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ABSTRACT  
 
For Loran to provide redundancy to GPS for aviation, 
Loran must meet aviation integrity requirements.  The 
integrity under nominal conditions derives from being 
able to bound the horizontal position error via the 
horizontal protection level (HPL).  This is accomplished 
by guaranteeing that the correct Loran cycles are being 
tracked, adequate and complete error bound models are 
used for the HPL, and HPL calculations are performed 
correctly.   
 
The means of providing a guarantee on cycle selection is 
through a calculation of its confidence (“cycle 
confidence”).  The cycle confidence algorithm needs to be 
conservative since it ensures that the measurements used 
by the navigation solution and the HPL is free of cycle 
error.  When available, the algorithm uses redundant 
measurements in a manner similar to GPS receiver 
autonomous integrity measurement (RAIM) algorithms 
where testing using χ2 distributions are conducted.  This 

paper will examine the use of redundant measurements in 
the form of the weighted sum squared error (WSSE) and 
determine when the χ2 assumption is valid.  It will apply 
those results to the Loran cycle confidence algorithm and 
use them to help develop the demonstration of integrity. 
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INTRODUCTION  
 
The demonstration of Loran integrity is essential to 
showing that it can support aviation applications such as 
Required Navigation Performance (RNP) 0.3 non 
precision approach (NPA) [1] and enroute RNP 1.0. A 
key part of the demonstration is the development of a 
Loran cycle selection algorithm that has integrity.  
 
The ability to determine if the correct cycle is selected is 
necessary for meeting integrity.  An incorrect cycle 
selection, should it be used for positioning, results in an 
undetected range error of three kilometer or more.  While 
Loran cycle selection algorithms have been around for 
some time, an algorithm that will serve aviation requires 
an indication of the confidence of the cycle selection.  
Hence, an aviation receiver will have a cycle confidence 
algorithm to quantify the certainty of the cycle selection.  
The selected cycles can only be used provided the 
confidence calculated is of an adequate level.  The current 
level, as determined by the Federal Aviation 
Administration (FAA) Loran evaluation team, is for the 
probability of having an incorrect cycle selection amongst 
all the signals used to be at most 7x10-8 if the cycle 
selection is to be used [1][2].  As the cycle selection 
integrity depends on the cycle confidence calculated, the 
cycle confidence algorithm itself must have integrity.  In 
other words, it must provide a conservative estimate of 
the probability. One goal of the paper is to provide an 
implementation that can guarantee integrity.   
 



 
Peterson et. al. developed a method for determining Loran 
cycle confidence in [3]  That methodology represents the 
starting basis for this paper.  The algorithm of particular 
interest is the determination of cycle confidence when 
redundant measurements are available.  The algorithm is 
based on Receiver Autonomous Integrity Monitoring 
(RAIM) developed for using redundant measurements 
from Global Positioning System (GPS) satellites to 
determine if any unusual biases exist.  It uses the 
weighted sum squared error (WSSE) statistic for the 
determination.  Hence in assessing and developing the 
integrity of the Loran cycle confidence algorithm, we may 
gain more insight on GPS RAIM. 
 
OUTLINE 
 
A means of implementing of the WSSE cycle confidence 
algorithm with integrity will be provided by the paper.  
First, background on residual testing for navigation 
signals and the use of the chi squared (χ2) distribution for 
these test is provided.  This section will also provide a 
derivation of when the WSSE distribution can be 
considered χ2.  The next section examines the Loran cycle 
confidence algorithm and the basic concept of providing 
integrity.  Loran differs from GPS in that nominal biases 
are significant and must be accounted for.  It will use the 
results from the first section to provide an implementation 
that can have demonstratable integrity.  The integrity is 
demonstrated using outlines of proofs (provided in the 
appendix) and arguments supporting the conservatism of 
each algorithm.  The final section will provide some 
simulation results illustrating key points of the derivation 
and algorithm. 
 
Note that this paper will use the term cycle integrity or 
confidence algorithm to denote the method for 
determining the certainty of cycle selection.   
 
BACKGROUND  
 
There has been considerable work done on using residuals 
test for navigation, particularly for use with Global 
Positioning System (GPS) satellite measurements 
[4][5][6].  These methods leverage redundant 
measurement such that the signals are essentially cross 
checked with an aggregate measurement.  Since the 
likelihood of incorrect cycle selection on multiple signals 
is much lower than having one, this check increases our 
confidence of detecting outliers.  Many of these methods, 
such as the sum squared error (SSE) and WSSE, utilize 
the chi square (χ2) distribution to describe the decision 
statistic derived from the residuals.  This section will 
provide some background on the use of residuals for 
navigation error detection, particular for the WSSE.  The 
Loran cycle confidence algorithm is based on the WSSE.  
It will also describe the χ2 distribution.  Finally, it will 

derive the relationship between WSSE and the χ2 
distribution. 
 
CALCULATION THE WSSE FROM RESIDUALS  
 
Statistics such as the SSE and WSSE provide a simple 
scalar metric of the variation of the residual errors.  Start 
with the basic measurement equation where y is our 
pseudorange measurement vector, x is the true position, N 
is the number of measurements, G is the geometry matrix 
and ε is the error vector on the pseudorange 
measurements.  And so we have  
 
y Gx ε= +  

[ ]1
T

Nε ε ε=  
 
Solving for the weighted least squares with weighting 
matrix W1, the estimated position ( x̂ ), estimated 
pseudoranges ( ŷ ) and residual error (‘residuals or ε̂ ) can 
be derived. 
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The WSSE is generated by multiplying the estimated 
residuals by a weighting matrix, W2, as seen in Equation 
(1).   Typically, W2 is equaled to W1 but this need not be 
the case.  From this formulation it can be seen that the 
WSSE is the weighted sum squared of the residual errors 
on each signal is checked against an aggregate of the 
position solution using the entire signal set.  
 

( )2 2ˆ ˆT TWSSE W W I Pε ε ε ε= = −      (1) 
 
The distribution of WSSE depends on the underlying 
errors, ει.  One common, general assumption is that each 

εi is normal with ( ),i i iN bε σ∼   and [ ]1
T

Nb b b=    

[ ]1
T

Nσ σ σ=  
 
For GPS, it is typically assumed that ει are zero mean 
normal random variables.  Under such conditions, Walter 
et. al. stated that the resulting WSSE statistic is a central 
χ2 with N-3 degrees of freedom [6].  Furthermore, if ε are 
normal but not zero mean, the WSSE statistic is often 
assumed to follow a noncentral χ2 distribution with N-3 
degrees of freedom.    However, the result not necessarily 
true. They are only true under specific conditions 



 
CHI SQUARED DISTRIBUTION 
 
The χ2 distribution is important as it provides a tractable 
description of WSSE distribution.  The χ2 distribution is 
formed from the sum of independent identically 
distributed (iid) normal random variables (rv) with 
variance of one.  This is termed a standard normal 
distribution.  If the random variables are zero mean, the 
resulting distribution is central χ2 otherwise the 
distribution is noncentral χ2.  All χ2 distributions are 
characterized by the degree of freedom (dof) which 
represents the number of iid distributions used to form the 
sum.  A central χ2 is characterized only by its dof.  
Because of the nonzero mean, noncentral χ2 distribution 
needs an additional parameter for characterization.  The 
parameter is termed the noncentrality parameter which we 
will designate as ncp in this paper.  One can consider the 
central χ2 as having a ncp of zero.  Figure 1 presents a 
flowchart on how central and noncentral χ2 distributions 
are formed. Provided that the WSSE is χ2 and the biases b 
are known, the noncentrality parameter can be calculated 
as ( )2

Tncp b W I P b= − . 
 

 
Figure 1.  Central and Noncentral χ2 Distribution 
 
Figure 2 shows the probability density function (pdf) of a 
central and noncentral χ2 distribution.  As seen in the 
figure, as the pdf of the distribution shifts to the right (to 
higher values of the statistic) as the ncp increases.  It is 
shown in Appendix B that the cumulative distribution 
function (cdf) of a χ2 distribution is overbounded by the 
cdf of another χ2 distribution provided that 1) the ncp of 
the latter distribution is smaller and 2) they have the same 
degree of freedom.  Mathematically, this means that for 
any given dof, υ, if ncp1 ≤ ncp2 , the following is true: 
 

( ) ( ) ( ) ( )2 2
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≥  

where χ2(a,b) is a χ2 distribution with dof = a & ncp = b. 
Figure 3 illustrates the result.  It presents two χ2 
distributions with the same dof but different ncp.  The cdf 
of the distribution with the smaller ncp is greater than cdf 
of the other distribution.  This result is used later to 
demonstrate the integrity of the Loran cycle confidence 
algorithm.   
 

 
Figure 2. PDF of Central (L) and Noncentral (R) χ2 
Distribution 
 

 
Figure 3. Comparison of the CDF of two noncentral χ2 
with the same degree of freedom 
 
RELATIONSHIP BETWEEN THE WSSE AND CHI 
SQUARED DISTRIBUTION 
 
While it is generally assumed that the WSSE is χ2 
distributed, this is generally not true and only holds under 
specific conditions.  Appendix A provides a proof 
showing that the statement holds if W1=W2=R-1 where R 
is the true covariance matrix for random errors.  In the 
paper, we shall refer to this true covariance matrix simply 
as the covariance matrix while estimates of the truth will 
be preceded by the identifier “estimate”.  There are 
instances where, for W1 ≠ W2, χ2 holds.  But in those cases 
W2 still equals R-1.  For this remainder of the paper, we 
will assume that W=W1=W2.  
 
It is enlightening to examine part of the proof in detail.  If 
ε are distributed as normal random variables and we 



denote s as being a vector of iid standard normal rv, then 
the WSSE can be written as: 
 

TWSSE s As=   

( ) ( )( )( )1 1
2 2
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If W is symmetric (it generally is chosen that way), it 
turns out that A can be written as  
 

T T Ts As s C Cs= Λ  
 
where C is an orthogonal matrix and Λ is a diagonal 
matrix.  Define dim(x) as the number of dimensions of the 
position vector x (i.e. 3 if x = [lat lon time]).  Then Λ has 
at most N-dim(x) non zero eigenvalues, λi.  Since C is 
orthogonal, T Ts C CsΛ  and Ts sΛ  have the same 
distribution.  This implies: 
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and βi depends on A and b. 
 
If W = R-1, then there are exactly N-dim(x) eigenvalues 
identically equaled to 1.  Equation (3) shows that this is 
the case where we have the sum of the squares of N-
dim(x) standard normal distributions, hence the WSSE is 
χ2.  The eigenvalues should not change significantly 
should W be close, but not equaled to R-1.  Deviation from 
this only occurs if we are close to a singularity.  However, 
a difference between R-1 and W also changes the WSSE 
distribution by affecting how the biases interact with the 
random errors.  The insight that we get from this 
derivation is that χ2 is a good approximation for the 
WSSE distribution provided that W is close to R-1 and the 
bias effects are small.   
 
In summary, for WSSE statistic used in cycle confidence 
to be χ2, two conditions must hold.  First, the true residual 
errors must be normally distributed.  Second, the 
weighting matrix used must be the inverse of the true 
error covariance matrix. 
 
APPLICATION OF RESIDUALS TEST TO 
LORAN CYCLE CONFIDENCE 
 
A WSSE based residuals tests was used as the basis of our 
Loran cycle confidence algorithm.  In this section, we 
provide background on the cycle selection process and 
discuss why cycle confidence is necessary.  Then we 
discuss how cycle confidence can be estimated using the 
χ2 distribution.  However, since we do not know all the 
desired parameters, we can only bound the distribution.  
The last section discusses how this bound can be created 

in a way that integrity is guaranteed using only known 
information. 
 
Cycle selection is the process of choosing the same cycle 
on the Loran pulse to track for all signals.  This ensures 
consistency between measurements.  The tracked cycle is 
typically the sixth zero crossing which is the standard 
Loran phase tracking point.  An incorrect cycle selection 
can result in a range error of three kilometers (one Loran 
wavelength or λ) or more and hence it is important that 
one has confidence in our cycle selection.  Figure 4 shows 
a standard Loran pulse and the phase tracking point. 
 
The cycle selection process in Loran typically involves 
examining the envelope of the signal and choosing the 
desired cycle based on the envelope slope or ratio.  The 
determination complicated by the presence of noise on the 
signal and group delay between the envelope and the 
carrier of the signal due to propagation.  The group delay 
results in an effect typically referred to as the envelope to 
cycle difference (ECD).  These measurement 
uncertainties can result in incorrectly cycle identification.  
As such a cycle confidence algorithm is necessary in 
aviation for determining the certainty of the cycles 
selected and whether the selection should be used. 
 

 
Figure 4. Loran Pulse, Envelope, and Tracking Point 
 
Once cycle selection has been conducted, a process is 
necessary to determine if that cycle selection should be 
used.  This can be done in junction with a threshold test as 
discussed in the next section.  However, using a threshold 
is not necessary in Loran cycle confidence. The necessary 
feature is that the overall probability of having cycle error 
on any signal (PWC) is known.  If this probability is lower 
than the maximum allowable probability of 7x10-8, then 
we can use the cycles selected.  Otherwise, the cycle 
selection is rejected.  The probability is calculated by 
summing over all possible cases of having an incorrect 
cycle and not detecting that incorrect cycle (i.e. choosing 
to use the selection even though it is in error).  The 
probability for a given case is given by the probability of 
having the incorrect on the given station(s) i (PICi) and the 
probability of missed detection given that there is an 



incorrect cycle on i (PMDi).  This is expressed in Equation 
(5).  Since the probability of having and not detecting 
three or more cycle errors is low relative to our 7x10-8 
threshold, those cases typically do not need to be 
considered. 
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     (4) 

 
The probability of having a cycle error can be well 
estimated given our signal to noise ratio (SNR) and ECD 
uncertainty.  This value has been theoretically and 
empirically calculated [7].  So the primary unknown for 
calculating the probability of having an incorrect cycle in 
our cycle selection is the conditional probability of missed 
detection.  If we can generate conservative estimates of 
PMD for all cases, then our estimate of PWC will be 
conservative. 
 
DETERMINING PROBABILITY OF 
MISSED DETECTION 
 
The determination of the probability of missed detection 
is complicated by the nominal biases that exist on Loran.  
The assumption that biases are insignificant, often used in 
GPS, is not valid for Loran.  Loran has propagation 
biases, known as additional secondary factors (ASF), that 
cannot be completely estimated.  The unknown portion of 
the bias can be significant – up to a couple hundred 
meters.  Since these biases are not known, the true 
distribution cannot be exactly known.  Additionally, there 
is still random noise and transmitter jitter that corrupt the 
signal.  These factors make the calculation challenging. 
 
Let’s start by examining the ideal case where we have 
knowledge of all bias and random errors.  Assume the 
random errors are normally distributed.  If these are 
known and we use the covariance matrix for weighting, 
we should have χ2 distribution for the WSSE, as 
discussed previously.  The distribution will differ for the 
case of having no fault (no incorrect cycle) and the faulted 
case (incorrect cycle).  Having a different distribution for 
the no fault (H0) and faulted case (H1) leads to the test for 
determining the probability of missed detection of an 
incorrect cycle selection.  The comparison of the two 
distribution is shown in Figure 5 with the no fault 
distribution always lying to the right of the faulted 
distribution.  
 
A threshold is set to decide if an incorrect cycle selection 
exists. If the WSSE is less than the threshold, the user will 
assume that all cycles are correct.  The threshold value is 
a design parameter and trades off between the false alarm 
and missed detection rate.  This can be seen in Figure 5.  
The overlapping regions to the left and right of the 

threshold, shown in red and yellow on the figure, depict 
the probability of miss detection and false alarms, 
respectively.  The probability of false alarm (PFA) is the 
complementary cumulative distribution function (ccdf) of 
the no fault distribution at the threshold.  The probability 
of missed detection, PMD, for the given incorrect cycle 
case is the value of the cdf of the faulted distribution at 
the threshold and is given by Equation (5).  
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Figure 5. Probability Density Function for No Fault 
(Right) and Fault (Left) Distribution 
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However to determine PFA and PMD, the no fault and 
faulted distributions must be known, respectively.  For the 
no fault case, it is assumed that there are only the nominal 
biases due to ASF.  The WSSE, because of the biases, has 
a noncentral χ2 distribution.  In the faulted case, there is at 
least one incorrect cycle selection.  This means there is at 
least one signal with a bias consisting of the nominal 
biases and a bias of one λ.  The WSSE is also noncentral 
χ2 distributed but with a different noncentrality parameter 
than the nominal case.   
 
While there is only one no fault case, there are multiple 
possibilities for a fault to exist.  Hence, if we have ten 
stations and consider all possible cases where there is a 
cycle error on one or two signals, there are 100 possible 
faulted cases to consider.  Hence, it is generally easier to 
set the threshold based on false alarm rate since there is 
only one case to consider.  Since false alarm represents a 
loss of availability, it is set at 99 to 99.9% since that 
represents the minimum availability requirement for 
Loran RNP. 
 
The problem with the scenario is that we do not know the 
true biases.  If we did, they could be eliminated and there 
would be no biases.  Hence, we do not know the true fault 
and no fault distributions.  However, we know the 



nominal extent of the biases (bounds on biases) for Loran.  
The next section will show how it is possible to use this 
information and dof to generate noncentrality parameters 
that will appropriately bound to have a conservative 
estimate of PFA and PMD. 
 
DEMONSTRATING INTEGRITY 
 
The methodology used for demonstrating that the cycle 
selection has integrity is to show that the calculated PMD is 
larger than the true PMD for each possible missed cycle 
situation.  As the true distributions are not known, 
bounding distributions have to be used.  It is assumed that 
the variance of the distribution can be well modeled and 
that only the biases are not well known.  This is a 
reasonable assumption as there are reasonable models for 
the random errors and their distributions.  These errors 
depend primarily on transmitter jitter and SNR.  
 
To get a conservative estimate of PMD, an overbound 
concept similar to that presented in [8] is useful.  For 
integrity, it is only necessary to overbound the lower (left) 
tail of H1 distribution to get a conservative estimate for 
PMD.  If the lower tail of the faulted distribution is 
overbounded, the estimated PMD will be greater than the 
true PMD.  This conservatism helps insure that the integrity 
requirement is met.  
 
As a side note, the estimated H1 distribution only needs to 
overbound the true distribution up to a cumulative 
distribution function (cdf) of 7x10-8 divided by the 
probability of the fault occurring.  This translates to a 
contribution to PWC of 7x10-8.  Since any probability of 
undetected wrong cycle (PWC) greater than 7x10-8 will be 
regarded as unacceptable, regardless of how much it 
exceeds that level, the overbounding of these higher 
probabilities is unnecessary.  This because any 
contribution that exceeds 7x10-8 that does not affect the 
cycle decision. 
 
Overbounding the upper (right) tail of the no fault 
distribution is useful as it results in a higher threshold 
than the one that would be derived from the true no fault 
distribution.  The significance of this is that the higher 
threshold results a true PFA < PFA calculated.   
 
Hence, it is desirable to overbound both the upper (right) 
tail and lower (left) tail of the no fault and faulted 
distribution, respectively.  This is seen in Figure 6.  This 
provides both availability at or higher than specified by 
the PFA and integrity to the estimate of cycle confidence.  
The next two sections discuss how the overbounding can 
be accomplished.  In both these demonstrations, we will 
use the result from Appendix B which states that, given a 
dof, the cdf of a χ2 distribution with a given ncp at any 
value w is always larger than the cdf at w of a χ2 
distribution with a larger ncp. 

 

 
Figure 6. Overbounding to Achieve Conservative 
Estimate of False Alarm & Missed Detection 
 
BOUNDING NO FAULT DISTRIBUTION 
 
Providing a conservative estimate of the probability of 
false alarm means bounding the upper tail of the no fault 
distribution.  One way to achieve this is to have the cdf of 
the estimate be less than or equal to the true cdf.  Using 
Appendix B, this means using an estimated ncp that is 
greater than the true ncp.  The question is how to do this 
without knowledge of the true biases. 
   
While we do not have knowledge of the true biases, we 
have knowledge of the limits of these biases.  Denote th 
bias bound on station i as Bi, where Bi > 0.  So we know 
that the true bias, bi, is in [-Bi, + Bi].  It can be proven that 
there is a choice of signs, si, for each bias bound such that 
a bias bound vector B = [s1B1 … sNBN] will result in a 
ncpHo,estimate = BTW(I-P)B that is greater than or equal to 
ncpHo,true.  The proof is given in Appendix C, lemma 1. 
 
 
BOUNDING FAULTED DISTRIBUTION 
 
We have a similar issue in estimating a conservative value 
of the probability of missed detection.  A conservative 
estimate means bounding the lower tail of the faulted 
distribution.  This can be achieved using an estimated cdf 
that is greater than or equal to the true cdf.  This means 
using an estimated ncp that is less than the true ncp. 
   
Again, the bias limits can be employed to provide the ncp.  
One way is to do a search over the space of all possible 
bias vectors (since we know the limits of each bias) for 
the minimum ncp.  Then that minimum is used as our 
estimate.  This provides the best solution but is 
computationally intensive and receiver manufacturers 
may not want or be able to implement such an algorithm.  



Implementation must be an important consideration.  We 
developed a second method that also uses an appropriate 
choice of signs for the bias bounds.  In lemma 2 from 
Appendix C, it is shown, with an appropriate choice of 
signs for the bias bounds, that we can determine a value 
Δncp < ncpH1,true  - ncpHo,true.  Let Δncp = ncpH1,estimate.  
Δncp is guaranteed to be less than ncpH1,true as ncpH0,true  >  
0.  While the estimate is more conservative estimate than 
that calculated by the first method, it is computationally 
less intensive. 
 
The bottomline conclusion is that integrity is provable 
provided the WSSE is χ2 distributed. 
 
SIMULATION RESULTS 
 
Simulations were conducted to confirm some of our 
insight gained from the WSSE χ2 proof (Appendix A) and 
visualize the effects of deviations from the assumptions of 
the proof.  Test scenarios were created to test the 
distribution of the WSSE statistics under different 
weighting assumptions.  Three different weighting matrix 
cases will be presented in this section.  The first case is 
one where the weighting is the inverse of the covariance 
matrix.  The other two cases use weighting matrices that 
deviate from that weighting.  These cases are important as 
we will generally not know the covariance matrix but 
only have an approximation to it.  The geometry of the 
example scenario used is shown in Figure 7.   
 

 
Figure 7. An Example Simulation Geometry 
 
The first case simulated is the nominal case where the 
weighting matrix is the inverse of the covariance matrix. 
Figure 8 shows comparison of the WSSE distribution for 
the simulation and ideal χ2 distribution with knowledge of 
the true biases.  The top plot shows the no fault case while 
the bottom plot shows the faulted case with the incorrect 
cycle selection occurring on each signal i with a 
probability proportional to the PIC,i.  As expected and 

anticipated by the proof, the simulation and χ2 distribution 
are nearly identical. 
 
In the faulted case, the bias is the nominal bias plus (or 
minus) a three kilometer error due to incorrect cycle 
selection on the faulted signal(s).  The signal on which the 
error occurs depends on the probability of incorrect cycle, 
PIC, on that signal normalized to the total probability of 
incorrect cycle.  The sign on the cycle bias has equal 
probability of being positive or negative. The bottom plot 
on Figure 8 shows comparison of the faulted WSSE from 
simulation with the weighted sum of the various faulted 
χ2 distributions.  The weighting is based on the 
probability of occurrence.  Again the match between 
simulation and theory is nearly perfect. 
 

 
Figure 8. PDF of WSSE Distribution with σ 
Weighting: No Fault (Top), Faulted (Bottom) 
 
In the second case examined, we deviated from the 
weighting matrix used in the first case.  The matrix used 
has diagonal elements based on the standard deviation and 
bias (σ+b) of the measurement errors rather than just the 
standard deviation as is the case with the true covariance 
matrix.  The off diagonal elements are based on the 
covariance of bias term since it is assumed that the 
random terms are independent and there is no cross 
correlation.  This case is examined since it was the 
original implementation used in the original proposal [3] 
and 2004 FAA Technical Evaluation of Loran [1].  It also 
serves as an example of what a large deviation from the 
true covariance matrix may cause.  Figure 9 shows the 
simulation results for the no fault (top) and aggregate 
faulted (bottom) case.  The no fault case is compared with 
a central χ2 and an estimated noncentral χ2 using the true 
biases.  The faulted case is compared to a χ2 from 
assuming the most likely bias occurs and a χ2 using the 
true biases.  As seen from the plots, the WSSE differs 
significantly from the estimates of the resulting 
distribution 



 
Figure 9. PDF of WSSE Distribution with σ+b 
Weighting: No Fault (Top), Faulted (Bottom)  
 
The proof also claims that if we use a weighting that 
deviates from the inverse of the true covariance of the 
random errors only, the WSSE cannot be guaranteed to 
have a χ2 distribution.  This can be seen in the second 
case as well.  Figure 10 shows an attempt to fit of the 
WSSE distribution from the σ+b weighting to a χ2 
distribution.  It is important to note that the χ2 distribution 
seen in the figure cannot be generated even with the 
known true bias and variances.  It was generated by fitting 
to the actual WSSE distribution.  The result is that no 
matter which χ2 distribution is chosen, it will not perfectly 
model when the weighting deviates from the inverse of 
the covariance matrix. 
 

 
Figure 10. PDF σ+b weighting, Nominal, Best Fit  
 
The simulations of the previous section represent the ideal 
case where the random error statistics and bias errors are 
known.  This is generally not the case.  However, exact 
knowledge is not necessary as the goal is to bound the 

distributions such that the true integrity level is greater 
than calculated integrity. 
 
Uncertainty in the knowledge of the true random error 
statistics means that only an estimate for R is available.  
As a result Wσ ≠ R-1 and, thus, the WSSE generally will 
not be χ2.  Generally, the Loran statistics are well known, 
being based on years of measurements.  As argued 
previously, if the estimated covariance is reasonably close 
to truth, the WSSE distribution is well approximated by a 
χ2 distribution provided the biases are too large.  Figure 
11 shows an example of a case where each estimated 
covariance term is in error from the corresponding true 
term by 10%. 
 

 
Figure 11. Simulation of σ weighting with 10% error 
on σ 
 
The figure shows an interesting effect.  The top plot 
shows the case where there is only the nominal bias.  In 
this instance, the distribution of the WSSE does not vary 
from the χ2 distribution generated using the true biases.  
The result is not unexpected as it was anticipated by the 
discussion in a previous section.  In that section, we 
hypothesized that, if our estimated covariance matrix is 
not far from the truth, the eigenvalues of the matrix A (see 
Equation (3)) would be close to one.  If the effects of the 
biases are ignored, the WSSE is the sum of the squares on 
normal random variables with variance equaled to the 
eigenvalues.  Since these are close to one, the result 
should be close the χ2 (where the variances are one). 
 
However, the weighting matrix also affects how the bias 
component interacts with the random components of the 
underlying distributions in generating the WSSE. The 
bottom plot shows the fault case where there are one or 
two biases that are significantly greater than the others.  
In this case, the difference between the used and actual 
weighting matrix causes a difference that is very 
noticeable.  If all the biases are roughly the same 
magnitude (as is the case in the no fault case), the effects 



would average out and the difference would be less 
noticeable.  So while the random component may be 
close, the bias effect is not, especially if there are large 
differences in bias values and they are significant 
compared to the random errors.  This is the case of when 
there is a cycle error.   
 
SIMULATING THE BOUND 
 
The previous section examined the distribution given that 
the biases are known.  It essentially tested our results 
concerning the relationship between the WSSE and χ2 
distribution.  In this section, we examine the bound 
performance using bias bounds. 
 
Figure 12 shows the true and estimated no fault 
distributions for both weightings.  The plots show the 
estimated distribution calculated using the median ncp.  
As mentioned previously, for the weighting based on the 
true covariance matrix, it can be shown that the worst 
case (maximum) ncp for the no fault distribution is 
guaranteed to overbound the true no fault distribution.  In 
this case, as in many cases, the estimated no fault 
distribution using the median ncp overbounds the true no 
fault distribution.  
 

 
Figure 12. Comparison of the PDF of the No Fault 
True & Estimated WSSE Distribution (Estimated 
distrib. chooses median ncp combination of bias), NC 
= Noncentral 
 
Figure 13 shows the true and estimated fault distributions 
for both weightings.  Again, the plots show the estimated 
distributions calculated using the median ncp.  As there 
are multiple faulted cases, the plot is that of the average 
distribution from all faulted cases weighted by fault 
probability of each case.  It can be seen that even with the 
use of a median ncp, the inverse covariance weighting, 
the lower tail is overbounded in this case.  In the case of 
the inverse σ+b weighting, it is difficult to tell whether 

the tail is overbounded.  However, since the faulted 
distribution is reasonably close to that of the no fault 
distribution, the resulting estimated PWC will indicate 
inadequate cycle confidence.  
 

 
Figure 13. Comparison of the PDF of the Faulted True 
& Estimated WSSE Distribution (Estimated 
distributions use ncp from no fault case) 
 
 
CONCLUSIONS 
 
For Loran to serve as a primary navigation aid for 
aviation, it must demonstrate that it can meet the integrity 
requirements of that application.  Cycle determination and 
confidence is critical for integrity as an undetected error 
leads to an undetected range error of three kilometers, 
resulting in a loss of integrity.  This paper demonstrated a 
cycle confidence algorithm that has integrity.  It also 
demonstrated that the algorithm can be implemented.  The 
demonstration of the applicability of the χ2 distribution 
allowed the algorithm to be both mathematically tractable 
(hence implementable) and help with the integrity proof.  
Additionally, it was shown that the bounding distribution 
on the no fault and faulted cases can be generated using a 
priori knowledge (nominal biases limits) and simple 
calculations (assessment over all set of signs on the 
limits).  
 
In solving this issue, we examined the use of the WSSE to 
better understand when χ2 assumption holds.  The paper 
showed that WSSE is χ2 distributed provided weighting is 
the inverse of the true covariance matrix.  The result was 
used to develop a conservative estimate of missed 
detection.  It was also used to provide integrity to the 
cycle confidence calculation in the form of a conservative 
estimate of the probability of having an incorrect cycle.   
 
FUTURE WORK 
 



Additional work still needs to be conducted both for 
availability and implementation.  For example, the 
availability using the algorithm still needs to be explored 
though other work using the algorithm has shown it can 
provide reasonable availability [9].   
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APPENDIX A: PROOF OF CONDITIONS 
WHEN WSSE IS χ2 DISTRIBUTED 
 
Lemma 1: The WSSE is χ2 distributed provided that W = 
R-1.  R is the true covariance matrix of the random (non 
bias) component of the measurement errors, ε.   
  

Proof:  Assume [ ]1
T

Nε ε ε= where ( ),i i iN bε σ∼  
are independent.  Let vector s of N independent normal 
random variables with unit variance can be found such 
that ε and R½s are identically distributed.  This means that 
the two are equivalent with equivalence between two 
statistics meaning they have the same distribution 
 
Note that since R is a covariance matrix, it is symmetric 
and positive definite, it has a square root R½ which is also 
symmetric1.  If ε are zero mean, then s is a vector of N 
independent identically distributed (iid) standard normal 
random variables.  So the WSSE can be rewritten from 
Equation (6) to Equation (7). 
 

( ) ( )( )1
ˆ ˆT T T T T TWSSE W W I P W I G G WG G W Mε ε ε ε ε ε ε ε

−
= = − = − =  (6) 

( )1 1
2 2~

TT T TWSSE M s R MR s s Asε ε= =   (7) 

where ( ) 1T TP G G WG G W
−

= and ( )M W I P= −  
 
It can be shown that A is symmetric if W is symmetric.   
 

( )( )
( )( )

( )( )
( )( )( )

( )( )

1 1
2 2

1 1
2 2

1 1
2 2

1 1
2 2

1 1
2 2

1

1

1

1

1

T T

T
T T T T

T
T T

T

T T

A R W I G G WG G W R

A R I G G WG G W W R

R I G G WG G W WR

R I WG G WG WR

R W I G G WG G W R A

−

−

−

−

−

= −

= −

⎛ ⎞= −⎜ ⎟
⎝ ⎠

= −

= − =

 

M is symmetric by a similar argument. 
                                                 
1 It is assume that all measurement errors ε have non zero 
variance. 



 
From lemma, A can be written in terms of an orthogonal 
projection matrix, C, and a NxN diagonal matrix, Λ, as 
seen in Equation (8).  Since the rank of A is at most N-
dim(x), Λ has at most N-dim(x) non zero eigenvalues.  In 
the case of Loran, dim(x) = 3.  
 

T T Ts As s C Cs= Λ       (8) 
 
Since C is an orthogonal matrix, Cs ~ s (i.e. they have 
equivalent distributions).  The result is that, if W is 
symmetric, the WSSE is distributed as the sum of the 
squares of N-3 normal random variables with variance 
equaled to the non zero eigenvalues of Λ. 
 

T T TWSSE s C Cs s sΛ Λ∼ ∼     (9) 
 
However, if A is idempotent (A=A*A), then, from lemma, 
the N-3 eigenvalues are all ones.  Define this matrix as ΛI.  
It can be shown that if W = R-1, then A is idempotent. This 
definition also satisfies W being symmetric.  First show A 
is idempotent.   

( )( )1 1
2 2

11 1 1T TA R R I G G R G G R R
−− − −= −  

( )( ) ( )( )1 1
2 2

1 11 1 1 1 1* T T T TA A R R I G G R G G R I G G R G G R R
− −− − − − −= − −  

( ) ( )( )
( )( )

1 1
2 2

1 1
2 2

1 11 1 1 1 1

11 1 1

2 T T T T

T T

R R I G G R G G R G G R G G R R

R R I G G R G G R R A

− −− − − − −

−− − −

= − +

= − =

 

If A idempotent and symmetric, then 

 
( ) ( ) ( )

( )

3 3 3 3

3 33 3

0

0 0
N x N N x

I
xx N

I − − −

−

⎡ ⎤
Λ = Λ ≡ ⎢ ⎥

⎢ ⎥⎣ ⎦
 

 
The result is that WSSE is distributed as the sum of the 
squares of N-3 standard normal random variables.  This is 
the definition of a χ2 distribution with N-3 degrees of 
freedom.  If ε is zero mean, then the WSSE is a central χ2 
distribution with N-3 dof.  If ε has a bias, then the WSSE 
is a noncentral χ2 distribution with N-3 dof and 
noncentrality parameter, ncp, given by Equation (10) 
 

Tncp b Mb=       (10) 
 
Thus it is demonstrated that WSSE is χ2 if W = R-1.  Let σ 
weighting denote the case where W = Wσ = inverse of 
covariance matrix based on σ. If the random error 
statistics are exactly known, then Wσ = R-1.  If the random 
error statistics used are reasonably close to the true 
statistics, then, for σ weighting, Wσ ~ R-1.  And so the 
eigenvalues of A should be close to 1.  This implies that 
the WSSE should be well modeled by a χ2 distribution if 
the error statistics are close. 

 
APPENDIX B: USING THE 
NONCENTRALITY PARAMETER FOR 
BOUNDING THE CDF 
 
Lemma 1: Assume any two χ2 distribution with the same 
degree of freedom, υ, and noncentrality parameter, ncp1 
and ncp2, respectively.  Denote the distribution as χ2(υ, 
ncp1) and χ2(υ, ncp2), respectively.  Without loss of 
generality, assume ncp1 ≤ ncp2 .  It can be shown that: 
 

( ) ( ) ( ) ( )2 2
1 2, ,ncp ncp

CDF x CDF x
χ υ χ υ

≥  (11)

  
We can construct the distributions as follows: 

( )

( )

1
2 2 2

1 1
1
1

2 2 2
2 2

1

,

,

n
n

n
n

ncp y x

ncp z x

υ

υ

χ υ

χ υ

−

=

−

=

= +

= +

∑

∑
( ) ( ) ( )0,1 , 0,1 , 1,..., 1n ny N z N n υ∀ ∈ −∼ ∼ , 

independent 

( ) ( )1 1 2 2,1 , ,1x N ncp x N ncp∼ ∼  

where 2 1, 0ncp ncp ≥  
 
Since the part of the each of the χ2 distributions derived 
from the zero mean normal random variables are 
identical, we only need to consider the contribution of the 
non zero mean component (and the convolution of that 
portion with the zero mean contribution). 

( ) ( ) ( ) ( ) ( ) ( )2 2 2, 1,0 1,
0

*
x

ncp ncp
CDF x PDF z CDF x z dz

χ υ χ υ χ−
= −∫

 
Hence we can write 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2
1 2

2 2 2
1 2

, ,

1,0 1, 1,
0

*

ncp ncp

x

ncp ncp

CDF x CDF x

PDF z CDF x z CDF x z dz

χ υ χ υ

χ υ χ χ−

−

⎡ ⎤= − − −⎣ ⎦∫
 
So showing Equation (11) means showing 

( ) ( ) ( ) ( )2 2
1 21, 1,

,
ncp ncp

CDF x CDF x x
χ χ

≥ ∀   (12) 

First start with the definition of 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1, ,1 ,1
,1

y

ncp N ncp N ncp
y

CDF y N ncp dx CDF y CDF y
χ

−

= = − −∫

 



Note that since we are dealing with a normal distribution, 

( ) ( ) ( )( )1
2, 2

1 x
NCDF x erf μ

μ σ σ
−= +  where  

( ) 22

0

x
terf x e dtπ

−= ∫  

We will be using a couple properties of the erf function: 
 

• it is monotonically increasing in x.   
• it is an odd function 

 
Rewriting Equation (12) using the erf function, we get 
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( ) ( ) ( ) ( ) ( ) ( )
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⎡ ⎤− = −⎢ ⎥⎣ ⎦
⎡ ⎤− − − = −⎢ ⎥⎣ ⎦

= − ( )2

2
y ncprf +⎡ ⎤

⎢ ⎥⎣ ⎦
 
The last equality comes from erf being an odd function 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )
2 2

1 2

1 1 2 2

1, 1,

1
2 2 2 2 2

ncp ncp

y ncp y ncp y ncp y ncp

CDF y CDF y

erf erf erf erf

χ χ

− + − +

− =

⎡ ⎤+ − +⎢ ⎥⎣ ⎦

 (13) 

 
Now let’s define 
 

( ) ( )
( ) ( )

2 1

1 2 2 1

2 1 2 1

2

0

0

0ncp ncp
rncp

y ncp y ncp rncp ncp ncp

y ncp y ncp rncp ncp ncp

μ +

− − − = Δ = − ≥

+ − + = Δ = − ≥

= ≥
 
If we take the derivative of the erf function, it is noted 
that it is monotonically decreasing in x for x >0.  This can 
be seen if we take its derivative 
 

( ) 22 xd
dx erf x eπ

−=  
 
So demonstrating (12) means showing the following is 
true.   
 

( ) ( ) ( ) ( )( )1 2 2 1

2 2 2 2
y ncp y ncp y ncp y ncperf erf erf erf− − + +− ≥ −

  
We can show this is true by using the derivative 
 

( ) ( ) ( )

( ) ( ) ( )

1 2
2

2

1 2

2 2 2

2
2 2

rncp

rncp

y ncp y ncp
y

yy ncp y ncp rncp

erf erf
e

rncp

erf erf e

μ
π

μ
π

− −

− −

− −− − Δ

−
≈

Δ

− ≈

 

( ) ( ) ( )

( ) ( ) ( )

1 2
2

2

1 2

2 2 2

2
2 2

rncp

rncp

y ncp y ncp
y

yy ncp y ncp rncp

erf erf
e

rncp

erf erf e

μ
π

μ
π

+ +

− +

− ++ + Δ

−
≈

Δ

− ≈

 

 

Note that ( ) ( )2 2
2 2rncp rncpy yrncp rncpe eμ μ

π π
− − − +Δ Δ≥  since 

rncp rncpy yμ μ≥− +   
 

Hence we get ( ) ( )1 2

2 2
y ncp y ncperf erf− −− ≥   

( ) ( )( )2 1

2 2
y ncp y ncperf erf+ +− . 

 
Another way of deriving the result is starting from 
Equation (13), we get 
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∫

 

since 
( )2 1
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2 2 1

2 2

2 1
0

0, 0, 0
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x ncp x ncpt t
e e dt ncp ncp x

−
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and ( ) ( )2 1
2 2
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x ncp x ncpt t− ++ ≤ + so 
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2 1
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e e
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Therefore, 

( ) ( ) ( ) ( )2 2
1 21, 1,
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ncp ncp

CDF x CDF x x
χ χ

− ≥ ∀ . 

 
As a result, ( ) ( ) ( ) ( )2 2

1 2, ,
,

ncp ncp
CDF x CDF x x

χ υ χ υ
≥ ∀  

 
 



APPENDIX C: BIAS BOUNDS FOR 
CALCULATING BOUNDING 
NONCENTRALITY PARAMETER 
 
Lemma 1: If there exist bounds for the true biases, i.e., 
we have Βi > 0 such that i iB b≥  for all signals i, then a 
noncentrality parameter ncp0,E that is larger than the true 
noncentrality parameter, ncp0,T exists and can be 
computed using the correct choice of signs, si, for the 
bounding biases.   
 
Proof:  Denote 

[ ]
[ ]

1 2

1 2

T
n

T
n

b b b b

B β β β

=

=
 

 
Where i i is Bβ =  
 

0, 0,

0, 0,

,

0

T T
E T

T T
E T

T T

ncp B MB ncp b Mb

ncp B MB ncp b Mb

B MB b Mb

= =

= ≥ =

− ≥

 

 

where ( ) 1T TP G G WG G W
−

= and ( )M W I P= −  

 
Note: ncp0,E represents the estimated ncp on the no fault 
(H0) hypothesis while ncp0,T represents the true ncp on H0. 
 

( ) ( )TT

T T T T

B b

B MB b M b

b Mb b M Mb M

− = Δ

= + Δ + Δ

= + Δ + Δ + Δ Δ

 

 
T T T T TB MB b Mb b M Mb M− = Δ + Δ + Δ Δ  

 
0T MΔ Δ ≥  since M is positive semi definite 

 
1 1
2 2 TR MR A C C= = Λ  see Appendix A 

1 1
2 2TM R C CR− −= Λ , R½  is invertible 

Let
1
2d CR b−= , so 0T Tb Mb d d= Λ ≥  

 
So M is positive semi-definite since Λ is positive semi-
definite. 
 

T Tb M MbΔ = Δ  since M is symmetric 
So we only to show that 0Tb M Δ ≥  to show that 

0, 0,
T T

E Tncp B MB b Mb ncp= ≥ =  

 
Expanding Tb M Δ , we get 
 

( )
( ) ( )

1 11 1 1

2 12 1 2 1 1

T
n n

n n n n nn n

b M m b m b

m b m b m b m b

Δ = Δ + +

+Δ + + + + Δ + +
 
since i iB b≥ , we can choose the sign of Δi.  Ideally, if 

we knew bi, we would choose the sign of Δi such that 
 

( )
( )

1 1

1 1

0 if 0
0 if 0

i ni n
i

i ni n

m b m b
m b m b

≥ + + ≥⎧⎪Δ ⎨≤ + + <⎪⎩
  

 
Such a selection would insure that all terms 

( )1 1i i ni nm b m bΔ + +  are non negative and hence 

0Tb M Δ ≥ .  This is possible by selecting sign si. 
 

( )
0 if 1
0 if 1

i
i i i i

i

s
s b

s
β

≥ = +⎧
Δ = − ⎨≤ = −⎩

 

Thus there exist at least one set of signs that yields the 
desired result.  It turns out that we do not need to know bi.  
Since the ncp for that case must be less than or equaled to 
max(ncp0,E) over all possible sign combinations si.  The 
results means that the max(ncp0,E) over all signs is greater 
than or equal to the ncp0,T.   
 
Lemma 2:  If there exist bounds for the true biases, then 
there exists a choice of signs for bounding bias such that 
the calculated difference between the faulted and no fault 
noncentrality parameter, 1, 0,E E Encp ncp ncpΔ = − , is 

smaller than true difference 1, 0,T T Tncp ncp ncpΔ = − .  
This can be shown for the one and two fault case. 
 
Proof: 
 
For H0, 
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Examine the one fault case and assume the cycle error (λ) 
is on signal k. 
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For the case of up to two faults, we have: 
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m b b

ncp m B m B m B

m B B m B

λ λ

λ λ

λ λ

λ λ

λ

= ≠

= ≠ ≥ ≠ ≠

= ≠

= ≠ ≥ ≠

= + + + +

⎡ ⎤+ + + + +⎣ ⎦

+ + +

= + + + +

+ + +

∑

∑ ∑ ∑

∑

∑ ∑ ( )

( )( )
,

2

m

j lj l j
j k l

kl k l

B m B B

m B B

λ

λ λ
≠

⎡ ⎤+ +⎣ ⎦

+ + +

∑

 
1) Examine the difference in ncp when there is only one 
fault. 

( )

( )

2

1,

2

1,

2 2

2 2

m

T kk k kj j
j j k

m

E kk k kj j
j j k

ncp m b m b

ncp m B m B

λ λ λ

λ λ λ

= ≠

= ≠

Δ = + +

Δ = + +

∑

∑
 

 
( ) ( ) ( )

1, 1
2 2 2 2

m m

T E kk k k kj j j kj j j
j j k j

m b B m b B m b Bλ λ λ λ λ
= ≠ =

Δ − Δ = − + − = −∑ ∑  

Choose signs for each element such that 
 

 if 0
 if 0

i ki
i

i ki

m
B

m
β
β

+ <⎧
= ⎨− ≥⎩

 

 
since i iB b≥ , that results in 0T Encp ncpΔ − Δ >  
 
If cycle error is –λ, then  
 

( )
1

2
m

T E kj j j
j

ncp ncp m b Bλ
=

Δ − Δ = − −∑  

In this case, choose signs for each element such that 
 

if 0
if 0

i ki
i

i ki

m
B

m
β
β

+ >⎧
= ⎨− ≤⎩

 

 
2) Examine the difference in ncp when there is one or two 
faults. 
 

( ) ( )

( ) ( )( )

2 2

2

1, ,

2 2

2 2

T kk k ll l

m

kj lj j kl k l k l
j j k l

ncp m b m b

m m b m b b b b

λ λ λ λ

λ λ λ
= ≠

Δ = + + +

+ + + + + +∑
 

 
( ) ( )

( ) ( )( )

2 2

2

1, ,

2 2

2 2

E kk k ll l

m

kj lj j kl k l k l
j j k l

ncp m B m B

m m B m B B B B

λ λ λ λ

λ λ λ
= ≠

Δ = + + +

+ + + + + +∑
 

 
( ) ( )

( ) ( )
( ) ( )

1, , 1, ,

2 2 2 2 2 2

2 2

2 2

T E kk k k ll l l

m m

kj j j lj j j
j j k l j j k l

kl k k kl l l

ncp ncp m b B m b B

m b B m b B

m b B m b B

λ λ

λ λ

λ λ
= ≠ = ≠

Δ − Δ = − + −

+ − + −

+ − + −

∑ ∑

 

( )( )
1

2
m

T E kj lj j j
j

ncp ncp m m b Bλ
=

Δ − Δ = + −∑  

Apply the rule signs for each element such that 
 

( )
( )

if 0
if 0

i ki li
i

i ki li

m m
B

m m
β
β

+ + <⎧⎪= ⎨− + ≥⎪⎩
 

 
If both cycle errors are –λ, then 

( )( )
1

2
m

T E kj lj j j
j

ncp ncp m m b Bλ
=

Δ − Δ = − + −∑  

 
Without loss of generality, assume different signs for 
errors.  Signal k has +λ and l has –λ cycle error. 

( )( )
1

2
m

T E kj lj j j
j

ncp ncp m m b Bλ
=

Δ − Δ = − −∑  

 

( )
( )

if 0
if 0

i ki li
i

i ki li

m m
B

m m
β
β

+ − <⎧⎪= ⎨− − ≥⎪⎩
 

 
The result is that there does exist a sign choice where 

0T Encp ncpΔ − Δ > .  The same argument can be used 
on cases where more faults exist. 


