ground Monitoring to Support ARAIM for Military Users: Alternatives for Rapid and Rare Update Rates," Proceedings
of the 34th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2021), St.
Louis, Missouri, September 2021, pp. 1481-1507.

[2] Blanch, Juan, Liu, Xinwei, Walter, Todd, "Gaussian Bounding Improvements and an Analysis of the Bias-sigma Tradeoff
for GNSS Integrity," Proceedings of the 2021 International Technical Meeting of The Institute of Navigation, , January 2021,
pp. 703-713.

[3] J. Blanch, T. Walter and P. Enge, "Gaussian Bounds of Sample Distributions for Integrity Analysis," in IEEE Transactions
on Aerospace and Electronic Systems, vol. 55, no. 4, pp. 1806-1815, Aug. 2019, doi: 10.1109/TAES.2018.2876583.

[4] Liu, Xinwei, Blanch, Juan, Walter, Todd, "Investigation into Satellite Clock and Ephemeris Errors Bounding Uncertainty
and Predictability," Proceedings of the 2022 International Technical Meeting of The Institute of Navigation, Long Beach,
California, January 2022, pp. 252-272.

[5] Gunning, K., Walter, T., Gao, G., amp; Powell, J. D. (2021). Safety critical bounds for precise positioning for aviation and
autonomy (dissertation).

[6] Hesterberg, Tim Monaghan, Shaun Moore, David Clipson, Ashley Epstein, Rachel Freeman, W York, Company. (2005).
Bootstrap Methods and Permutation Tests. Introduction to the Practice of Statistics. 14.

[7] Victor Chernozhukov. Econometrics. Spring 2017. Massachusetts Institute of Technology: MIT OpenCouseWare,
https://ocw.mit.edu/. License: Creative Commons BY-NC-SA.

	INTRODUCTION
	Bootstrap Single Gaussian Bounding Parameter
	UPE Direct Bounding Bootstrap Algorithm
	Three Parameters Comparison and Algorithm
	Two-step bounding algorithm
	Direct bounding algorithm
	Bootstrap bounding algorithm
	parameter selection

	Data Partition and Experimental Results
	Time period
	Satellite vehicle number(SVN)
	Satellite blocks
	User range accuracy (URA)
	Time since last update (TSLU)
	Near-fault data elimination
	Experiment and result

	Conclusion

