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ABSTRACT  
 
Global navigation satellite systems (GNSS) are integral to aviation navigation and precise landings.  It will be fundamental to 
many other safety of life applications such as railway and autonomous vehicles.  To truly protect these systems and maintain 
safety, we need to not just address nominal hazards but also deliberate threats such as spoofing.  Many methods have been 
proposed to address spoofing.  A natural suggestion is to compare GNSS with other independent sensors, particularly inertial 
sensors.  This paper develops a GNSS spoof monitoring methodology that uses comparisons with an inertial sensor.  The 
methodology differs from prior methods developed and uses comparisons of accelerometers and GNSS acceleration (rather than 
position or velocity).  This structure keeps the two instruments independent which makes it a steady state test and allows for tests 
over time.  This paper develops and examines the use of acceleration from low cost sensors to detect GNSS spoofing in safety 
of life applications.  We examine if there are suitably random accelerations and whether low inertial sensors can provide useful 
comparison to GNSS. Then we examine how we can use these measurements to provide robust spoof detection. 
 
First, we examine whether there are adequate signals from the vehicle and whether they are sufficiently measurable by both 
GNSS and low cost accelerometers. The conjecture is that it is difficult for malicious spoofer to predict and hence replicate the 
accelerations experienced by these vehicles.  For example, an aircraft experiences random accelerations due to wind gusts as 
well as semi-random accelerations due to configurations changes (flap, landing gear position).  Similarly, a railcar may 
experience potentially random accelerations along-track and in the vertical direction.  Measurements from flight tests show that 
there are often significant and unique accelerations that can be measured by both GNSS and consumer grade accelerometer.  In 
cryptographic terms, the acceleration information can provide a “one time pad” that is difficult for most spoofers to determine.  
To reasonably compare accelerations, the measurements from GNSS and the accelerometer need to be aligned.  Accelerometers 
measure in the body frame while GNSS provides results in inertial or local frames.  GNSS is used to estimate the body frame 
and align the two measurements.  While the alignment is not exact, the results indicate that it may be generally sufficient for 
approach.   
 



Next, having an unpredictable and high frequency acceleration signature allows for the development of robust spoof detection 
monitoring.  Guiding principles in the initial design are simplicity and low false alert rates.  High false alert rate will cause high 
unavailability and, even worse, general distrust of the system.  Hence, the paper develops a simple statistically based test for 
detection.  It demonstrates the performance of the test method on the flight test data collected. 
 
 

INTRODUCTION  
 
Spoofing of Global Navigation Satellite Systems (GNSS) signals can have deleterious effects on society given the widespread 
use and dependence of critical infrastructure on GNSS.  However, few commercial receivers have significant anti-spoofing (A/S) 
mechanisms.  Even simple interference events such as jamming and meaconing have resulted in erroneous position outputs from 
shipboard and airborne receivers [1][2] [3][4].  Spoofing tests have shown that deliberate GNSS spoofing could have significant 
impact on the GNSS receiver and hence GNSS dependent systems [5][6].  While the extent of the impact is still debated, it is 
clear that a spoofing event would significantly harm some users.  So, the debate over the utility of A/S comes down to the 
likelihood of spoofing events.   
 
We can no longer categorically state that GNSS spoofing, outside a laboratory or military setting, has not occurred.  Indeed, 
GNSS spoofing was observed outside the Kremlin in 2016 [7].  Furthermore, the popularity of location-based games such as 
Pokémon Go has also induced hackers to build and utilize GNSS spoofers [8].  While the spoofer in [8] uses an expensive GNSS 
signal generators, other professional security groups have put together GNSS spoofer using low cost software defined radios 
(SDRs), open source software and some basic GNSS know-how [9].  GNSS spoofing capabilities are no longer solely the realm 
of navigation experts.  And as time goes on, spoofing capabilities will get better and its costs will only decrease. 
 
There are many motivations to spoof.  Ordinary citizens may spoof to aid their gaming, to protect their privacy or to subvert 
location based charges (e.g. road tolling) or restrictions.  A quick search on the Google Play store shows multiple pages of “Fake 
GPS” apps.  The first app, “Fake GPS Location Spoofer Free”, alone has over 60,000 reviews as of May 2017.  This indicates 
that many people took the time to not only download and use the app but also to comment on its benefits!  Given the interests in 
these apps, it is not a stretch to say that there is public interest in spoofing GNSS.  Coupling these two factors - the availability 
of GNSS spoofing equipment or know-how and individuals who have interest in spoofing – means we should expect that there 
will be more spoofing incidents in the future.  And while critical infrastructure may not be the target for most spoofers, it may 
fall victim as collateral damage. 
 
In this paper, we develop and examine GNSS spoofing detection via direct comparison of motion (acceleration) using commercial 
inertial sensors.  The concept developed allows for comparison of the two sensors without coupling GNSS with inertial 
measurement unit (IMU).  The design allows for a robust, steady state spoof detection capability that can be developed as an 
applique to existing receivers.  This paper develops this concept, particularly for use in aviation and is organized as follows.  The 
first part covers prior art and describes the developed technique.  The second part describes the test equipment used and 
experiments conducted to collect data for analysis.  The third part examines whether inertial measurements from a low-cost IMU 
can provide enough information for aviation spoof detection.  The fourth part develops and tests a methodology for spoof 
detection based on the data collected.  The final part addresses the use of the technique for other modes of transportation such as 
railway and automobiles. 
 
 

BACKGROUND: PRIOR ART & DEVLEOPED TECHNIQUE 

Prior art & goals 

Despite not being a current commercial concern, there is a significant literature on GNSS spoof detection [10][11].  Various 
researchers have proposed and developed numerous anti-spoofing techniques.  Antenna-based techniques use signal properties 
such as direction of arrival and polarization to detect the presence of spoofing [12][13][14][15].  Internal receiver metrics can 
be examined for signatures found in spoofing attacks.  This includes changes in automatic gain control (AGC) and signal 
power [16][17].  Network method cross-checks the received signal within known trusted signals [18][19].  Redundancy 
techniques cross-check GNSS measurements with redundant internal or external measures.   

While there are many A/S techniques, there is no panacea for spoofing.  There is currently no one technique that ideally 
satisfies all needs.  There will likely need to be different solutions for different users, applications and requirements.  



Additionally, a given technique is likely only good against a subset of threats.  So, each solution may actual employ several, 
complimentary techniques to cover all desired threats.  For example, one can use AGC and signal power can detect 
overpowering spoofers and redundancy checks based on correlators, signal deformation or signal cross checking to detect 
spoofers being received with roughly equal power as GNSS.  Regardless, the techniques employed should have certain 
characteristics.  First, they need to be robust meaning that they catch the threats that they were designed for while having very 
low false alert rates.  Second, they need to be reasonable to implement.  This means that they do not significantly change 
existing receiver designs or add to its cost.  A/S needs to be effective but also transparent to the user.  It cannot inconvenience 
them through false alerts or additional, costly complexity.  This motivates our investigation of the use of simple inertial-based 
technique as another technique to bring to bear on spoofing.  This work seeks to develop a simple, robust and steady state 
inertial comparison for spoof detection for aviation and other transportation applications.   

Use of inertial sensors to complement and cross-check GNSS is not new.  Traditional aviation GNSS/inertial cross-checking 
algorithms for fault detection have been adapted to spoof detection.  Both autonomous integrity monitoring by extrapolation 
(AIME) [20] and Honeywell Inertial GPS Hybrid (HIGH) [22] have been used as the basis for GNSS spoof detectors [23].  
AIME, one of the earliest GNSS integrity concept, checked innovations in GNSS and inertial measurements to detect 
anomalies while HIGH is a position domain integrity check.  Tanil et al. investigated the use of INS with Kalman filtering to 
perform spoof detection in the position domain [25][26][27].  These techniques, which require comparisons in the pseudo 
range or position domain, essentially require GNSS to calibrate and initialize the IMU results.  The intertwining of GNSS 
information to transform IMU results to the position domain limit the trustworthiness of the comparison over time.  Hence, 
these spoof detection methods are considered transient detectors as they only have a limited detection window in which the 
IMU-derived positions can be considered uncontaminated by GNSS spoof induced errors. 

Developed technique 

Overcoming the limited spoof detection window means having no tightly intertwining GNSS from the IMU-derived results.  
The decoupling means that attitude errors from gyroscopes cannot be calibrated and we cannot transform the IMU 
measurements into position without large uncertainties.  This necessitates comparison in a more natural domain for the IMU – 
namely acceleration or rotation rate rather than comparison in position or pseudo range domain.  Furthermore, it also desirable 
to compare in the body axes in which the IMU is aligned.  The GNSS results can be roughly rotated to this frame using GNSS 
derived information.  The rotation is aided by having a reasonably stable or predictable attitude.  This also keeps any GNSS-
derived errors within the GNSS measurements.  So, in this paper, we examine comparison of acceleration in the body axes.  
Given this comparison metric – acceleration as measured by the GNSS and IMU, test statistics are developed that serve as 
monitors, which can be used to decide if spoofing is present.  These monitors will have to account not just for errors due to the 
sensors but also those due to misalignment of the GNSS and IMU coordinate frames.  The benefit of the technique developed 
is that in uncoupling GNSS outputs from the IMU, we essentially provide an unlimited detection window.  It also allows the 
technique to be implemented as an applique so that it can be an add-on to an existing receiver.   

The technique is designed to detect spoofing from an attacker with no or limited knowledge of the vehicle movement.  The 
detector is not meant to protect against all spoofing threats and a threat where the spoofer is onboard measuring the actual 
accelerations can and should be mitigated by other means.  If the attacker is onboard or is reasonably collocated with the 
GNSS antenna or IMU, it should not have near perfect and instantaneous access to vehicle acceleration.  Any spoofing attack 
without a good estimate of the vehicle acceleration should be detectable.  Even if the spoofer is sophisticated and either 
measures the acceleration remotely or relays a measurement of acceleration from an onboard device, the process will incur 
errors and delays that can detected provided there is high frequency dynamics.  There are some threats that technique cannot 
catch.  A spoofer with accurate knowledge of acceleration can slowly drift the measured position from truth as long as they 
keep the acceleration error within the allowable detection tolerance.  Hence, this technique is meant to be used with 
complimentary techniques to cover these threats.  For example, the position domain detection described in [25] may be used as 
a separate, independent and parallel detector. 

The costs of this method are that it requires high frequency component of acceleration and predictable attitude.  The former 
represents in cryptographic terms, a one-time pad that a spoofer cannot guess a priori.  In flight, there can be many sources of 
unpredictable acceleration – wind, pilot input to thrust, lowering of the landing gear, etc.  Others have considered these items 
for their ability to provide motion that is difficult for a spoofer to predict [28][29].   It also means that if the spoofer can 
somehow precisely and rapidly know the acceleration, the spoofer may be able to avoid detection while inducing a position 
error.  The latter requirement of stable or predictable attitude is necessary because the gyroscopes are not being aided by 
GNSS.  Without aiding, the gyroscopes alone cannot provide precise absolute attitude.  Without a reasonable sense of the true 
attitude, the reference frames between the IMU and GNSS may not be well-aligned.  Without alignment, a fair comparison 



between IMU and GNSS accelerations cannot be made.  While the requirement may seem demanding, it is important to 
understand that commercial flight desires a stable attitude, especially on approach.  This makes sense as the aircraft should be 
reasonably steady for landing.  It should not have much roll and the pitch angle should be small as the aircraft tries to maintain 
a small, constant glide slope (~ 3 degrees).  Another time where aircraft attitude is reasonably stable is during cruise which 
represents the major portion of any flight.  So commercial aviation often has a stable attitude, especially at final approach.  
Enabling spoof detection during final approach is valuable as it is the most critical phase of flight.   

Critical to the utility of the methodology are two key questions.  First, are there adequate motions available for spoof detection 
using a low cost INS?  The motion must be semi-random and significant relative to the capability of the sensors and their errors. 
This will be examined using flight test data.  It must be significant enough to rise above the errors and biases induced by our 
methodology.  The second question is whether we can develop a robust, steady-state test metric for spoof detection given that 
information.   
 
 

DATA COLLECTION & TESTING  
 
Analysis of GNSS acceleration and microelectromechanical systems (MEMS) inertial performance indicate that these 
instruments can measure to better than 0.02 meters per second squared (m/s2).  In fact, automotive grade MEMS and GNSS 
receivers with good carrier to noise ratio (C/No) can achieve an order of magnitude lower.  While theoretically these 
instruments should be suitable for aviation and other transportation, real world errors and biases may result in different 
performance.  Hence, a flight test was conducted to gather data to validate our theoretical conclusions and examine flight 
disturbances. 

Data collection equipment 

Several instruments were used to collect the data for the evaluating the utility of low cost accelerometer for spoof detection.  A 
Samsung Galaxy Note 3 was used to provide accelerometer data.  It contains an Invensense MP65M sensor (accelerometer, 
gyroscope) along with a magnetometer/compass.  This is a consumer grade IMU and represents a worst case level of IMU 
performance.  We expect that implementations for transportation applications would use automotive grade MEMS or better.  
The sensor data is collected at roughly 8 Hz.  Additionally, Galaxy Note 3 can also collect GNSS data at 1 Hz with the output 
in National Marine Electronics Association (NMEA) format.  This device is ultra-portable and has been used it for aircraft, 
automobile and rail data collection [30].  For the flight test, a Trimble BX935-INS GNSS receiver was used.  The receiver and 
the flight test vehicle, a Federal Aviation Administration (FAA) Technical Center Global 5000 business jet, is shown in Figure 
1.  This receiver is connected to an external aircraft antenna located on the top center of the body.  The INS portion of the 
receiver was not utilized.  For the aviation analysis in this paper, this receiver provided the primary source of GNSS data with 
only the Global Position System (GPS) constellation is processed.  For the most accurate acceleration, the GNSS data was 
processed using Precise Point Positioning (PPP) with output at 10 Hz.  PPP utilizes multi-frequency (L1, L2) output. 

 

 
Figure 1. Trimble BX935-INS GNSS receiver and antenna used on FAA Global 5000 business jet 

 



Flight test 

A flight test was conducted on August 24, 2016 to collect data for analyzing the feasibility of the concept.  The Galaxy Note 
was placed on the armrest roughly aligned with the aircraft body axis - it was not collocated with GNSS antenna though it is 
located at roughly the same place along the aircraft body.  The flight test incorporated several segments representative of the 
key phases of flight. There are straight and level, banked turns (in a figure 8 pattern), and missed approach segments.  The 
flight and its segments, flown over the period of about 3.5 hours, are shown in Figure 2. 

 
Figure 2. Path of August 24 2016 flight test using FAA Global 5000 

 

COMPARISON OF FLIGHT ACCELERATION DATA  

Two adjustments are made to compare the GNSS and accelerometer measurements.  First, the GNSS measurements need to be 
aligned with the same axes as the accelerometer.  Second, as accelerometers actually measure specific force, the gravity force 
vector needs to either be removed from the accelerometer or added to the GNSS measurements.  To accomplish the first, an 
initial or representative GNSS position is used to convert these measures to local east north up (ENU) frame.  Then those 
positions are differenced and double differenced to get velocity and acceleration in that frame.  The velocity vector in the 
horizontal direction is used to align the horizontal or east-north (EN) axes to the aircraft heading.  The heading is roughly, but 
not precisely, the direction of the aircraft nose.  The rotation roughly aligns GNSS acceleration with the body axis provided the 
aircraft is relatively level (small roll, pitch angles).  These frames are shown in Figure 3.  A second adjustment is to subtract 
acceleration due to gravity, g, set nominally at 9.81 m/s2, from the accelerometer z-axis.  Note, this does not couple the IMU 
results with the GNSS.  It is book keeping and g could have been added to the GNSS accelerations instead.  Either yields the 
same equation for acceleration difference.  These adjustments result in some residual errors – particularly from residual 
differences between accelerometer frame and the adjusted GNSS frame.  Additionally, the gravity adjustment can also have 
error from variations of gravitational force at different locations and altitudes.  Simple pitch and roll correction can be made to 
align the frames better and these corrections are beneficial in some circumstances.  However, as seen later, the two basic 
adjustments described above are sufficient for the comparison for approach.  Furthermore, only the latter is needed for 
comparing vertical acceleration.  With the adjustments, we can calculate the acceleration differences between the sensors.  This 
is shown in Equation (1) where ܽ௦௘௡௦௢௥,௜ is the acceleration from the sensor (accelerometer or GNSS) along the i axis.  R is the 
estimated rotation matrix to rotate GNSS ENU to the accelerometer body axis. 
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Figure 3.  Rotated GNSS (left) and accelerometer body (right) frame 

Pitch and roll estimates can be made using velocity information derived from GNSS.  The velocity vector can be used to 
estimate pitch (ρ) as shown in Equation (2) where vV and vH are the vertical and horizontal speed, respectively.  Alternatively, 
one can estimate pitch using the distance traveled vertically (dV) and horizontally (dH) over the same time interval.  This is 
shown in Figure 4.  The pitch estimate is exact provided the aircraft nose is aligned with the velocity vector.  On our flight, the 
nose vector is typically a few degrees (about 5) above the velocity vector.  While the bias can be calibrated a priori, this is not 
done as we do not use pitch correction for the analysis.  Roll angle (φ) is estimated on turns by assuming the aircraft is 
performing a coordinated turn.  In a coordinated turn, the aircraft is flown such that no lateral acceleration is experienced and 
the acceleration vector felt in the down aircraft body frame.  Hence, in a coordinated turn, the roll angle is just a function of the 
turn radius (r) and the velocity (v) as shown in Equation (3).  The turn radius is calculated using Equation (4) using the 
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utility if the coordinated turn assumption holds.  We do not use roll compensation in the analysis in this paper.   
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Figure 5 shows the comparison of the accelerometer and GNSS PPP derived acceleration on each axes using the basic 
adjustments discussed.  The comparison is conducted with GNSS and IMU acceleration data that has undergone 5 seconds of 
exponential averaging.  There are periods where the accelerations are well-matched and other periods where they are not.  
Generally, they match well during level flight and final approach.  They do not match well during the coordinated turn section 
or in climb.  This is not surprising as these are periods where our attitude assumptions are not valid.  Estimating roll angle and 
compensating for it results in much better alignment and agreement between the acceleration in the xyz axis of the 
accelerometer and the rotated GNSS axes.  Figure 6 shows the acceleration with roll compensation.  Since most turns were 
reasonably coordinated, the roll estimate are reasonable and the compensation results in good alignment. 

 
Figure 4. Pitch and Roll Compensation; Grey lines represents projection of gravity vector to body axes 



 
Figure 5. Comparison of acceleration (5 second exponential averaged) from 3 axes: accelerometer (blue) and PPP GNSS, rotated to 
estimated body axes (red) vs time from start (hours) 

 

 
Figure 6. Comparison of acceleration (5 second exponential averaged) from 3 axes: accelerometer (blue) and PPP GNSS, rotated to 
estimated body axes (red) with roll estimation and compensation vs time from start (hours) 



Comparison of acceleration data 

The initial analysis uses comparisons of the up (GNSS) or z-axis (accelerometer) during approach.  Approach has reasonable 
signal and the frames well-aligned without needing pitch or roll compensation.  As seen from our results, other axes can also 
be used.  In Figure 7, the estimated vertical acceleration as measured by GNSS and the accelerometer of the first approach is 
shown.  The acceleration is exponentially averaged over 5 seconds.  The only major difference seen occurs when the aircraft 
turns (banks) slightly.  The two accelerations have a correlation coefficient of about 0.93.  Figure 8 shows the vertical 
acceleration profile of the second approach.  Again the GNSS and accelerometer accelerations are well matched with a 
correlation coefficient of about 0.96.  Also note that the acceleration profile is dissimilar from the first approach. This is 
demonstrated later when the cross-correlation of the accelerometer accelerations between approaches is calculated. 

 
Figure 7. Acceleration (5 second exponential averaged) from accelerometer z-axis (body up) (blue) and PPP GNSS, up axis (red) for 
approach 1 vs time from start (hours) 

 
Figure 8. Acceleration (5 second exponential averaged) from accelerometer z-axis (body up) (blue) and PPP GNSS, up axis (red) for 
approach 2 vs time from start (hours) 

Figure 9 shows the normalized autocorrelation of the IMU acceleration for the first two approaches, with 5 second exponential 
averaging.  The figure shows the (1/e) decorrelation times which range from 2.5 to 3.2 seconds for the approaches.  Figure 10 
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shows the cross correlation of the second approach with the first and third approaches normalized by the maximum 
autocorrelation of the second approach.  The maximum normalized cross correlation value over all approaches is about 0.55.  
The results indicate a fast decorrelation period and no significant cross correlation between approaches.  The statistics for the 
acceleration difference for the approaches are also calculated.  The distribution of the differences generally follows a Gaussian 
as shown in the histograms in Figure 11.  The figure shows histograms of acceleration difference and the Gaussian probability 
distribution function (pdf) with the same mean and standard deviation.  Table 1 shows the approach times used, approach 
period, decorrelation time, mean and standard deviation of the acceleration difference for each approach.  These results 
affirmatively answer the first question – aircraft acceleration measured by low cost accelerometer can be provide meaningful 
comparison with GNSS. 

 
Figure 9. Autocorrelation of approach 1 and approach 2 up acceleration 

  
Figure 10. Cross-correlation of approach 2 with approach 1 and approach 3 up acceleration 

   
Figure 11. Histogram of approach 2 up acceleration difference compared with gaussian pdf with the same (indicated) mean and standard 
deviation 
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Table 1. Comparsion of the acceleration autocorrelation and the statistics of the acceleration difference for each approach 

Approach 1 2 3 4 
Times (hr from start) 2.24 – 2.30 2.5 – 2.53 2.78 – 2.815  2.98 – 3.015 
Duration (min) 3.6 1.8 2.1 2.1 
Decorrelation time (s) 3.1 2.5 2.5 3.1 
Mean diff 0.032 0.022 0.025 0.097 
St dev diff 0.089 0.079 0.065 0.07 

We also examined the noise on the acceleration measurements from the accelerometer and GNSS.  Figure 12 shows static, 
unaveraged measurements of the acceleration from both sources over a 14 second period.  The accelerometer showed a mean 
(µ) and standard deviation (σ) of -0.03 and 0.027 m/s2.   The PPP GNSS was zero mean with a standard deviation of 1.198 
m/s2.  These statistics are used as the basis of our model bounding variance for the statistical spoof detection tests.  With 5 
second exponential averaging, the z-axis accelerometer has mean of -0.03 m/s2 and standard deviation of 0.003 m/s2.  
Similarly, PPP up acceleration was zero mean with 0.028 m/s2 standard deviation. 

 
Figure 12. Static z-axis or up acceleration (no averaging) measured by accelerometer (blue) and PPP GNSS (red) vs time from start (hours) 

 

ANALYSIS OF DETECTION AND FALSE ALERTS 

The previous section demonstrated two important qualities.  First, low cost accelerometers, not coupled to GNSS, are accurate 
enough to provide corroborative information to the GNSS-derived movement for aircraft approach.  Second, aircraft 
approaches present useful acceleration signatures that can be used like a cryptographic one-time pad to foil spoofing.  The next 
step is to develop a test for spoofing that can provide robust detection with low probability of false alert.  A basic test was 
developed using just one axes (vertical) and standard statistical testing to demonstrate feasibility.  The acceleration comparison 
suggests that using vertical acceleration (z-axis on the accelerometer/IMU and up on GNSS) provides the best information.  In 
future development, other axes and/or sensors (gyroscopes) may be used either independently or in combination.   

Two test statistics are examined and standard hypothesis tests are used to develop monitors based on each test statistic.  The 
first statistic uses the difference in acceleration as measured by GNSS and accelerometer.  A spoofed GNSS should experience 
different accelerations than those measured by the accelerometer.  The second statistic uses the standard deviation of the 
acceleration difference.  This should be larger than the expected/nominal value when the accelerations between the two sensors 
are not well matched.  The second test is less sensitive to a large, relatively constant bias, such as due to axes misalignment due 
to roll.  It may be more sensitive to other errors depending on the parameters used. 
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The first test statistic, z, is shown in Equation (5).  It examines the mean difference of acceleration (ȳ) normalized by the model 
standard deviation, σ.  It also accounts for the effect of the maximum nominal bias b.  The max function used to incorporate the 
bias since its sign is not known.  The statistic should be bounded by a standard normal distribution provided the model 
standard deviation and nominal bias are representative.  Hence, our threshold test is to flag if z > zthres.  For a 10-9 probability of 
false alert (Pfa), zthres is 6.1.  The second test statistic, χ2, is shown in Equation (6) with n being the number of samples 
examined, s2 and σ2 being the sample and model variances.  For the initial analysis, n  = 8 samples are used to generate the 
sample variance.  The statistic is (central) χ2 distributed with (n-1) degrees of freedom (dof).   Similarly, our threshold test is to 
flag when χ2 > ߯௧௛௥௘

ଶ  with ߯௧௛௥
ଶ  being 55.87 for 10-9 and dof equaled to 7 (since n  = 8).  Both statistics depend the model 

standard deviation, σ, of the acceleration difference.  As such, incorrect modeling affects the monitor performance.  If σ is too 
large, then there will be a larger missed detection rate than modeled.  Given the steady state nature of the developed spoof 
detector, this may be acceptable as there are many chances to catch the spoofer.  If σ is too small, than the false alert rate will 
be higher than expected.  This is the worse outcome as it may lead the user not to trust the system.  So it is better to err on the 
side of slightly too large.  For our testing, the exponential average values are used for the test statistics.  The model standard 
deviation, σ, used is 0.06 m/s2 which is about twice the root sum squared (rss) of the standard deviation of the accelerometer 
and GNSS acceleration, as found in the static test.  As the exponential average is used, the static exponential average standard 
deviations are used.  This is shown in Equation (7).  A test bias, b, of 0.03 m/s2 and n = 8 samples are used. 

ݖ =
௠௔௫ሺ௬തି௕,଴ሻ

ఙ
   (5) 

߯ଶ =
ሺ௡ିଵሻ௦మ

ఙమ    (6) 

ߪ = 2 ට൫ߪ௔௖௖௘௟,ୣ୶୮ ௔௩௘
ଶ + ௉௉௉ ௔௖௖௘௟,ୣ୶୮ߪ ௔௩௘

ଶ ൯   (7) 

The statistical test monitors provide the basic building blocks of the spoof detection architecture.  There are several 
considerations that the architecture must address.  One important consideration is minimizing false alerts.  Each test may get 
triggered in non-spoofing situations if our assumptions are not well met.  For example, un-modeled attitude can cause large 
differences in the z-axis accelerometer and up GNSS acceleration.  Another consideration is that the tests will not trigger 
during every instant where there is spoofing.  For example, the first test will not trigger if the spoofed acceleration happens to 
match the actual acceleration within the error tolerances.  This can happen purely by chance or if the acceleration does not vary 
much and hence is easy for the spoofer to predict.  The architecture should be designed to be robust to these issues.  A moving 
observation window is used primarily to reduce false alerts though it also aids overall detection.  Initially a 5 second window, 
50 observations at 10 Hz, is chosen since this is larger than the decorrelation time and equal to the exponential averaging time.  
Within the window, we mandate that a test must flag multiple times for the monitor to trigger its alert.  The alert is triggered if 
the number of flagged instances in the observation window exceeds a threshold.  The thresholds may differ for different tests 
and conditions.  While the monitor may trigger, the spoof detection architecture may require corroboration from other monitors 
to issue an alert to the user. This is to limit false alerts as some monitors may trigger due to some normal conditions.  For 
example, the mean difference test may flag on slow varying biases which may be normal due to attitude changes whereas the χ2 
test should not.  As multiple monitors may need trigger to result in a spoofing alert, the observation window is useful for 
detection as both tests may not trigger at the exact same time.  Figure 13 shows a general architecture for the spoof detection.   

The two monitors provide information for the executive monitor to decide if spoofing is detected.  A simple executive 
monitoring (EM) is to indicate spoofing if both detectors indicate spoofing by having their moving sums, Σ1 and Σ2, 
respectively, each exceed a threshold value, Σthres.  A more nuanced way is to let the EM leverage the strengths of each test.  
The EM may alert for each of several different conditions.  We developed a multi-condition EM that alerts if the simple EM 
conditions are met or if χ2 test triggered at a higher threshold, Σthres,2 only.  This allows us to leverage the power of the χ2 monitor 
to detect spoofing even when the mean difference test is oblivious to it.  Mean difference test will not flag for acceleration 
differences that vary by a small shift in time whereas the χ2 test could flag variation changes.  These example executive 
monitors are shown in Figure 14. 



 
Figure 13. Spoof detection architecture using 2 test statistics 

 

 
Figure 14. Two example of possible executive monitor processing: Simple and Multi-condition 

To test the spoof detection architecture, both no spoofing (nominal) and simulated spoofing cases are examined.  The nominal 
case tests the probability of false alert.  Testing the nominal case is straightforward and is done with the collected data without 
modification.  To test the spoofing case, we need on model the effect of the spoofer on our detectors.  So rather than model the 
spoofing signal, we only need model the acceleration resulting from the spoofing signal.  The acceleration that a spoofer can 
predict determines the ability of the spoofer to defeat the detector.  An unsophisticated spoofer may have no knowledge of 
acceleration and hence its best guess is to assume zero acceleration in the vertical.  A sophisticated, worst case spoofer would 
accurately know the true GNSS acceleration with a small delay and could generate a spoofed GNSS exhibiting any 
acceleration profile.  With knowledge of the true acceleration, they can try to produce accelerations to fool the spoof detection 
architecture.  They can do this in a couple of ways: 1) repeat back (delay attack), 2) extrapolate, or 3) extrapolate and smooth 
the acceleration.  Hence to test the design, a delayed version of the true PPP acceleration is used to represent a spoofed 
acceleration profile.  This is an extreme spoofing scenario as the spoofer only cares to spoof the acceleration profile without 
regard to the actual spoofed position.  An actual attack would be constrained by the need to generate its spoofed positions. 

Figure 15 shows an example of accelerations used to test the first scenario.  The figure shows the acceleration as indicated by 
the accelerometer, nominal PPP GNSS, and spoofed GNSS.  The spoofed case shown assumes that the nominal PPP 
acceleration is known with a 2 second delay and a spoofed signal is generated with that acceleration (repeat back).  Figure 16 
and Figure 17 show the acceleration difference (IMU minus GNSS or spoofed GNSS, top) and performance of each monitor 
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(bottom) for the nominal and spoofed cases, respectively. The bottom of those plots show when each monitor, the mean 
difference test (black) and standard deviation difference test (red), was triggered over the course of the approach.  A zero value 
indicates no spoofing while a non-zero value (1.5 and 1 for acceleration difference and standard deviation, respectively) 
indicates a spoofing trigger by the specified monitor.  In the nominal case, the standard deviation test triggers only once while 
the mean difference test did not trigger.  In the spoofing case, each test is triggered many times on the approach though there 
are some quiet periods where neither tests trigger.  Figure 18 shows the number of times each monitor, the mean difference test 
(black), standard deviation difference test (red) and the sum for both tests (blue), is triggered over a moving 5 second (50 
sample) window.  The top shows the nominal case while the bottom shows the spoofed case.  As desired, there is not much 
happening in the nominal case.  Examining the spoofing case, we see that the tests trigger to 20-40 times each or 40-80% in 
some intervals.  However, there are other intervals where there are no triggers.  Comparing the time periods where spoofing 
flags trigger to the accelerations shown in Figure 15  suggests that spoof detection is effective during periods with rapid 
changes in acceleration.  No spoofing is flagged during reasonably calm acceleration period.  This is not surprising as the 
spoofer can easily approximate the actual acceleration in these periods. 

Figure 19 to Figure 22 show same set of plots for approach 2.  In this case, the spoofed acceleration was generated by using 
extrapolated and smoothed version of 0.5 second old GNSS accelerations.  Figure 20 shows the nominal case.  It has a few 
more instances where the spoof flag was triggered on the standard deviation test than in the first set.  The triggers occur during 
instances where there is an abrupt jump in acceleration difference.  Unsurprisingly, when we examine Figure 19, the triggers 
occur when the accelerometer and GNSS acceleration abruptly moves away from each other.  Figure 21 shows the acceleration 
difference and monitor triggers for the spoofed case.  Both monitors trigger many times.  When examined over a 5 second 
window as shown in Figure 22, these tests trigger 20-30 times or 40-60% in some intervals.  The nominal and spoofed case 
triggers over a 5 second window are shown on the top and bottom of Figure 22, respectively.  For the nominal case, it shows 
that the standard deviation test monitor has a maximum of 5 triggers over a 5 second window.  The mean difference test is 
never triggered.  

 

 
Figure 15. Approach 1 accelerations from IMU (blue), PPP (red) and spoofer repeat of PPP acceleration (2 second delay) (black) vs time 
from start (hours) 

 



 
Figure 16. Approach 1 nominal case, acceleration difference (IMU – PPP GPS) [top plot] and spoof indication from each test statistics 
(black = mean difference, red = standard deviation of difference) [bottom plot] vs time from start (hours) 

 
 

 
Figure 17. Approach 1 spoofed case with spoofer repeating PPP acceleration with 2 second delay.  Acceleration difference (IMU – PPP 
GPS) [top plot] and spoof indication from each test statistics (black = mean difference, red = standard deviation of difference) [bottom plot] 
vs time from start (hours) 
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Figure 18. Approach 1, moving sum of spoof indication from each test statistics (black = mean difference, read = standard deviation of 
difference, blue = total) for nominal [top plot] and spoofed [bottom plot] case.  Spoofed case has spoofer repeat PPP acceleration with 2 
second delay vs time from start (hours) 

 
 

 
Figure 19. Approach 2 accelerations from IMU (blue), PPP (red) and spoofer extrapolating and smoothing PPP acceleration (0.5 second 
delay) (black) vs time from start (hours) 
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Figure 20. Approach 2 nominal case, acceleration difference (IMU – PPP GPS) [top plot] and spoof indication from each test statistics 
(black = mean difference, red = standard deviation of difference) [bottom plot] vs time from start (hours) 

 
 

 
Figure 21. Approach 2 spoofed case with spoofer extrapolating and smoothing PPP acceleration with 0.5 second delay.  Acceleration 
difference (IMU – PPP GPS) [top plot] and spoof indication from each test statistics (black = mean difference, red = standard deviation of 
difference) [bottom plot] vs time from start (hours) 
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Figure 22. Approach 2, moving sum of spoof indication from each test statistics (black = mean difference, read = standard deviation of 
difference, blue = total) for nominal [top plot] and spoofed [bottom plot] case.  Spoofed case has spoofer extrapolating and smoothing PPP 
acceleration with 0.5 second delay vs time from start (hours) 

 

Table 2 shows a summary of the results for the simple and for the multi-condition EMs from Figure 14 with a threshold, Σthres, 
of 6% or 3 total monitor flags in a 50 sample monitor window.  For the multi-condition EM, the Σthres,2 used is 12% or 6 
flagged instances.  The table shows the percent of time spoofing is alerted by each EM and time from start to first detection 
presented for all four approaches and for 8 different cases: nominal, a spoofer with no knowledge (and assumes zero 
acceleration) and the three spoofing cases previously mentioned.  The three spoofing cases are conducted with 0.5 and 2 
second GNSS information delay.  In the table, any non-zero detection percentage indicates that the EM has generated a 
spoofing alert during the approach.  Hence, the multi-condition EM catches all simulated spoofing cases shown.  Additionally, 
the monitor flags within about 13 seconds of the start of the approach and spoofing with the exception of approach 1.  This 
time to first detection (TFD) is a function not just of the monitor but also of the dynamics of the aircraft.  Without some 
variation in motion, it is easy for an attacker to predict the acceleration profile and hence remain concealed to the monitor.  As 
seen in Figure 15, approach 1 does not have much vertical acceleration variation initially.  Hence it has high TFD.  The simple 
EM can catch the longer delay (2 second) spoofing attack but with a larger TFD.  With a shorter delay, the simple EM may not 
detect throughout the entire approach as the acceleration difference monitor never alerts.  This is because the acceleration is 
continuous and does not change rapidly over a short period of time.  Thus, with very small delays, difference between the 
actual and spoofed acceleration can be small and always remains within the tolerances specified by the low probability of false 
alert.   

Another key result is that there are no false alerts in any case with the exception of approach 4 with the multiple condition EM.  
Examining the cause of the false alert, it was found to be due to drop outs in the GNSS measurements which caused outlier 
GNSS accelerations for a few seconds.  The result of the drop out, which was exponentially averaged with other measures, can 
be seen in Figure 23 which shows the accelerations from the accelerometer, GNSS and spoofer.  This triggered the standard 
deviation monitor.  Hence, the false alert was due to a data issue rather than the monitor itself.  The detection architecture 
should be designed to manage data handling errors.   

The results also show that “extrapolate (without smoothing)” is generally a bad strategy for the spoofer, especially if they have 
a large delay on the GNSS acceleration information.  It turns out that repeat back is not too bad and can be better than 
extrapolate and smooth.  Finally, the rate or percentage of time spoofing is detected varies from approach to approach.  The 
same is true for time to first alert or detection.  Again, this is due to the different acceleration profiles.  Approaches having 

Nominal

Spoofed



more high frequency and high amplitude accelerations result in better detection.  In all, the results show that, at least for the 
test conditions, spoof detection can be accomplished without triggering false alerts.  The methodology operates in steady state 
allowing for detection throughout the approach. 

 

Table 2.  Spoof detection performance (percentage of time detected, time to first detect from beginning of data set) of simple detection 
architecture for the 4 approaches.  6 cases of spoofing (3 with information delays of 0.5 and 2 seconds, respectively) and nominal (no 
spoofing) case shown. 

Scenario Percent Detection 
(Simple EM) 

Percent Detection 
(Multi-condition EM) 

Time to 1st Detect  (sec) 
(Simple EM) 

Time to 1st Detect (sec) 
(Multi-condition EM)  

 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Nominal 0 0 0 0 0 0 0 3.7 N/A N/A N/A N/A N/A N/A N/A 44.9 

Zero  Accel 22.5 35.5 19.7 22.4 28.7 49.4 44.7 35.6 53.3 11.3 0.5 1.0 53.3 10.6 0.5 0.7 

Repeat (.5 
sec) 

0 0 0 0 14.2 50.3 18.0 24.4 N/A N/A N/A N/A 32.3 8.4 12.5 2.7 

Extrapolate 0.9 0 0 0 99.7 99.4 99.5 99.3 48.8 N/A N/A N/A 0.7 0.7 0.7 0.9 

Extrapolate & 
Smooth 

14.8 17.9 4.3 13.3 23.8 49.1 37.3 27.8 53.2 14.6 92.4 55.3 42 10.7 9.9 12.9 

Repeat (2 sec) 28.2 41.2 41.4 33.4 49.5 84.3 84.4 68.4 46.8 11.2 0.6 3.6 3.4 1 0.6 2.6 

Extrapolate 97.6 99.7 99.8 98.5 99.7 99.7 99.8 99.5 1.9 0.4 0.4 1.9 0.7 0.4 0.4 0.7 

Extrapolate & 
Smooth 

28.7 40.9 25.6 30.8 40.4 70.6 67.61 64.2 47 11.2 7.3 6.3 28.9 9.5 6.6 6.3 

 
 

 
Figure 23. Acceleration comparison for approach 4.  Spoof detector triggered by drop outs in PPP around 45 seconds from start of plot vs 
time from start (hours) 
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FUTURE WORK & OTHER APPLICATIONS 
 
The results provide good indication that low cost IMU can be useful for spoof detection during critical phases of flight.  The 
analysis conducted provide only a preliminary feasibility demonstration and there is still much to be done.  Better modeling of 
the error is needed to obtain an accurate model of the standard deviation of acceleration difference.  This also means modeling 
actual avionics GNSS outputs (velocity) rather than the PPP used.  Another work area is fault-tolerant design.  For example, 
the detection architecture needs to determine when it is suitable for use.  This means to being able to determine when the 
attitude assumptions are valid or not.  The determination may use other measurement either other acceleration axes or rotation 
rates.  Another major work area is an optimal architecture for spoof detection both in terms of test statistics but also in terms of 
what measurements to use.  In the study, only vertical acceleration is used which means a lot of potentially useful 
measurements such as along track and cross track acceleration are being thrown away. 
 
A natural question is how applicable is the technique to other modes of transportation. The analysis conducted leverages some 
special characteristics of flight.  It is fortunate that, for aviation, there are high frequency, high amplitude (relative to the noise 
error level) acceleration signatures that can be used.  For railways and automobiles, one does not expect large accelerations in 
the vertical.  Indeed, our measurement of railway acceleration show that the vertical acceleration to be small and vehicle 
dependent.  For spoof detection, the latter is useful while the former presents a challenge.  Others have shown some track 
dependency [33].  This data suggests that using vertical rail acceleration for spoof detection requires more research to 
determine feasibility. 
 
However, automobile and rail have other characteristics that can be leveraged.  They have generally stable or predictable 
attitude.  They make frequent stops which allows for calibration of the IMU without aid of GNSS using techniques like zero 
velocity updates.  Additionally, user input, from a human or autonomous driver, may not be predictable by a spoofer and may 
also present a difficult to predict source of acceleration.  This concept has been explored in the aircraft setting whose autopilot 
is presumably much simpler than one that would be employed in automobiles [29]. 
 
 

 
Figure 24. Along track acceleration (accelerometer) as a function of distance along the track for the Caltrain.  Trains on multiple days are 
used with the trains running on the same schedule vs time from start (hours) 

 
Hence, other accelerations may be useful.  Figure 24 shows the along track acceleration of Caltrain, a commuter railway that 
runs between San Francisco and San Jose, as measured by the aforementioned Galaxy Note 3 plotted as a function of distance 
along the track.  The acceleration is reasonably consistent but there are variations between each trip, sometimes in the 
neighborhood of 0.1 m/s2.  These accelerations are due to essentially piloting variations.  The level is measurable by GNSS and 



accelerometers to measure.  Several other railway characteristics can be helpful.  First, attitude and alignment is not a major 
issue as the attitude for each point on the rail can be known a priori.  Second, spoof detection likely does not need to be 
continuous as rail often has other sensors such as wheel counter.  So the spoof detection system only need to be able to detect 
in a few places.  Of course, this is just preliminary and many variations in system set up (such automatic controls) can make 
the detection easier or more challenging.  Additionally, automobiles and rail also encounter high multipath environments 
which can pose a challenge for robust spoof detection and minimizing false alerts.  It needs to discriminate between spoofing 
and high multipath situations. 
 
 

CONCLUSIONS 
 
This paper introduced, developed and demonstrated the feasibility of a GNSS spoof detection technique based on low cost 
accelerometers that can robustly detect spoofing on a variety of worldwide transportation systems (aviation, railways and 
automobile). The technique differs from previous use of IMU in its architecture by employing a direct comparison of acceleration.  
The comparison does not commingle GNSS and IMU measurements so that it is always possible to compare a measurement 
derived purely from each sensor (GNSS or IMU).  This allows for continual detection and an unlimited detection window.  This 
IMU based monitor can be implemented with and can complement other IMU based spoof detection such as those using position 
domain comparisons. 
 
The paper presented and demonstrated unique random vertical accelerations experienced on aircraft approach.  These 
accelerations were then used as the basis for a simple and multi-condition executive monitor for spoofing.  These EMs 
demonstrated their spoof detection capabilities and their ability to limit false alerts using collected flight test data.  Preliminary 
results show that monitoring can be designed to detect spoofing on all four approaches tested.  Time to first detect depends on 
both the monitor design and aircraft dynamics.  Fast detection (< 10 seconds) can be achieved but high amplitude and frequency 
accelerations are desirable.  Many more flights will be needed to validate the performance results. 
 
Finally, the paper discussed the use of different acceleration signatures for rail and automobile.  It showed the accelerations 
experienced in a railcar over numerous trials and demonstrates unique properties that can be used despite traversing the same 
route and schedule. 
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