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INTRODUCTION 
 
An important function of augmentation systems for 
Global Navigation Satellite Systems (GNSS) is providing 
information need to guarantee the integrity of GNSS 
derived position, navigation and time (PNT) outputs.  
This mission is the primary purpose of spaced based and 
ground based augmentation system - SBAS and GBAS, 
respectively.  These systems are designed to serve 
aviation navigation and landing by providing information 
needed to assure safe use of GNSS.  Thus, information 
integrity is fundamental to these augmentation systems.  
One component of information integrity is the ability to 
authenticate the source of the data.  While this assurance 
is currently not built into these systems, it may be 
possible to overlay authentication capability.    
 
Traditional data authentication techniques can be used to 
provide source assurance.  However, augmentation 
systems have requirements that differ from the channels 
for which these techniques were designed.  In particular, 
the data is more time sensitive and the bandwidth is much 
more limited.  Additionally, user and system equipment 
are designed for decades of service with little to no 
upgrades.  As a result, aviation seeks data authentication 
that is 1) fast, 2) robust to message loss, 3) not resource 
intensive 4) self contained and 5) robust to future attacks.  
Traditional data authentication techniques must be 

adapted to achieve these targets with limited bandwidth 
and limited two way communications. 
 
Meeting these desired qualities may be difficult given 
design constraints imposed by low bandwidth, avionics, 
and airspace infrastructure.  However, the characteristics 
of augmentation systems and its operations may also aid 
the design.  These attributes limit the types of attacks that 
are feasible against the system as well as provide means 
to cross check information.  
 
The paper starts by examining the reasons for and 
desirable features of authentication on aviation 
augmentation systems.  Next, it considers basic 
cryptography and traditional data authentication 
techniques suitable for the aviation broadcast 
environment.  Protocols based on asymmetric and 
symmetric key are discussed.  Additionally, key strength 
and related issues are looked at.  It then examines the 
important consideration of key distribution as this may be 
a major hurdle to adoption.  This paper presents a key 
distribution protocol that utilizes the operation of the 
aircraft and air traffic to aid in key verification.  The last 
section of the paper presents some case study designs for 
SBAS and GBAS. These designs are not meant to be 
proposal but rather to give some idea about feasibility and 
data requirement. 
 
MOTIVATION & GOALS 
 
Communication navigation and surveillance (CNS) in 
civil aviation is moving towards predominantly digital 
data centric architectures.  Aviation augmentation systems 
such as SBAS and GBAS are tasked with providing 
navigation integrity.  It follows that data integrity, perhaps 
in the form of authentication, is a useful and logical 
development for these systems.  In fact, data or source 
authentication was proposed when the SBAS concept was 
being developed.   
 
Data authentication of augmentation systems is a useful 
first case study for developing and implementing 
enhanced information security for the national airspace 
(NAS).  Assessing and developing security for these 



systems can provide useful insights, understanding and 
familiarity.  At the same time, it is a closed system with a 
limited scope in terms of problems and possible attacks.  
With augmentation systems, the goal is solely data 
authentication rather than more complicated tasks such as 
location authentication.  Security in other systems may 
rely on multiple systems or systems beyond the control of 
aviation.  Additionally, the characteristics and operations 
of augmentation system limit the scope of possible 
attacks.   
 
AUTHENTICATION ON AUGMENTATION 
SYSTEMS 
 
Providing data authentication for augmentation system is 
a timely concept.  A form of authentication is being 
considered in the GBAS VHF data broadcast (VDB) 
proposal for Category II/III approach and landing [1].  
The idea, shown in Figure 1 uses human in the loop 
verification to ensure that the VDB data time slot used for 
receiving GBAS information corresponds with that listed 
on the approach plate.  The VDB uses one of eight 
available time slots in a frame as seen in Figure 2, leaving 
the rest potentially unused.  A spoofer could broadcast on 
an unused slot.  As broadcast informs the avionics which 
slot to receive, a receiving a spoofed broadcast will cause 
the avionics lock on to an incorrect slot and continue 
using its transmissions.  The proposal thus prevents this 
deliberate deception of the GBAS avionics.  While the 
proposal addresses a specific data spoofing vulnerability, 
it does not prevent other means of data spoofing such as 
overpowering or disabling and replacing the legitimate 
VDB broadcast.  Cryptographic data authentication 
provides a more general method that can prevent this 
form of attack. 
 

 
Figure 1.  Proposed Authentication for CAT II/III 
GBAS [1] 
 
Source or data authentication on SBAS was studied as the 
system was being conceptualized.  One objection is it 
takes a significant amount of data that it would require. 
Another is the infrastructure needs for authentication.  

The purpose of this paper is to re-examine these areas and 
determine how to ameliorate these objections.   
 
SBAS does ensure data accuracy against errors (not 
spoofing) through parity check and error correction.  
Additionally, SBAS has a redundancy of sources with a 
goal of coverage by at least two geostationary satellites 
over its service volume. 
 

 
Figure 2.  LAAS Frame and Data Structure [2] 
 
DESIRABLE QUALITIES 
 
We start by developing an understanding of features that 
are desirable for authentication on aviation augmentation 
systems.  These features are driven by the characteristics 
of the systems.   First, data on these systems is very time 
critical and needs to be used on the order of seconds.  
Furthermore, the data channel is generally very bandwidth 
constrained.  Second, equipment is also limited.  User 
avionics is not networked and, once installed, is expected 
to operate for many years with few major changes.  
Additionally, increased complexity can greatly increase 
certification costs.  Service provider equipment is also 
very slow to change.  Given the life cycle of aviation 
systems and equipment, any system changes typically 
needs to be backwards compatible. 
 
Aviation augmentation systems thus seeks data 
authentication that is 1) fast, 2) message loss tolerant, 3) 
not resource intensive 4) self contained and 5) robust to 
attacks 20 or more years in the future.  Traditional data 
authentication techniques must be adapted to perform to 
these specifications under limited bandwidth conditions. 
 
 
DATA AUTHENTICATION TECHNIQUES 
 
This paper examines basic, traditional cryptographic 
techniques for data authentication.  Detailed descriptions 
are found in security books such as [3][4].  More recently 
developed techniques may also prove useful and enhance 
performance.  However, this is beyond the scope of the 
paper. 
 



BASIC CRYPTOGRAPHIC KEY DESIGNS 
 
Cryptographic authentication can be achieved using either 
public (asymmetric) or symmetric key.  In public key 
cryptography, a public and private key pair is used.  The 
private key is kept by the sender and can be used to 
digitally sign a message hash for the purpose of 
authentication.  The public key is freely available and can 
be used to verify the signature and derive the hash.  Only 
a holder of the private key can produce a valid signature.  
The hash then verifies that the message has not been 
tampered with.  Hence public key can verify the message 
and its sender.  With symmetric key, the same key is used 
by both the sender and the receiver.  With specific 
protocol designs such as timed efficient stream loss-
tolerant authentication (TESLA), properties similar to 
asymmetric authentication can be achieved though with 
additional requirements.  The advantage in using 
symmetric keys is that they are much more data efficient 
(at least 2 times but can be much more) and 
computationally faster (100 or more times) than 
asymmetric protocols.  These benefits are particularly 
relevant for aviation.  Aviation typically has low 
bandwidth channels (100s of bps) while its data is highly 
time sensitive.  A comparison of the required key sizes for 
different security levels for symmetric and some forms of 
asymmetric keys is given in Table 1. 
 
Symmetric  
Key size (bits) 

Asymmetric (RSA & 
Diffie Hellman) Key 
Size (bits) 

Asymmetic 
(Elliptic Curve) 
Key Size (bits) 

80 1024 160 
112 2048 224 
128 3072 256 
192 7680 384 
256 15360 521 
Table 1. NIST Recommended Key Sizes (Each row has 
roughly the same security level) [5]  
 
TRADITIONAL DATA AUTHENTICATION 
 
Digital signatures and digitally signed hash are public key 
based methods for verifying for data authentication.  A 
generalized concept is shown in Figure 3.  The basic idea 
is for the sender to use a cryptographic hash function to 
take convert the message bits into a fixed length value.  
The hash function should have certain properties such as 
ease of calculation, one-wayness, and being collision 
resistant.  One-wayness means that the hash can be 
calculated from the message but not vice versa.  Collision 
resistant means two messages are very unlikely to result 
in the same hash.  The sender uses their private key to 
“sign” or “encrypt” the hash.  The receiver uses the public 
key to recover the hash and compares it to the hash 
generated using the received message.  If the two hashes 
match, then the message integrity and source is verified.  
This is because only the holder of the private key can 
generate a signed hash that is decodable into the message 

hash using the public key.  As only the holder of the 
private key can generate the hash, the message content 
cannot be repudiated.  Use of public key encryption 
typically requires a trusted third party or certificate 
authority (CA) to provide a certificate attesting to the 
authenticity of the public key.  Typically, this certificate 
contains information to determine authenticity including 
the key originator and the signature of the authority.  As a 
result, it can require tens or hundreds of bytes of data.  
Additionally, there should be a means of revoking a key 
that has expired or been compromised.  The CA often 
plays a major part in key revocation. 
 

 
Figure 3.  Authentication using Public Key 
Cryptography 
 

 
Figure 4.  Authentication using Symmetric Key 
Cryptography 
 
A standard for public key authentication is digital 
signature algorithm (DSA) and its extension known as 
elliptic curve DSA (ECDSA).  ECDSA improves upon 
DSA performance by using elliptic curve cryptography 
(ECC).  ECDSA reduces the data requirement and 
improves computational efficiency for a given security 
level.  The improvement can be seen in Table 1.  One 
concern with the adoption of elliptic curve based 
cryptography is patent issues.  However, the use of ECC 
for applications such as safety and security of the NAS, 



may be covered by the National Security Agency 
intellectual property license. 
 
The traditional means of authentication using symmetric 
encryption is with message authentication code (MAC) or 
keyed hash function.  The MAC is a set of data derived 
from a message for the purpose of authenticating that 
message.  Figure 4 shows the basic idea where the source 
transmits the message with a MAC generated using a 
MAC algorithm, the message and a symmetric key.  The 
MAC algorithm may be hash based or otherwise.  The 
recipient verifies the message by performing the same 
algorithm with the same key on the received message.  
The recipient then compares the resultant MAC with the 
received one.  Again, this provides simultaneous 
verification of the data integrity and source authenticity to 
holders to the symmetric key at the time of transmission.  
However, this technique suffers from using the same key 
for sender and recipient (and thus potential spoofers).  So, 
unlike a public key, the symmetric key must remain 
secret. This is not very suitable in a broadcast 
environment when any one can have access to the key. 
 
TESLA 
 
So to use symmetric encryption for authenticating 
augmentation systems, one must create asymmetry so that 
spoofers cannot generate messages that may be accepted 
as valid.  TESLA developed for packetized data [6], is 
one protocol that has been suggested by numerous parties 
for navigation authentication [7][8][9].  Figure 5 
illustrates the concept of TESLA.  Basically, it works on 
the principle of delayed release of the authentication key.  
TESLA is set up by having the sender generate a secret 
key KN and creating a chain of keys from it using one way 
hashes (F) as follows, where KN-n is an intermediate 
TESLA key: 
 

 n
N n NK F K   

 
with Fn() is the operation of the function F, n consecutive 
times. The last key in the chain is Ko which we will term 
the base TESLA key.  This key is distributed via a trusted 
and preferably secure means to the user some time prior 
to using authentication.  The authenticity of Ko needs to 
be assured, perhaps with by a CA. 
 
One can think of transmissions are being segmented in 
multiple intervals.  In each interval n, the message or 
messages, Mn, a message authentication code (MAC), 

MACn , and a key '
n iK  (valid for a prior interval) are 

transmitted.  In TESLA, the MAC is generated from the 
message(s) and a secret key.  One means is to use a keyed 
hash MAC (HMAC) where a key and a hash function are 
used to generate the MAC.  In the figure, the MAC 

generation key for interval n is denoted by '
nK .  The 

MAC generation key '
nK  is generated from a one way 

hash (F’, a different hash function than F) of the current 
intermediate TESLA key Kn.  Note that prior to broadcast 

of Kn, the both Kn and '
nK are only known to the sender.  

Thus, only the sender can generate the MAC.  Kn is later 
broadcast at time t in a later interval n+i.  In the figure, i 
=1.   
 
Verification comes in two steps.  After receiving Kn, the 
receiver can derive the MAC generation 

key,  ' '
n nK F K , and verify that the MAC was 

generated from the message and the derived MAC 
generation key.  Assume that the user is loosely 
synchronized with maximum error, e and knows the key 
transmission schedule.  Then messages and MACs (based 

on key '
nK ) received prior time t-e (as measured by the 

user) can only be generated by the authentic sender. Any 

message with MAC based on '
nK received afterwards is 

considered suspect.  The sender will have already started 
using the next keys in the chain Kn+j, j > 0 and enabling 
the verification continues uninterrupted 
 

 
Figure 5.  TESLA with key released delayed by 1 
interval 
 
The step above provides verification that the message was 
unaltered and derived from the holder of Kn.  The next 
step is to validate that the key is from the legitimate 
source.  In TESLA, the validation is done using the base 
TESLA key from our legitimate source, Ko.  It can be 
verified that both Ko and Kn are derived from KN provide 
the following are the same: 
 

   0
n

nF K K  

 
Since we know Ko is from the trusted source, it follows 
that Kn is from the legitimate source.  Ko thus is used to tie 
our the key used for generating the MACs to the trusted 
source.  Given it creation, it cannot be used to generate 
those keys but can be used to verify them.  As long as the 
provenance of Ko is good, the whole chain can be verified.  
The secure distribution requirement is more reasonable 



because, unlike the previous keys, base TESLA key does 
not need to be updated as frequently. 
 
However, the standard implementation of TESLA may 
not be for a low bandwidth channel such as SBAS.  First, 
we need to solve the key distribution issue for the base 
key.  Second, we need to be bandwidth efficient.  
 
KEY DISTRIBUTION 
 
Cryptography based data authentication will require key 
distribution.  For signed hash, the public key needs to be 
provided and its source guaranteed.  This typically 
requires some sort of certification or public key 
infrastructure (PKI).  For the avionics, the key may be 
loaded and validated prior to installation via a network 
connection or preloaded when built.  This is necessary as 
the receiver may never be networked once it has been 
installed in an aircraft.  However, this does not 
accommodate key revocation or the need to change 
public/private keys.  For TESLA, a new base TESLA key 
needs to be provided on a regular basis as a result and its 
provenance too needs to be assured. 
 
Key management issues such distribution and revocation 
will be discussed a later section. 
 
MODIFYING TESLA KEY USE 
 
Incorporating TESLA into a constrained data channel 
such as SBAS may necessitate modifying the algorithm to 
reduce its bandwidth requirements.  We propose 
modifying the TESLA algorithm whereby hashed keys 
are sent less frequently then MAC.  That is, we hash 
multiple messages with the same key, extending the use 
of the key.  This is usually not recommended as increases 
vulnerability.  However, given the short amount of time 
and limited number of messages that the key will be used, 
the choice seems acceptable.  The SBAS case study will 
illustrate an implementation of this concept. 
 
REASONABLE THREATS & ATTACKS 
 
In addressing data security for aviation augmentation 
system, it is important to understand what the 
vulnerabilities are and which we are addressing.  In this 
paper, the primary threat of concern is on-air spoofing 
from remote spoofers.  Other threats can and should be 
managed by other means.  Data security issues related to 
the upload and broadcast of message within the 
augmentation system are matters of physical security and 
beyond our scope. Similarly, security against onboard 
local spoofing and injection spoofing/simulation should 
also be solved through physical security.  The former, 
termed a “limpet spoofer” by Scott, is a device is placed 
aboard the vehicle of interest to broadcast signals that 
only affect that vehicle.  The later is the introduction of an 

injected signal into the RF input of a receiver, thus 
bypassing the antenna. 
 
The cryptographic strength of the authentication depends 
on the type of attack that can be made on it.  Data 
authentication systems in cryptography have to be robust 
against a variety of different attacks.  A basic attack is the 
brute force attack whereby the attacker tries to determine 
the authentication key by trying all possibilities.  More 
sophisticated attacks are possible.  In understanding the 
authentication strength needed, we need to be able to 
determine both the attacks that can be made and how long 
it would take an attacker to defeat the authentication such 
that they can generate messages that will be accepted by 
the user. 
 
Start by examining the possible attacks.  This is where the 
simplicity of the augmentation system works in our favor.  
First, these are broadcast systems whose inputs are not 
influenced by forces outside the system (besides GNSS 
measurements).  This means an attacker, unless there is an 
insider, cannot perform a chosen message attack where 
they get to ask the system to send some number of 
selected messages to be authenticated.  Second, the 
collision attacks where the attacker only has to find 
different messages with the same hash are not useful.  
This is because the attacker does not have the key used to 
generate the hash and thus cannot create their own 
messages.  Instead, they must listen to the broadcast for 
messages.  For an 80 bit hash, one needs to get 240 
messages (due to the “birthday problem” [4]) to expect 
find a repeated hash.  This is reasonably trivial if the 
attacker can generate the message but if the attacker has 
to listen to SBAS or GBAS, assuming one message hash a 
second, they would have to listen for 35000 years. 
 
Another factor in our favor is that not all possible 
messages are valid or useful for spoofing.  A limited 
number of messages are valid because the internal data 
need to be consistent with possible message types, cyclic 
redundancy code (CRC), etc.   
 
Time to break depends on the algorithm used and several 
other factors.  As an illustrative example, we examine 
HMAC as they are employed for TESLA.  In HMAC, a 
key (K), the desired message (M) and a cryptographic 
hash function (F) are used to generate the MAC [10].   
 

 ',MAC F M K  

 
The strength of the MAC depends on both the hash 
function and the key size.  Common MAC functions used 
and their output hash lengths are seen in Table 2.  Some 
of these hash functions have known vulnerabilities which 
weaken them to certain attacks.  However, these 
vulnerabilities are not necessarily applicable when using 
them for HMAC.  Bellare, et. al. states that key used 



should be at about the length of the hash output with 
longer keys not being significantly more secure and 
shorter keys being less secure [10].  Additionally, the full 
output may not be necessary though it is suggested that 
one should not use less than half of the output bits. 
 
The attacker will find it useful to attack one of two 
mechanisms.  First, it can try to determine Kn before it is 
revealed so that fraudulent messages can be made. To do 
this, it knows the previous Kn-i, (i <= n), the hash 
functions F, F’, and messages with MAC generated 

from  '
n nK F K .  Being able to determine Kn allows 

the spoofer to transmit false messages until the true Kn  is 
revealed.  As it is expected that a new Kn is used every 20 
to 60 seconds, this only provides a short window of time 
to break the key and spoof.  The second, more valuable 
attack is to try to determine KN given same knowledge 
above.  As KN is used to generate the entire chain of keys, 
it is more valuable and has a longer utility (N times that of 
each key in the sequence).  Hence, the key length is 
driven by the security requirements and life time of KN.   
 
Hash Function Output Length (bits) 
MD4 128 
MD5 128 
SHA1 160 
SHA2 (SHA-256/224) 256/224 
Table 2. Common cryptographic hash functions and 
bits required 
 
Given an attack, we can estimate how long it will take an 
attacker with to discover the key.  The results are seen in 
Table 3 assuming brute force attack.  The time to break 
values and equipment assumptions are based on [3].  [3] 
gives the time to break for $1 M and $1 B of hardware (in 
1995).  Assuming the “Moore’s Law” rule of thumb 
whereby transistors on an average integrated circuit (the 
inverse of computation cost) doubles every 18 months, 
this is roughly equivalent to $1000 and $1 M of 2010 
hardware, respectively. 
 
Symmetric key length 
(bits) 

Time to break ($1 
K in 2010) 

Time to break ($1 
M in 2010) 

80 7000 years 7 years 
128 1018 years 1015 years 
160 4x1027 years 4x1024 years 
192 2x1037.3 years 2x1034 years 
256 3x1056 years 3x1053 years 
Table 3. Hash Effective Strength in bits and time to 
break for Brute Force Attacks using on $1 K and $1 M 
Hardware in 2010 [3] 
 
Given the long life cycle of avionics and aviation systems, 
understanding how time to break will be affected in the 
future is a critical element.  In designing the 
authentication scheme, we must choose one that has 
adequate strength towards the end of life which may be 

20-30 years in the future.  One can estimate the effect of 
gradual increases in computational capability.  Again, we 
can use “Moore’s Law” to approximate the effect.  Table 
4 shows the result for a doubling every 18 months.  
Without other vulnerabilities, somewhere between 80 to 
128 bits is adequate.  However, vulnerabilities which can 
significantly reduce the strength of the hash algorithms 
have been found.  Though some of these vulnerabilities 
may not be applicable to HMAC, one should be mindful 
of the possibility of future discoveries and plan 
accordingly.  Hence, having the equivalent of a symmetric 
key of at least 160 bits seems prudent. 
 
Years from  
2010 

80 bit 128 bit 160 bit 

0 7 years 1015 years 4x1024 years 
12 10 days 4x1012 years 1.6x1022 years 
24 1 hour 1.6x1010 years 6.3x1019 years 
36 13 seconds 6.3x107 years 2.5x1017 years 
Table 4. Table of symmetric key strength vs. time to 
break with $1 M equipment & Moore’s Law 
 
KEY DISTRIBUTION 
 
Key distribution is a significant issue for augmentation 
systems because of several constraints.  One constraint is 
the limited bandwidth.  Public keys require more 
bandwidth to distribute.  While shorter keys may be used, 
these need to be updated more frequently as they can be 
cracked in less time.  Bandwidth constraints affect 
symmetric key based algorithms such as TESLA as well.  
In TESLA, the time to authenticate depends on the time 
between the broadcast a message and the current TESLA 
key (i.e., Kn) needed to validate the MAC of the message.  
The more frequent broadcast of the intermediate TESLA 
key requires more bandwidth.  The bandwidth thus 
constrains our ability to distribute key of the desired 
strength in an acceptable time frame.   
 
Another constraint is that there is no aircraft to ground 
network that allows for verification the distributed key.  
This constrains the ability of the aircraft to securely verify 
received keys with a trusted certificate authority. 
 
We offer a couple of key update strategies address these 
limitations that leverage some of the characteristics of 
aviation   One way is to use FAA chart update schedule 
(56 days) and distribute keys along with these 
publications.  For commercial aviation, this may be 
reasonable as these electronic updates of charts are 
routine.  It overcomes bandwidth issues and some trust 
issues since you have to trust the source of your aviation 
charts.  However, it is vulnerable to social engineering 
and insider attacks.  Another drawback is that there is no 
high integrity mechanism to directly input such 
information to the navigation system.  
 



Another idea is to use the notion that most flights traverse 
a large geographic distance which will be discussed in 
greater detail next.  This concept to conduct key 
distribution and revocation builds trust by getting the 
same key from multiple geographic locations. 
 
GEOGRAPHY AIDED KEY DISTRIBUTION & 
VALIDATION  
 
Aircraft operations can be used to aid in robust key 
distribution.  Aircraft, by nature of their operations, 
traverse over large distances.  As such it can gather keys 
from geographically distributed sources and these keys 
from these various sources can be used to verify 
authenticity.  The cross check can just verifying that all 
keys received are the same. For example, the aircraft 
gathers and stores a key from its initial airport and 
perhaps any receivable source en route.  As it approaches 
its destination airport or any location where it may need to 
authenticated, it gathers the key at that location.  It then 
checks the currently received key against its stored keys.  
If the key is the same, then it is likely to be valid and can 
be used.  Figure 6 sketches how the technique operates.  
This method can be applied to both GBAS and SBAS.  It 
helps build trust in the received key and it can also be 
used to distribute new keys (thus revoking older ones).  
However, it does not solve the bandwidth issue. 
 

 
Figure 6. Aiding Key Distribution and Validation with 
Geographically Distributed Sources. 
 
The proposed method has a couple of benefits.  First, a 
spoofing any given user, requires spoofing the multiple 
geographically distributed locations that the user will 
gather keys from.  This increases the cost and difficulty 
for the spoofer.   An additional challenge for the spoofer 
is the fact that there will likely be other aircraft that have 
the true key since they come from locations that were not 
spoofed.  These aircraft will be able to detect the presence 
of the spoofed key.  This verification is applicable even if 
the spoofing target is at its initial airport.  As a result, a 
spoofing must cover the entire coverage area of the 
augmentation system to have undetected spoofing. 
 

For a SBAS system, such a technique makes sense as only 
a geostationary satellite can match its geographic range.  
However, as SBAS is used for almost all phases of 
aircraft operation, the method may not provide adequate 
confidence to keys for taxing and take off operations.  
This is because the aircraft will only have received keys 
in one region.  This depends on the level of authentication 
security desired for such these operations as there are 
other factors (such as other aircraft which do have keys 
from multiple regions which can warn of local spoofing). 
 
For GBAS, the strength or confidence that we can have 
increases as more airports adopt GBAS and the protocol.   
The more geographically separated locations that the key 
can be received, the more difficult it will be to spoof.  
However, there are two concerns.  The first is a problem 
with initial implementation when there are only a few 
installed GBAS.  Cross verification is not very effective if 
there are a few geographically distributed sources.  The 
second is how to securely send the same keys to all 
GBAS stations which will be addressed next. 
 
KEY DISTRIBUTION WITHIN AUGMENTATION 
SYSTEM 
 
Another facet is distributing the proper keys to 
augmentation system segment responsible for broadcast.  
If the broadcast is distributed and not networked as may 
be the case with GBAS, one way would be to store the 
key and the mechanism to generate future keys within 
each ground station.  Each GBAS station needs knows the 
current key as well as how to generate future keys and 
when they are to be applied for the lifetime of the 
installed station.  Physical security such as having a 
tamper proof component or secure facility would be 
needed to prevent theft of the key.  Key changes and 
revocation may be achieved with manual updates.  For 
SBAS, the keys can resided within the master station as it 
is already responsible for generating and queuing 
messages. 
 
CASE STUDIES 
 
In the case studies, we examine how one may feasibly 
overlay an authentication capability on each augmentation 
system.  As mentioned previously, key considerations to 
the design are bandwidth use, time to authenticate, key 
distribution/revocation and key length.  The first two are 
related. Since the overhead needed to support 
authentication is the same regardless of the message size, 
more bandwidth available allows for more frequent 
authentication.  In the studies, we will constrain the 
amount of bandwidth available as the designs should not 
significantly impact the distribution of integrity data.  
Given time to first fix for SBAS of two minutes, the time 
to authenticate should be no more than roughly 60 
seconds.  Even lower values is desirable as the typical 



time to alerts these SBAS and GBAS are even lower (2-
10 seconds).   
 
The last two considerations revolve around the key.  The 
consideration is the need for key distribution and 
revocation.  In these design studies, we will presume key 
distribution and verification can be achieved with 
minimal to no communications to a certificate authority.  
This may be achieved using means such as the proposed 
means to distribution using geographically diverse source 
to verify distributed keys.  A mechanism also may also be 
needed for the revocation of broadcast keys.   One means 
may be to provide keys (updated infrequently and perhaps 
offline) solely for the purpose of revoking a broadcast 
key.  The second issue is key length.  A key strengths 
equivalent to a symmetric key of 160 bits or more is 
likely necessary to support the system for roughly the 
next 20 years.   
 
Again these designs are not meant to be suggestion but 
rather a first cut at seeing the reasonableness and cost of 
adding an authentication capability.  The authentication is 
meant to be legacy compatible in the sense that current 
users can ignore the addition information. 
 
SBAS 
 
The addition of authentication on SBAS is challenging 
due to the bandwidth issues.  First, much of its bandwidth 
is already used.  While it may be possible to utilize the 
unused bits in some common messages, this amount of 
data is inadequate given the limited overall bandwidth.  
Likely, a design will have to be allocated some dedicated 
messages and bandwidth.   The SBAS message format is 
seen in Figure 7.  A maximum of 212 bits per message 
(with one message per second) is available.  In the SBAS 
case studies, we limit the available bandwidth for 
authentication to roughly 10% of the total (6 messages per 
minute).  Also, a key update (public key or base 
symmetric key) is performed at least every five minutes.  
These assumptions will help us quantify the trade offs in 
adding authentication.   
 

 
Figure 7.  SBAS Message structure [11]  
 
For a case study using public key, we examine 
implementing DSA or ECDSA.  For either algorithm, 
domain parameters need to be shared between the user 
and the sender.  These parameters can form part of the 
public key.   These parameters require on the order of 
kilobits of data but they should not need to be changed.  
So ideally, they can be shared with the user a priori or 
through some other channel (i.e. regular update of 

electronic charts).  This distribution needs be assured of 
validity. 
 
However, a public key still needs to be distributed 
securely to the user.  As seen in Table 5, the length of the 
public key for DSA is recommended to be 2048 (use up to 
2030) or 3072 bits (use beyond 2030).  For ECDSA, the 
key length is 224 and 256 bits for the two time frames, 
respectively.  Given this, ECDSA is preferred.  It will 
allow SBAS to send the public keys every few minutes 
using two messages and signatures using three messages.  
Given the bandwidth assumptions, this allows for a 
signature every 30 seconds with the public key broadcast 
every 5 minutes (10.7% or 32 out of 300 messages).  If 
one minute time to authentication is acceptable, only 
5.7% (17 out of 300 messages) of the SBAS bandwidth is 
required. 
 
Time 
frame 

DSA public 
key length 
(min, bits) 

ECDSA public 
key length 
(min, bits) 

Signature length 
(bits) 

To 2030 2048 224 448 (2 at 224 bits) 
Beyond 
2030 

3072 256 512 (2 at 256 bits) 

Table 5. Recommended Key and Signature Length for 
DSA and ECDSA [12] 
 
For the case study using symmetric key based 
authentication, we use the TESLA protocol.  There are 
three things that need to be distributed to support TESLA:  
1) Current base TESLA key, 2) MAC, 3) current TESLA 
key.    
 
The key length should be sized such that the time to break 
the TESLA private key is less its exposure time.  From 
Table 3, a key length of 160 bits or more seems 
acceptable.  As a result, the key can fit in one message. 
The MAC itself can be the same length as the key though 
it can be truncated to half the key length.  Truncating 
MACs to 106 bits, allows two MACs to be transmitted in 
one WAAS message.  This helps maximize bandwidth 
usage.  It can also mitigate the impact of message loss as 
each MAC is generated from a distinct subset of the 
messages.  Figure 8 shows an implementation where a 
message can contain one or two MACs which are 
generated from the same MAC generation key, K’si.  If the 
message contains two MACs, one MAC is derived from 
the messages from the half of the time period and the 
other is derived from the messages from the later half. 
 
An implementation may be achieved as follows.  Send 
MAC message every m messages (for example, m = 6) 
with each message containing two MACs.  This allows 
for better tolerance to lost messages.   For m = 6, the user 
only needs 3 consecutive to authenticate rather than 6.  
The MAC update rate drives the bandwidth and the 
number of consecutive messages required for 
authentication.  The current TESLA key every k MAC so 



that it is used to generate MACs for several message sets.  
This results in a time to authentication of (m+1)*k+1 
seconds, provided the current TESLA key is sent 
immediately after the last MAC using the key.   In Figure 
8, the time to authentication is 2*(m+1)*k+1 as the key 
release is delayed by one until after the MACs generated 
using the next key are transmitted. 
 
If the goal is roughly 20 second authentication, then k = 3 
for m = 6.  For 60 seconds, k = 9.  Ten percent bandwidth 
usage is achievable with approximately 30 second time to 
authentication.  This is done if MACs are sent every 15 
messages and the current TESLA key is sent every two 
MAC message.  It also means that time should be 
independently synchronized within 1 second since the key 
is sent in the message immediately after the MAC 
message.  So there is only a one second gap between the 
release of the key and the final MAC generated using the 
key.  Note that additional bandwidth is needed to send the 
base key. 
 
The authentication may be strengthened by using old but 
active data (OBAD) or other previously verified 
information to aid in verification.   
 

 
Figure 8.  Example sequence for proposed scheme 
 
From the study, it seems both ECDSA and TESLA offer 
viable with similar data rates as long as a certificate is not 
needed or requires minimal data.  Some means of 
verifying the authenticity of the public key in ECDSA or 
the base TESLA key in TESLA is needed.  The certificate 
is an important consideration if validating keys using 
geographically diverse sources is not adequate.   
 
GBAS 
 
Implementation of the authentication ideas on GBAS is 
simpler as it is less data constrained.  The basic data 
components of the GBAS message are seen in Table 6.  
Two options are possible.  First, unused bits from existing 
messages can be used.  For example, GBAS Message 
Type 1 which provides corrections for up to 18 
corrections (11 bytes each) has 7 byte unused.  Roughly 
seven bytes every half second is not a lot of information 
but it is more than available in the SBAS case study (10% 
bandwidth equals 21.2 bits/second).  As such the 
implementations discussed in SBAS can be used in GBAS 
provided the message structure is defined 
 
The second option is to dedicate one message type and 
one message every n seconds for authentication.  For 
ECDSA, a message can contain the signature, the public 

key and perhaps the certificate.  Sending the message 
every five seconds uses ten percent of the bandwidth and 
allows for five second time to authentication.  For 
TESLA, a message can easily contain multiple MACs as 
well as the base and a near current TESLA keys.  Sending 
a message every five seconds will allow for a ten second 
time to authentication.  The increased delay is because the 
key generating the MAC should be sent in a later 
message.  
 
Message Block Segment Bits Bytes 
Message Block Header 48 6 
Message Up to 1696 Up to 212 
Message CRC 32 4 
Total 1776 (max) 222 (max) 
Table 6. Format of GBAS Message Block [2] 
 
CONCLUSIONS 
 
This paper studies the feasibility and means by which 
authentication can be overlaid upon the existing SBAS 
and GBAS designs.  It considers how to achieve the 
authentication that is compatible with the current 
augmentation system and its users.  It also considers how 
to perform the security necessary to support 
authentication within the current NAS framework.   One 
important issue is secure key distribution and the paper 
presents some options designed to be reasonable for 
aviation infrastructure and operations.  One means is a 
key distribution protocol that utilizes the operation of the 
aircraft and air traffic to aid in key verification.  This 
provides to distribute keys and provide some ability to 
validate them without significant additions to the NAS.  
Another issue is bandwidth.  The paper presents ways of 
modifying protocols such as TESLA to reduce bandwidth 
use while maintaining an acceptable level of security. 
 
The paper uses the current L1 SBAS and GBAS as case 
studies.  The paper presents reasonable method to provide 
authentication on the current SBAS using about ten 
percent of bandwidth.  The method is compatible to 
current SBAS user equipment in that they will not be 
adversely affected.  GBAS can employ similar means.  As 
it has greater data bandwidth, a more critical issue for 
GBAS is key distribution to the ground stations. 
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