
Authenticating Aviation Augmentation System
Broadcasts

Sherman C. Lo, Stanford University

Per K. Enge, Stanford University

BIOGRAPHY

Sherman C. Lo is currently a senior research engineer at
the Stanford University Global Positioning System (GPS)
Laboratory. He is the Associate Investigator for the
Stanford University efforts on the Department of
Transportation's technical evaluation of alternate
navigation.

Per Enge is a professor in the Department of Aeronautics
and Astronautics at Stanford University. He is the
director of the Stanford GPS Laboratory and the Center
for Position, Navigation and Time.

INTRODUCTION

An important function of augmentation systems for
Global Navigation Satellite Systems (GNSS) is providing
information need to guarantee the integrity of GNSS
derived position, navigation and time (PNT) outputs.
This mission is the primary purpose of spaced based and
ground based augmentation system - SBAS and GBAS,
respectively. These systems are designed to serve
aviation navigation and landing by providing information
needed to assure safe use of GNSS. Thus, information
integrity is fundamental to these augmentation systems.
One component of information integrity is the ability to
authenticate the source of the data. While this assurance
is currently not built into these systems, it may be
possible to overlay authentication capability.

Traditional data authentication techniques can be used to
provide source assurance. However, augmentation
systems have requirements that differ from the channels
for which these techniques were designed. In particular,
the data is more time sensitive and the bandwidth is much
more limited. Additionally, user and system equipment
are designed for decades of service with little to no
upgrades. As a result, aviation seeks data authentication
that is 1) fast, 2) robust to message loss, 3) not resource
intensive 4) self contained and 5) robust to future attacks.
Traditional data authentication techniques must be

adapted to achieve these targets with limited bandwidth
and limited two way communications.

Meeting these desired qualities may be difficult given
design constraints imposed by low bandwidth, avionics,
and airspace infrastructure. However, the characteristics
of augmentation systems and its operations may also aid
the design. These attributes limit the types of attacks that
are feasible against the system as well as provide means
to cross check information.

The paper starts by examining the reasons for and
desirable features of authentication on aviation
augmentation systems. Next, it considers basic
cryptography and traditional data authentication
techniques suitable for the aviation broadcast
environment. Protocols based on asymmetric and
symmetric key are discussed. Additionally, key strength
and related issues are looked at. It then examines the
important consideration of key distribution as this may be
a major hurdle to adoption. This paper presents a key
distribution protocol that utilizes the operation of the
aircraft and air traffic to aid in key verification. The last
section of the paper presents some case study designs for
SBAS and GBAS. These designs are not meant to be
proposal but rather to give some idea about feasibility and
data requirement.

MOTIVATION & GOALS

Communication navigation and surveillance (CNS) in
civil aviation is moving towards predominantly digital
data centric architectures. Aviation augmentation systems
such as SBAS and GBAS are tasked with providing
navigation integrity. It follows that data integrity, perhaps
in the form of authentication, is a useful and logical
development for these systems. In fact, data or source
authentication was proposed when the SBAS concept was
being developed.

Data authentication of augmentation systems is a useful
first case study for developing and implementing
enhanced information security for the national airspace
(NAS). Assessing and developing security for these

systems can provide useful insights, understanding and
familiarity. At the same time, it is a closed system with a
limited scope in terms of problems and possible attacks.
With augmentation systems, the goal is solely data
authentication rather than more complicated tasks such as
location authentication. Security in other systems may
rely on multiple systems or systems beyond the control of
aviation. Additionally, the characteristics and operations
of augmentation system limit the scope of possible
attacks.

AUTHENTICATION ON AUGMENTATION
SYSTEMS

Providing data authentication for augmentation system is
a timely concept. A form of authentication is being
considered in the GBAS VHF data broadcast (VDB)
proposal for Category II/III approach and landing [1].
The idea, shown in Figure 1 uses human in the loop
verification to ensure that the VDB data time slot used for
receiving GBAS information corresponds with that listed
on the approach plate. The VDB uses one of eight
available time slots in a frame as seen in Figure 2, leaving
the rest potentially unused. A spoofer could broadcast on
an unused slot. As broadcast informs the avionics which
slot to receive, a receiving a spoofed broadcast will cause
the avionics lock on to an incorrect slot and continue
using its transmissions. The proposal thus prevents this
deliberate deception of the GBAS avionics. While the
proposal addresses a specific data spoofing vulnerability,
it does not prevent other means of data spoofing such as
overpowering or disabling and replacing the legitimate
VDB broadcast. Cryptographic data authentication
provides a more general method that can prevent this
form of attack.

Figure 1. Proposed Authentication for CAT II/III
GBAS [1]

Source or data authentication on SBAS was studied as the
system was being conceptualized. One objection is it
takes a significant amount of data that it would require.
Another is the infrastructure needs for authentication.

The purpose of this paper is to re-examine these areas and
determine how to ameliorate these objections.

SBAS does ensure data accuracy against errors (not
spoofing) through parity check and error correction.
Additionally, SBAS has a redundancy of sources with a
goal of coverage by at least two geostationary satellites
over its service volume.

Figure 2. LAAS Frame and Data Structure [2]

DESIRABLE QUALITIES

We start by developing an understanding of features that
are desirable for authentication on aviation augmentation
systems. These features are driven by the characteristics
of the systems. First, data on these systems is very time
critical and needs to be used on the order of seconds.
Furthermore, the data channel is generally very bandwidth
constrained. Second, equipment is also limited. User
avionics is not networked and, once installed, is expected
to operate for many years with few major changes.
Additionally, increased complexity can greatly increase
certification costs. Service provider equipment is also
very slow to change. Given the life cycle of aviation
systems and equipment, any system changes typically
needs to be backwards compatible.

Aviation augmentation systems thus seeks data
authentication that is 1) fast, 2) message loss tolerant, 3)
not resource intensive 4) self contained and 5) robust to
attacks 20 or more years in the future. Traditional data
authentication techniques must be adapted to perform to
these specifications under limited bandwidth conditions.

DATA AUTHENTICATION TECHNIQUES

This paper examines basic, traditional cryptographic
techniques for data authentication. Detailed descriptions
are found in security books such as [3][4]. More recently
developed techniques may also prove useful and enhance
performance. However, this is beyond the scope of the
paper.

BASIC CRYPTOGRAPHIC KEY DESIGNS

Cryptographic authentication can be achieved using either
public (asymmetric) or symmetric key. In public key
cryptography, a public and private key pair is used. The
private key is kept by the sender and can be used to
digitally sign a message hash for the purpose of
authentication. The public key is freely available and can
be used to verify the signature and derive the hash. Only
a holder of the private key can produce a valid signature.
The hash then verifies that the message has not been
tampered with. Hence public key can verify the message
and its sender. With symmetric key, the same key is used
by both the sender and the receiver. With specific
protocol designs such as timed efficient stream loss-
tolerant authentication (TESLA), properties similar to
asymmetric authentication can be achieved though with
additional requirements. The advantage in using
symmetric keys is that they are much more data efficient
(at least 2 times but can be much more) and
computationally faster (100 or more times) than
asymmetric protocols. These benefits are particularly
relevant for aviation. Aviation typically has low
bandwidth channels (100s of bps) while its data is highly
time sensitive. A comparison of the required key sizes for
different security levels for symmetric and some forms of
asymmetric keys is given in Table 1.

Symmetric
Key size (bits)

Asymmetric (RSA &
Diffie Hellman) Key
Size (bits)

Asymmetic
(Elliptic Curve)
Key Size (bits)

80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521
Table 1. NIST Recommended Key Sizes (Each row has
roughly the same security level) [5]

TRADITIONAL DATA AUTHENTICATION

Digital signatures and digitally signed hash are public key
based methods for verifying for data authentication. A
generalized concept is shown in Figure 3. The basic idea
is for the sender to use a cryptographic hash function to
take convert the message bits into a fixed length value.
The hash function should have certain properties such as
ease of calculation, one-wayness, and being collision
resistant. One-wayness means that the hash can be
calculated from the message but not vice versa. Collision
resistant means two messages are very unlikely to result
in the same hash. The sender uses their private key to
“sign” or “encrypt” the hash. The receiver uses the public
key to recover the hash and compares it to the hash
generated using the received message. If the two hashes
match, then the message integrity and source is verified.
This is because only the holder of the private key can
generate a signed hash that is decodable into the message

hash using the public key. As only the holder of the
private key can generate the hash, the message content
cannot be repudiated. Use of public key encryption
typically requires a trusted third party or certificate
authority (CA) to provide a certificate attesting to the
authenticity of the public key. Typically, this certificate
contains information to determine authenticity including
the key originator and the signature of the authority. As a
result, it can require tens or hundreds of bytes of data.
Additionally, there should be a means of revoking a key
that has expired or been compromised. The CA often
plays a major part in key revocation.

Figure 3. Authentication using Public Key
Cryptography

Figure 4. Authentication using Symmetric Key
Cryptography

A standard for public key authentication is digital
signature algorithm (DSA) and its extension known as
elliptic curve DSA (ECDSA). ECDSA improves upon
DSA performance by using elliptic curve cryptography
(ECC). ECDSA reduces the data requirement and
improves computational efficiency for a given security
level. The improvement can be seen in Table 1. One
concern with the adoption of elliptic curve based
cryptography is patent issues. However, the use of ECC
for applications such as safety and security of the NAS,

may be covered by the National Security Agency
intellectual property license.

The traditional means of authentication using symmetric
encryption is with message authentication code (MAC) or
keyed hash function. The MAC is a set of data derived
from a message for the purpose of authenticating that
message. Figure 4 shows the basic idea where the source
transmits the message with a MAC generated using a
MAC algorithm, the message and a symmetric key. The
MAC algorithm may be hash based or otherwise. The
recipient verifies the message by performing the same
algorithm with the same key on the received message.
The recipient then compares the resultant MAC with the
received one. Again, this provides simultaneous
verification of the data integrity and source authenticity to
holders to the symmetric key at the time of transmission.
However, this technique suffers from using the same key
for sender and recipient (and thus potential spoofers). So,
unlike a public key, the symmetric key must remain
secret. This is not very suitable in a broadcast
environment when any one can have access to the key.

TESLA

So to use symmetric encryption for authenticating
augmentation systems, one must create asymmetry so that
spoofers cannot generate messages that may be accepted
as valid. TESLA developed for packetized data [6], is
one protocol that has been suggested by numerous parties
for navigation authentication [7][8][9]. Figure 5
illustrates the concept of TESLA. Basically, it works on
the principle of delayed release of the authentication key.
TESLA is set up by having the sender generate a secret
key KN and creating a chain of keys from it using one way
hashes (F) as follows, where KN-n is an intermediate
TESLA key:

 n
N n NK F K 

with Fn() is the operation of the function F, n consecutive
times. The last key in the chain is Ko which we will term
the base TESLA key. This key is distributed via a trusted
and preferably secure means to the user some time prior
to using authentication. The authenticity of Ko needs to
be assured, perhaps with by a CA.

One can think of transmissions are being segmented in
multiple intervals. In each interval n, the message or
messages, Mn, a message authentication code (MAC),

MACn , and a key '
n iK  (valid for a prior interval) are

transmitted. In TESLA, the MAC is generated from the
message(s) and a secret key. One means is to use a keyed
hash MAC (HMAC) where a key and a hash function are
used to generate the MAC. In the figure, the MAC

generation key for interval n is denoted by '
nK . The

MAC generation key '
nK is generated from a one way

hash (F’, a different hash function than F) of the current
intermediate TESLA key Kn. Note that prior to broadcast

of Kn, the both Kn and '
nK are only known to the sender.

Thus, only the sender can generate the MAC. Kn is later
broadcast at time t in a later interval n+i. In the figure, i
=1.

Verification comes in two steps. After receiving Kn, the
receiver can derive the MAC generation

key,  ' '
n nK F K , and verify that the MAC was

generated from the message and the derived MAC
generation key. Assume that the user is loosely
synchronized with maximum error, e and knows the key
transmission schedule. Then messages and MACs (based

on key '
nK) received prior time t-e (as measured by the

user) can only be generated by the authentic sender. Any

message with MAC based on '
nK received afterwards is

considered suspect. The sender will have already started
using the next keys in the chain Kn+j, j > 0 and enabling
the verification continues uninterrupted

Figure 5. TESLA with key released delayed by 1
interval

The step above provides verification that the message was
unaltered and derived from the holder of Kn. The next
step is to validate that the key is from the legitimate
source. In TESLA, the validation is done using the base
TESLA key from our legitimate source, Ko. It can be
verified that both Ko and Kn are derived from KN provide
the following are the same:

   0
n

nF K K

Since we know Ko is from the trusted source, it follows
that Kn is from the legitimate source. Ko thus is used to tie
our the key used for generating the MACs to the trusted
source. Given it creation, it cannot be used to generate
those keys but can be used to verify them. As long as the
provenance of Ko is good, the whole chain can be verified.
The secure distribution requirement is more reasonable

because, unlike the previous keys, base TESLA key does
not need to be updated as frequently.

However, the standard implementation of TESLA may
not be for a low bandwidth channel such as SBAS. First,
we need to solve the key distribution issue for the base
key. Second, we need to be bandwidth efficient.

KEY DISTRIBUTION

Cryptography based data authentication will require key
distribution. For signed hash, the public key needs to be
provided and its source guaranteed. This typically
requires some sort of certification or public key
infrastructure (PKI). For the avionics, the key may be
loaded and validated prior to installation via a network
connection or preloaded when built. This is necessary as
the receiver may never be networked once it has been
installed in an aircraft. However, this does not
accommodate key revocation or the need to change
public/private keys. For TESLA, a new base TESLA key
needs to be provided on a regular basis as a result and its
provenance too needs to be assured.

Key management issues such distribution and revocation
will be discussed a later section.

MODIFYING TESLA KEY USE

Incorporating TESLA into a constrained data channel
such as SBAS may necessitate modifying the algorithm to
reduce its bandwidth requirements. We propose
modifying the TESLA algorithm whereby hashed keys
are sent less frequently then MAC. That is, we hash
multiple messages with the same key, extending the use
of the key. This is usually not recommended as increases
vulnerability. However, given the short amount of time
and limited number of messages that the key will be used,
the choice seems acceptable. The SBAS case study will
illustrate an implementation of this concept.

REASONABLE THREATS & ATTACKS

In addressing data security for aviation augmentation
system, it is important to understand what the
vulnerabilities are and which we are addressing. In this
paper, the primary threat of concern is on-air spoofing
from remote spoofers. Other threats can and should be
managed by other means. Data security issues related to
the upload and broadcast of message within the
augmentation system are matters of physical security and
beyond our scope. Similarly, security against onboard
local spoofing and injection spoofing/simulation should
also be solved through physical security. The former,
termed a “limpet spoofer” by Scott, is a device is placed
aboard the vehicle of interest to broadcast signals that
only affect that vehicle. The later is the introduction of an

injected signal into the RF input of a receiver, thus
bypassing the antenna.

The cryptographic strength of the authentication depends
on the type of attack that can be made on it. Data
authentication systems in cryptography have to be robust
against a variety of different attacks. A basic attack is the
brute force attack whereby the attacker tries to determine
the authentication key by trying all possibilities. More
sophisticated attacks are possible. In understanding the
authentication strength needed, we need to be able to
determine both the attacks that can be made and how long
it would take an attacker to defeat the authentication such
that they can generate messages that will be accepted by
the user.

Start by examining the possible attacks. This is where the
simplicity of the augmentation system works in our favor.
First, these are broadcast systems whose inputs are not
influenced by forces outside the system (besides GNSS
measurements). This means an attacker, unless there is an
insider, cannot perform a chosen message attack where
they get to ask the system to send some number of
selected messages to be authenticated. Second, the
collision attacks where the attacker only has to find
different messages with the same hash are not useful.
This is because the attacker does not have the key used to
generate the hash and thus cannot create their own
messages. Instead, they must listen to the broadcast for
messages. For an 80 bit hash, one needs to get 240
messages (due to the “birthday problem” [4]) to expect
find a repeated hash. This is reasonably trivial if the
attacker can generate the message but if the attacker has
to listen to SBAS or GBAS, assuming one message hash a
second, they would have to listen for 35000 years.

Another factor in our favor is that not all possible
messages are valid or useful for spoofing. A limited
number of messages are valid because the internal data
need to be consistent with possible message types, cyclic
redundancy code (CRC), etc.

Time to break depends on the algorithm used and several
other factors. As an illustrative example, we examine
HMAC as they are employed for TESLA. In HMAC, a
key (K), the desired message (M) and a cryptographic
hash function (F) are used to generate the MAC [10].

 ',MAC F M K

The strength of the MAC depends on both the hash
function and the key size. Common MAC functions used
and their output hash lengths are seen in Table 2. Some
of these hash functions have known vulnerabilities which
weaken them to certain attacks. However, these
vulnerabilities are not necessarily applicable when using
them for HMAC. Bellare, et. al. states that key used

should be at about the length of the hash output with
longer keys not being significantly more secure and
shorter keys being less secure [10]. Additionally, the full
output may not be necessary though it is suggested that
one should not use less than half of the output bits.

The attacker will find it useful to attack one of two
mechanisms. First, it can try to determine Kn before it is
revealed so that fraudulent messages can be made. To do
this, it knows the previous Kn-i, (i <= n), the hash
functions F, F’, and messages with MAC generated

from  '
n nK F K . Being able to determine Kn allows

the spoofer to transmit false messages until the true Kn is
revealed. As it is expected that a new Kn is used every 20
to 60 seconds, this only provides a short window of time
to break the key and spoof. The second, more valuable
attack is to try to determine KN given same knowledge
above. As KN is used to generate the entire chain of keys,
it is more valuable and has a longer utility (N times that of
each key in the sequence). Hence, the key length is
driven by the security requirements and life time of KN.

Hash Function Output Length (bits)
MD4 128
MD5 128
SHA1 160
SHA2 (SHA-256/224) 256/224
Table 2. Common cryptographic hash functions and
bits required

Given an attack, we can estimate how long it will take an
attacker with to discover the key. The results are seen in
Table 3 assuming brute force attack. The time to break
values and equipment assumptions are based on [3]. [3]
gives the time to break for $1 M and $1 B of hardware (in
1995). Assuming the “Moore’s Law” rule of thumb
whereby transistors on an average integrated circuit (the
inverse of computation cost) doubles every 18 months,
this is roughly equivalent to $1000 and $1 M of 2010
hardware, respectively.

Symmetric key length
(bits)

Time to break ($1
K in 2010)

Time to break ($1
M in 2010)

80 7000 years 7 years
128 1018 years 1015 years
160 4x1027 years 4x1024 years
192 2x1037.3 years 2x1034 years
256 3x1056 years 3x1053 years
Table 3. Hash Effective Strength in bits and time to
break for Brute Force Attacks using on $1 K and $1 M
Hardware in 2010 [3]

Given the long life cycle of avionics and aviation systems,
understanding how time to break will be affected in the
future is a critical element. In designing the
authentication scheme, we must choose one that has
adequate strength towards the end of life which may be

20-30 years in the future. One can estimate the effect of
gradual increases in computational capability. Again, we
can use “Moore’s Law” to approximate the effect. Table
4 shows the result for a doubling every 18 months.
Without other vulnerabilities, somewhere between 80 to
128 bits is adequate. However, vulnerabilities which can
significantly reduce the strength of the hash algorithms
have been found. Though some of these vulnerabilities
may not be applicable to HMAC, one should be mindful
of the possibility of future discoveries and plan
accordingly. Hence, having the equivalent of a symmetric
key of at least 160 bits seems prudent.

Years from
2010

80 bit 128 bit 160 bit

0 7 years 1015 years 4x1024 years
12 10 days 4x1012 years 1.6x1022 years
24 1 hour 1.6x1010 years 6.3x1019 years
36 13 seconds 6.3x107 years 2.5x1017 years
Table 4. Table of symmetric key strength vs. time to
break with $1 M equipment & Moore’s Law

KEY DISTRIBUTION

Key distribution is a significant issue for augmentation
systems because of several constraints. One constraint is
the limited bandwidth. Public keys require more
bandwidth to distribute. While shorter keys may be used,
these need to be updated more frequently as they can be
cracked in less time. Bandwidth constraints affect
symmetric key based algorithms such as TESLA as well.
In TESLA, the time to authenticate depends on the time
between the broadcast a message and the current TESLA
key (i.e., Kn) needed to validate the MAC of the message.
The more frequent broadcast of the intermediate TESLA
key requires more bandwidth. The bandwidth thus
constrains our ability to distribute key of the desired
strength in an acceptable time frame.

Another constraint is that there is no aircraft to ground
network that allows for verification the distributed key.
This constrains the ability of the aircraft to securely verify
received keys with a trusted certificate authority.

We offer a couple of key update strategies address these
limitations that leverage some of the characteristics of
aviation One way is to use FAA chart update schedule
(56 days) and distribute keys along with these
publications. For commercial aviation, this may be
reasonable as these electronic updates of charts are
routine. It overcomes bandwidth issues and some trust
issues since you have to trust the source of your aviation
charts. However, it is vulnerable to social engineering
and insider attacks. Another drawback is that there is no
high integrity mechanism to directly input such
information to the navigation system.

Another idea is to use the notion that most flights traverse
a large geographic distance which will be discussed in
greater detail next. This concept to conduct key
distribution and revocation builds trust by getting the
same key from multiple geographic locations.

GEOGRAPHY AIDED KEY DISTRIBUTION &
VALIDATION

Aircraft operations can be used to aid in robust key
distribution. Aircraft, by nature of their operations,
traverse over large distances. As such it can gather keys
from geographically distributed sources and these keys
from these various sources can be used to verify
authenticity. The cross check can just verifying that all
keys received are the same. For example, the aircraft
gathers and stores a key from its initial airport and
perhaps any receivable source en route. As it approaches
its destination airport or any location where it may need to
authenticated, it gathers the key at that location. It then
checks the currently received key against its stored keys.
If the key is the same, then it is likely to be valid and can
be used. Figure 6 sketches how the technique operates.
This method can be applied to both GBAS and SBAS. It
helps build trust in the received key and it can also be
used to distribute new keys (thus revoking older ones).
However, it does not solve the bandwidth issue.

Figure 6. Aiding Key Distribution and Validation with
Geographically Distributed Sources.

The proposed method has a couple of benefits. First, a
spoofing any given user, requires spoofing the multiple
geographically distributed locations that the user will
gather keys from. This increases the cost and difficulty
for the spoofer. An additional challenge for the spoofer
is the fact that there will likely be other aircraft that have
the true key since they come from locations that were not
spoofed. These aircraft will be able to detect the presence
of the spoofed key. This verification is applicable even if
the spoofing target is at its initial airport. As a result, a
spoofing must cover the entire coverage area of the
augmentation system to have undetected spoofing.

For a SBAS system, such a technique makes sense as only
a geostationary satellite can match its geographic range.
However, as SBAS is used for almost all phases of
aircraft operation, the method may not provide adequate
confidence to keys for taxing and take off operations.
This is because the aircraft will only have received keys
in one region. This depends on the level of authentication
security desired for such these operations as there are
other factors (such as other aircraft which do have keys
from multiple regions which can warn of local spoofing).

For GBAS, the strength or confidence that we can have
increases as more airports adopt GBAS and the protocol.
The more geographically separated locations that the key
can be received, the more difficult it will be to spoof.
However, there are two concerns. The first is a problem
with initial implementation when there are only a few
installed GBAS. Cross verification is not very effective if
there are a few geographically distributed sources. The
second is how to securely send the same keys to all
GBAS stations which will be addressed next.

KEY DISTRIBUTION WITHIN AUGMENTATION
SYSTEM

Another facet is distributing the proper keys to
augmentation system segment responsible for broadcast.
If the broadcast is distributed and not networked as may
be the case with GBAS, one way would be to store the
key and the mechanism to generate future keys within
each ground station. Each GBAS station needs knows the
current key as well as how to generate future keys and
when they are to be applied for the lifetime of the
installed station. Physical security such as having a
tamper proof component or secure facility would be
needed to prevent theft of the key. Key changes and
revocation may be achieved with manual updates. For
SBAS, the keys can resided within the master station as it
is already responsible for generating and queuing
messages.

CASE STUDIES

In the case studies, we examine how one may feasibly
overlay an authentication capability on each augmentation
system. As mentioned previously, key considerations to
the design are bandwidth use, time to authenticate, key
distribution/revocation and key length. The first two are
related. Since the overhead needed to support
authentication is the same regardless of the message size,
more bandwidth available allows for more frequent
authentication. In the studies, we will constrain the
amount of bandwidth available as the designs should not
significantly impact the distribution of integrity data.
Given time to first fix for SBAS of two minutes, the time
to authenticate should be no more than roughly 60
seconds. Even lower values is desirable as the typical

time to alerts these SBAS and GBAS are even lower (2-
10 seconds).

The last two considerations revolve around the key. The
consideration is the need for key distribution and
revocation. In these design studies, we will presume key
distribution and verification can be achieved with
minimal to no communications to a certificate authority.
This may be achieved using means such as the proposed
means to distribution using geographically diverse source
to verify distributed keys. A mechanism also may also be
needed for the revocation of broadcast keys. One means
may be to provide keys (updated infrequently and perhaps
offline) solely for the purpose of revoking a broadcast
key. The second issue is key length. A key strengths
equivalent to a symmetric key of 160 bits or more is
likely necessary to support the system for roughly the
next 20 years.

Again these designs are not meant to be suggestion but
rather a first cut at seeing the reasonableness and cost of
adding an authentication capability. The authentication is
meant to be legacy compatible in the sense that current
users can ignore the addition information.

SBAS

The addition of authentication on SBAS is challenging
due to the bandwidth issues. First, much of its bandwidth
is already used. While it may be possible to utilize the
unused bits in some common messages, this amount of
data is inadequate given the limited overall bandwidth.
Likely, a design will have to be allocated some dedicated
messages and bandwidth. The SBAS message format is
seen in Figure 7. A maximum of 212 bits per message
(with one message per second) is available. In the SBAS
case studies, we limit the available bandwidth for
authentication to roughly 10% of the total (6 messages per
minute). Also, a key update (public key or base
symmetric key) is performed at least every five minutes.
These assumptions will help us quantify the trade offs in
adding authentication.

Figure 7. SBAS Message structure [11]

For a case study using public key, we examine
implementing DSA or ECDSA. For either algorithm,
domain parameters need to be shared between the user
and the sender. These parameters can form part of the
public key. These parameters require on the order of
kilobits of data but they should not need to be changed.
So ideally, they can be shared with the user a priori or
through some other channel (i.e. regular update of

electronic charts). This distribution needs be assured of
validity.

However, a public key still needs to be distributed
securely to the user. As seen in Table 5, the length of the
public key for DSA is recommended to be 2048 (use up to
2030) or 3072 bits (use beyond 2030). For ECDSA, the
key length is 224 and 256 bits for the two time frames,
respectively. Given this, ECDSA is preferred. It will
allow SBAS to send the public keys every few minutes
using two messages and signatures using three messages.
Given the bandwidth assumptions, this allows for a
signature every 30 seconds with the public key broadcast
every 5 minutes (10.7% or 32 out of 300 messages). If
one minute time to authentication is acceptable, only
5.7% (17 out of 300 messages) of the SBAS bandwidth is
required.

Time
frame

DSA public
key length
(min, bits)

ECDSA public
key length
(min, bits)

Signature length
(bits)

To 2030 2048 224 448 (2 at 224 bits)
Beyond
2030

3072 256 512 (2 at 256 bits)

Table 5. Recommended Key and Signature Length for
DSA and ECDSA [12]

For the case study using symmetric key based
authentication, we use the TESLA protocol. There are
three things that need to be distributed to support TESLA:
1) Current base TESLA key, 2) MAC, 3) current TESLA
key.

The key length should be sized such that the time to break
the TESLA private key is less its exposure time. From
Table 3, a key length of 160 bits or more seems
acceptable. As a result, the key can fit in one message.
The MAC itself can be the same length as the key though
it can be truncated to half the key length. Truncating
MACs to 106 bits, allows two MACs to be transmitted in
one WAAS message. This helps maximize bandwidth
usage. It can also mitigate the impact of message loss as
each MAC is generated from a distinct subset of the
messages. Figure 8 shows an implementation where a
message can contain one or two MACs which are
generated from the same MAC generation key, K’si. If the
message contains two MACs, one MAC is derived from
the messages from the half of the time period and the
other is derived from the messages from the later half.

An implementation may be achieved as follows. Send
MAC message every m messages (for example, m = 6)
with each message containing two MACs. This allows
for better tolerance to lost messages. For m = 6, the user
only needs 3 consecutive to authenticate rather than 6.
The MAC update rate drives the bandwidth and the
number of consecutive messages required for
authentication. The current TESLA key every k MAC so

that it is used to generate MACs for several message sets.
This results in a time to authentication of (m+1)*k+1
seconds, provided the current TESLA key is sent
immediately after the last MAC using the key. In Figure
8, the time to authentication is 2*(m+1)*k+1 as the key
release is delayed by one until after the MACs generated
using the next key are transmitted.

If the goal is roughly 20 second authentication, then k = 3
for m = 6. For 60 seconds, k = 9. Ten percent bandwidth
usage is achievable with approximately 30 second time to
authentication. This is done if MACs are sent every 15
messages and the current TESLA key is sent every two
MAC message. It also means that time should be
independently synchronized within 1 second since the key
is sent in the message immediately after the MAC
message. So there is only a one second gap between the
release of the key and the final MAC generated using the
key. Note that additional bandwidth is needed to send the
base key.

The authentication may be strengthened by using old but
active data (OBAD) or other previously verified
information to aid in verification.

Figure 8. Example sequence for proposed scheme

From the study, it seems both ECDSA and TESLA offer
viable with similar data rates as long as a certificate is not
needed or requires minimal data. Some means of
verifying the authenticity of the public key in ECDSA or
the base TESLA key in TESLA is needed. The certificate
is an important consideration if validating keys using
geographically diverse sources is not adequate.

GBAS

Implementation of the authentication ideas on GBAS is
simpler as it is less data constrained. The basic data
components of the GBAS message are seen in Table 6.
Two options are possible. First, unused bits from existing
messages can be used. For example, GBAS Message
Type 1 which provides corrections for up to 18
corrections (11 bytes each) has 7 byte unused. Roughly
seven bytes every half second is not a lot of information
but it is more than available in the SBAS case study (10%
bandwidth equals 21.2 bits/second). As such the
implementations discussed in SBAS can be used in GBAS
provided the message structure is defined

The second option is to dedicate one message type and
one message every n seconds for authentication. For
ECDSA, a message can contain the signature, the public

key and perhaps the certificate. Sending the message
every five seconds uses ten percent of the bandwidth and
allows for five second time to authentication. For
TESLA, a message can easily contain multiple MACs as
well as the base and a near current TESLA keys. Sending
a message every five seconds will allow for a ten second
time to authentication. The increased delay is because the
key generating the MAC should be sent in a later
message.

Message Block Segment Bits Bytes
Message Block Header 48 6
Message Up to 1696 Up to 212
Message CRC 32 4
Total 1776 (max) 222 (max)
Table 6. Format of GBAS Message Block [2]

CONCLUSIONS

This paper studies the feasibility and means by which
authentication can be overlaid upon the existing SBAS
and GBAS designs. It considers how to achieve the
authentication that is compatible with the current
augmentation system and its users. It also considers how
to perform the security necessary to support
authentication within the current NAS framework. One
important issue is secure key distribution and the paper
presents some options designed to be reasonable for
aviation infrastructure and operations. One means is a
key distribution protocol that utilizes the operation of the
aircraft and air traffic to aid in key verification. This
provides to distribute keys and provide some ability to
validate them without significant additions to the NAS.
Another issue is bandwidth. The paper presents ways of
modifying protocols such as TESLA to reduce bandwidth
use while maintaining an acceptable level of security.

The paper uses the current L1 SBAS and GBAS as case
studies. The paper presents reasonable method to provide
authentication on the current SBAS using about ten
percent of bandwidth. The method is compatible to
current SBAS user equipment in that they will not be
adversely affected. GBAS can employ similar means. As
it has greater data bandwidth, a more critical issue for
GBAS is key distribution to the ground stations.

DISCLAIMERS

The views expressed herein are those of the primary
author and are not to be construed as official or reflecting
the views of the U.S. Coast Guard, Federal Aviation
Administration, Department of Transportation or
Department of Homeland Security.

ACKNOWLEDGMENTS

The authors would like to thank Leo Eldredge and Mitch
Narins of the FAA Navigation Services Directorate for
supporting this work.

REFERENCES

[1] Murphy, T., Harris, M., Burns, J., “Modifications to
GBAS for VDB Authentication”, Navigation Systems
Panel, CAT III Subgroup Meeting, July 8-10, 2008.

[2] RTCA SC-159, “GNSS Based Precision Approach
Local Area Augmentation System (LAAS) – Signal-in-
Space Interface Control Document (ICD)” ‘DO-246D
December 2008.

[3] Schneier, Bruce, “Applied cryptography: protocols,
algorithms, and source code in C ,” 2nd ed., Wiley, New
York, 1996.

[4] Katz, Jonathan, "Introduction to Modern
Cryptography: Principles and Protocols,” Chapman &
Hall/CRC, Boca Raton, FL, 2006.

[5] National Security Agency, Central Security Service,
“The Case for Elliptic Curve Cryptography”
http://www.nsa.gov/business/programs/elliptic_curve.sht
ml, January 2009

[6] Perrig, A. Canetti, R., Tygar, J.D., and Song, D.,
“The TESLA Broadcast Authentication Protocol,”
CryptoBytes, 5:2, Summer/Fall 2002, pp. 2-13

[7] Wullems, C., Pozzobon, O., Kubik, K., “Signal
Authentication and Integrity Schemes for Next
Generation Global Navigation Satellite Systems,”
Proceedings of the European Navigation Conference
GNSS, Munich, July 2005

[8] Kuhn, Markus G., “An Asymmetric Security
Mechanism for Navigation Signals”, 6th Information
Hiding Workshop, 23-25 May 2004, Toronto, Canada,
Proceedings, LNCS 3200, pp. 239–252, Springer-Verlag.

[9] Qiu, Di, Lo, Sherman, Enge, Per, “Geoencryption
using Loran”, Proceedings of the Institute of Navigation
National Technical Meeting, San Diego, CA, January
2007

[10] Bellare, M., Canetti, R., and Krawczyk, H. “Keying
Hash Functions for Message Authentication,” Crypto 96
Proceedings, Lecture Notes in Computer Science, Vol.
1109, Spring Verlag, 1996 citation

[11] RTCA SC-159, Minimum Operational Performance
Standard for Global Positioning System/Wide Area
Augmentation System Airborne Equipment, RTCA/DO-
229D, December 2006.

[12] National Institute of Standards and Technology,
“Recommendation for Key Management – Part 1L
General (Revised),” Special Publication 800-57, March
2007
.

