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ABSTRACT
The Advanced Receiver Autonomous Integrity Monitoring (ARAIM) concept relies on characterizing the satellite clock and
ephemeris bounding parameters. In this paper, we expand on the previous study on the GPS error bounding parameters to
include Galileo and the approximation of the bounding parameters of the Civil Navigation (CNAV) Message type. In particular,
we compute the bounding parameters that capture their inherent variability. We then partition the error by their observable
conditions to determine whether the currently collected data is representative of future error behavior. Furthermore, for Galileo,
we change the nominal error definition to investigate how it would affect the bounding parameter distribution. We find that
the Galileo normalized error data are bounded with Gaussian with mean of 0.04 and standard deviation of 0.04 for different
partitions with newer satellites having more stable and lower bounding parameters. Lowering the nominal error definition
threshold stabilizes the bounding parameters. We estimate the CNAV bounding parameter by lowering the σURA values. We
find the normalized errors are bounded with Gaussian with mean of 0.41 and standard deviation of 1.15 even after lowering the
σURA values. In addition, lowering the σURA values stabilizes the bounding parameters.

I. INTRODUCTION
The characterization of the GPS satellite clock and ephemeris nominal error bounding parameters is crucial for the concept of
Advanced Receiver Autonomous Integrity Monitoring(ARAIM). In a previous study, we investigated such parameter behavior
for the Legacy Navigation (LNAV) message type. We applied three bounding methods to the GPS satellite clock and ephemeris
nominal error utilizing a Gaussian bounding algorithm(1). The bounding algorithm outputs two parameters, the Gaussian mean,
bias, and the Gaussian standard deviation, σ. We used 200 user projected errors (UPE), and the algorithm computed bias by
finding the smallest bias that works for all the users and then computes the largest σ for all the users corresponding to this
bias.The first bounding method directly applied the Gaussian bounding algorithm to the UPE. We referred to it as the two-step
bounding algorithm. The second algorithm simplified the first algorithm to reduce the computational cost. We referred to it
as the direct bounding algorithm. The third algorithm output a single set of bounding parameters that captures the inherent
variability in the bounding parameters computed using the bootstrap method (2). We referred to it as the bootstrap bounding
algorithm. In the previous study, using the data from 2008 to 2022, we found that the bounding parameters provided by the three
bounding algorithms are close to each other. We concluded that it might be possible to use the two-step bounding algorithm,
which is computationally cheap, to replace the bootstrap bounding algorithm, which captures the inherent variability in the
bounding parameters at a higher computation cost. In addition, we partitioned the data using different observable conditions to
explore how representative the collected data are for future error data yet to be collected. Finally, we examine how including
the near-fault data points as faulted affects the bounding parameters.

In this study, we expand the constellation to Galileo and apply the same analysis to Galileo data from 2018 to 2022. We examine
how fault definition affects the observed fault probability and the bounding parameters, which was briefly discussed in the
previous study(2). In addition, as Civil Navigation (CNAV) message will be used for ARAIM, we apply an approximation to
the CNAV message type and characterize its error bounding parameter behavior as we did for the LNAV message.

We first review the mathematics for the bounding parameter formulation in section II. Then we present the bounding parameter



behavior results for Galileo and the approximation of CNAV, respectively, in section III. For each data set, we also evaluate how
different fault definitions affect the fault rate and the bounding parameters. The experimental results are provided in section IV.

II. BOOTSTRAP SINGLE GAUSSIAN BOUNDING PARAMETER
In the previous study, we introduced a way to calculate a single set of bounding parameters that captures the inherent variability
of the satellite clock and ephemeris error bounding parameters. In our problem, we apply a Gaussian bounding algorithm to
compute the statistics of the Gaussian distribution, whose tail bounds over the probability of the absolute error value larger than
some value L. The formulation is shown in Equation 1

P (|ε| > L) ≤ 2× (1−Q(
L− bias

σ
)) (1)

Here, P is the probability, ε is the error, Q is the Gaussian CDF, bias is the Gaussian mean, and σ is the Gaussian standard
deviation. Utilizing the bootstrap method, we obtain the empirical probability distribution of the error bounding parameters.
We then incorporate the probability distribution into a single set of bounding parameters, as shown in Equation 2
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Here, Bias and Σ are the bounding parameters that capture the inherent variability. N is the number of bootstrap samples.
bias(i) and σ(i) correspond to each bootstrap sample’s bounding parameters. As a result, the bounding parameters Bias and Σ
capture the variability calculated in the bootstrap process. We then find the set of (Bias,Σ) that would work for all the possible
L values. Picking the Bias to be the bounding parameter calculated by directly applying the bounding parameter to the original
error data, we obtain Σ as we did in (2).

III. GALILEO AND ESTIMATED CIVIL NAVIGATION (CNAV) MESSAGE
In the previous study, we bounded the UPE values for GPS from 2008 to 2022. We explored the variability of the bounding
parameter computed in equation 2 for different observable conditions for LNAV message type(2). This approach allows us to
examine the stability of the bounding parameters for different observable conditions and how representative the current bounding
parameters are for the error data yet to be collected. Suppose the bounding parameter values are close for different observable
condition values. In that case, we can speculate that the parameters are stable for the given data and likely to be representative
of error data corresponding to observable condition values yet to be collected. For example, taking the observable condition
to be time, we compute the bounding parameters for different time periods and compare their values. This comparison allows
us to analyze how the bounding parameters vary with time and to speculate how the bounding parameters might behave in the
future. In addition, we compared the bounding parameter values obtained using the bounding algorithm directly against the
bootstrap bounding parameters. The result shows that the two bounding methods provide similar bounding parameter values,
which implies that for this particular set of data, it might be possible to replace the bootstrap bounding parameters, which
capture the inherent variability with the two-step bounding parameters, which are computationally cheap (2). In this study, we
expand our error data set to Galileo and message types to explore how changing the definition of the nominal error would affect
the bounding parameter behavior.

1. Constellation Expansion
In this study, we seek to expand this method to other GNSS constellations, particularly Galileo, which will be included as a part
of the ARAIM. We take the available Galileo data and partition the data by time window and satellite vehicle number to examine
how the bounding parameters vary with different observable condition values to conclude the bounding parameter stability. In
doing so, we determine whether the parameters for the collected errors are representative of the bounding parameters of the
error data yet to be collected. We also examine how close the outputs of the three bounding methods are, as we did for GPS.

2. Navigation Message Expansion
We also want to explore the bounding parameter behavior from the Civil Navigation Message(CNAV), which will be used
in ARAIM, through the L5 signals. We use the LNAV message to approximate the L5 signal in our study. We know the
CNAV message type has a lower σURA than LNAV(3)(4). To approximate the CNAV bounding parameters, we take the LNAV
clock and ephemeris data points corresponding to σURA = 2.40meters, normalize them with lower σURA values and find the
nominal error with a threshold of 4.42. In this sense, we have ”inflated” the normalized error data values. We see tighter error



bounds with the different σURA values. The results are shown in the next section.

3. Nominal Error Definition Modification
Lowering the σURA would change the definition of the nominal errors. The nominal clock and ephemeris errors are defined
as the error with a value below 4.42 × σURA, where σURA is the User Range Accuracy. The Psat value for GPS is 10−5 (5),
which establishes the maximum percentage of data that can be considered faulty. In the previous study, we observed that by
lowering this threshold from 4.42 to 3, we obtained more stable behavior for the bounding parameters for different observable
condition values. In this sense, lowering the threshold ”stabilizes” the bounding parameters. For Galileo, the nominal error is
defined with a threshold of 4.17× σURA. The Psat is 3× 10−5 . In this study, we seek to set the threshold to a lower value for
Galileo such that the fraction of data eliminated is less than Psat. For Galileo, we set the threshold to be 2× σura such that the
data eliminated is slightly smaller than 10−5 for the new definition of faulty data points.

In the following section, we present Galileo analysis and CNAV approximation results, respectively.

IV. EXPERIMENT
This section presents the experimental result for the above three analyses. We present the result for Galileo and its nominal
error bounding definition analysis. In particular, we plot the two-step, direct, and bootstrap bounding parameters with different
observable condition values. We then apply the same analysis to approximated CNAV using a σURAapproximation.

1. Galileo
In the Galileo plot analysis, we aim to do the following. First, justify the bootstrap simplification. Second, justify the two-step
bounding parameter substitution. Third, explore the bounding parameter variability with different observable condition values.
Fourth, explore the effect of fault definition change. Fifth, examine whether the parameters are below the normalization. Sixth,
examine whether the bias values are small. We elaborate on the motivation for the first four objectives. For the first objective,
in (2), to reduce the computational cost of the bootstrap method used to compute the bootstrap bounding σ, we replaced the
two-step bounding parameters with the direct bounding parameters. If we observe that the two-step and the direct bounding
parameters are close, we are motivated to apply this simplification to the bootstrap bounding parameters. For our plot, this result
corresponds to the blue and red dots being close to each other. For the second objective, suppose the two-step and the direct
bounding parameters are close to the bootstrap bounding parameters. We can use the two-step bounding parameter to capture
the inherent variation of the bounding parameters explored using the bootstrap bounding parameters for the data set. We are
motivated to apply this substitution due to the high computation cost of the bootstrap bounding method. If such a substitution is
justified, we can capture the bounding parameter’s inherent variability without wasting additional computational power for the
given data. For the third objective, we observe how the bounding parameters vary with different observable condition values,
as described in section III. Suppose the bounding parameter values are close to each other for different observable condition
values. In that case, we can conclude that the parameters are ”stable” for the given data and can use the computed values to infer
the bounding parameter for data yet to be collected. Finally, we can explore how lowering the fault definition threshold changes
the bounding behavior. In (2), we saw that the bounding parameters became more stable after lowering the threshold.

We take the Galileo user projected error from 2018 to 2022. The data is taken every 5 minutes. We define the faulted data as
values larger than σURA × 4.17 and σURA × 2 to explore the effect of fault definition. In this case, as applied in (2), we plot
the bounding parameters against different observable condition values.

We first compute the bounding parameters against different time periods. The time period window is taken to be 1 year, and we
slide this window by every 6 months. The result is shown in Figure 1

Here, we plot the three sets of bounding parameters as introduced in (2) and the introduction section. The blue dots are the
direct bounding σs computed using the designated 1 year of data. The red dots are the two-step bounding σs computed using
the designated 1 year of data. The green dots are the bootstrap bounding σs computed using the statistics formulated in section
II.

For this study, we set the bias values to be the same for better σ comparisons. We observe that all three bounding methods
produce similar σ values. This result justifies the bootstrap simplification for the given data set. It implies that it might be
possible to use the two-step bounding method to capture the inherent variability in the bounding parameters. Furthermore, we
observe that σ values decrease with time, except for 2019. The bounding parameter variation with different observable condition
values becomes less obvious after lowering the threshold. In addition, all the bounding parameters are below the normalization
with small bias values.

We then explore the variation with different satellite vehicle numbers (SVN). The results are plotted in figure 2

As we can observe from the plot, the bounding parameters are close. All the parameters are below the normalization. The newer



(a) nominal error bounding parameters σURA × 4.17 (b) nominal error bounding parameters σURA × 2

Figure 1: Bounding parameter results for direct, two-step, and bootstrap bounding processes varying in time. The blue dots are the direct
bounding σs computed using the designated 1 year of data. The red dots are the two-step bounding σs computed using the designated 1 year
of data, and the green dots are the bootstrap bounding σs computed using the abovementioned method. The black circles are the biases. Since
we set them to be the same for the three bounding methods, they overlap.

(a) nominal error bounding parameters σURA × 4.17 (b) nominal error bounding parameters σURA × 2

Figure 2: Bounding parameter results for direct and two-step bonding processes varying in SVN. The blue dots are the direct bounding σs
computed using the designated 1 year of data. The red dots are the two-step bounding σs computed using the designated 1 year of data. The
black circles are the biases. Since we set them to be the same for two bounding methods, they overlap.

satellites have lower σ values compared to older satellites. After lowering the threshold, the σ values become more stable. All
the parameters are below normalization, and the bias values are small. We now move on to the analysis for approximated CNAV.



2. Approximated CNAV
To approximate the CNAV bounding parameters, we take the LNAV message data used in (2) for GPS from 2008 to 2022,
taken every 15 minutes, and lower the σURA values. Specifically, we select the LNAV clock and ephemeris errors with
σURA = 2.4meters and normalize them by lower σURA. We first explore the appropriate σURA values that are reasonable for
our study by computing the bounding parameters for all the given data after changing the σURA. This analysis uses the nominal
error defined as the error value less than 4.42×σURA.In figure 3. we plot the bounding parameter values against different σURA

normalizations. Here we ignored the bootstrap analysis and plotted the direct and the two-step bounding parameters. As we can

Figure 3: nominal error bounding parameters for different σURAvalues

observe from the plot, the bounding exceeds the normalization for σURA values lower than 1. We, therefore, pick values to be 2
and 1.5 meters. However, as our result is a conservative approximation of the true CNAV error, this plot does not indicate that
for true CNAV error, the σURA can only go to 1.5 meters. One should refrain from drawing direct conclusions regarding how
low the CNAV error’s σURA can go based on this study.

We now compute the bounding parameter values for each observable condition value. Since the computation is carried out by
finding the smallest bounding bias that works for all the users and then finding the σ that works for all the users for that bias
value, we need to guarantee that each user, for the given observable condition, can provide enough data to generate a statistically
significant result. For our case, we discard the UPE value corresponding to a specific user and specific observable condition if
the amount of data is less than 10000 data points, which is approximately 3 months’ worth of data. For these plots, we focus
on four potential findings. First, we explore the differences between bounding parameters generated from different bounding
algorithms, namely the two-step and the direct bounding algorithms. Second, we explore how bounding parameters vary with
different observable condition values. Third, we examine how lowering the σURA impacts the bounding parameters. Fourth, we
examine if the bias values are small. Finally, we determine whether any of the bounding parameters exceed the normalization.

We first plot results varying time period for σURA of 2 and 1.5 meters in figure 4. The time window is three years and is slid
every 1 year.

Here we can see that the two-step and the direct bounding σs have negligible differences for a given time window. The σ
values have a decreasing trend and were only larger from 2019 to 2022. In addition, we observe that lowering the σURA

values, although ”inflates” the data, also stabilizes the data as we observe less variation in the σ values among the different time
windows. After inflating the data, applying the same threshold allows the algorithm to filter out more data, thus, stabilizing
the bounding parameters. One can also examine this effect by looking at the threshold value. We can consider the error values
prior to normalization. We have threshold = 4.42× σURA.As we lower the σURA value, the threshold value is also lowered,
causing more data to be eliminated. As a direct result of the data elimination, the bounding parameter values become ”uniform”
or stable. Another observation we can make is that all the bounding parameters are below the normalization, and the bias values
are small.

Moving onto the analysis for different SVNs. We plot the result in figure 5



(a) nominal error bounding parameters σURA = 2meters (b) nominal error bounding parameters σURA = 1.5meters

Figure 4: Normalized GPS bounding parameters vary by time from 2008 to 2022 with time window of 3 years and slide every 1 year plotted
for different σURA values

Here the two-step and the direct bounding σs difference are small for a given SVN. The σ values do not have a general trend,
with several exceeding the normalization. The effect of lowering the σURA value is not obvious. For σURA = 2meters, SVN
26,35,38,39,40,and 73 exceed the normalization. For σURA = 1.5m, SVN 24,26,27,30,35,36,38,39,40,52, and 61 exceed the
normalization. In addition, the bias values are relatively large for SVN 24, 25, 27, 35, 47, 57, 52, and 61. SVN 24, 25, 27,52,
and 61 have biased UPE data. Their mean is larger than the others. SVN 35, 47, and 57 have asymmetric distributions, which
cause the bounding biass to be larger. In addition, some of the SVNs with smaller numbers suffer from the lack of data due
to retirement. Moving onto the satellite block variation. In figure 6, we plot the bounding parameter values against different
satellite blocks.



(a) nominal error bounding parameters σURA = 2meters (b) nominal error bounding parameters σURA = 1.5meters

Figure 5: Normalized Approximated CNAV bounding parameters vary by SVN from 2008 to 2022 plotted for different σURA values

Here the two-step and the direct bounding σs difference are small for a given block. The σ values tend to decrease for
newer satellite blocks. The bounding parameters are more stable for σURA = 1.5m. No block exceeds the normalization for
σURA = 2m. For σURA = 1.5m, block IIA barely exceeds the normalization. In addition, the bias values are small for all
blocks.

We also compute the bounding parameter values against different ages of data or times since the last upload (TSLU) for 2013
to 2022. The results are plotted in Figure 7 The two-step and the direct bounding σs difference are small for a given age of



(a) nominal error bounding parameters σURA = 2meters (b) nominal error bounding parameters σURA = 1.5meters

Figure 6: Normalized Approximated CNAV bounding parameters vary by satellite blocks from 2008 to 2022 plotted for different σURA

values

(a) nominal error bounding parameters σURA = 2meters (b) nominal error bounding parameters σURA = 1.5meters

Figure 7: Normalized Approximated CNAV bounding parameters vary by TSLU from 2013 to 2022 plotted for different σURA values

data. There is no apparent trend for how the bounding parameters vary with the age of the data. Lowering the σURA stabilizes
the parameters. No block exceeds the normalization for σURA = 2m. For σURA = 1.5m, block IIA barely exceeds the
normalization. In addition, the bias values are small for all ages of data. Our plot shows safe support even after lowering the
σURA values.

V. CONCLUSION
In this study, we evaluate Galileo’s satellite clock and ephemeris error bounding parameter behavior and approximate CNAV
error data by lowering the σURA values. We examine how the bounding parameters change with different observable condition
values. For Galileo, we find that the normalized nominal errors are bounded by Gaussian distribution with mean below 1 and
standard deviation of 0.04. We showed that different bounding algorithms produce similar bounding parameter values for given
observable condition values. This result implies we can use the two-step bounding algorithm, which is computationally cheap to
capture the inherent variability of the bounding parameters. We also find that newer satellites tend to generate smaller bounding
σ, and the bounding parameters become more stable after eliminating the near-fault data points. Finally, all the bounding



parameters are below the normalization with small bias values. For our CNAV approximation, we find that the normalized
nominal errors are bounded by Gaussian distribution with mean below 1 and standard deviation of 0.04. After lowering the
σURA values to 2 and 1.5 meters for LNAV error data, we see that lowering the σURA stabilizes the bounding parameters. Most
of the bias values are small with a few SVN exceptions, and most of the bounding parameters are below the normalization.
These results provide valuable insights for the satellite error integrity analysis for ARAIM applications.
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