
Parameter Selection for the TESLA Keychain 
 

Andrew Neish, Todd Walter, Per Enge  

Stanford University 

Abstract 
In this work, the threats to TESLA and the TESLA keychain are evaluated and the weak points in 

the implementation are identified. Modes of attack are modeled to emulate the effort required for an 

attacker to break the security of the TESLA keychain. This effort is contextualized with the window of 

vulnerability which is directly related to the length of the keychain and other variables. The effort required 

to break TESLA as these variables change is calculated using probabilistic models. While observing the 

variables’ consequences to security, an analysis is carried out that yield recommendations for a secure 

implementation of the TESLA keychain.  

I: Introduction 
The Global Navigation Satellite System (GNSS) is used worldwide to provide accurate location and timing 

services to billions of users. In addition to its popular use in cell phones, GNSS is also relied upon in aviation 

and other critical infrastructure such as power grids and financial transactions. According to the 

department of Homeland Security, of the 18 critical infrastructure and key resources sectors in the United 

States, 15 rely upon on GNSS. The ubiquity of use, combined with the low signal power and predictable 

message structure, make GNSS signals susceptible to jamming and spoofing. Whether intentional or not, 

spoofing of GNSS signals poses a very real threat to all users. Many methods are being developed to 

mitigate and detect spoofing attacks as there is no “silver bullet” against spoof attacks and different 

combinations of these methods are likely to be used on different platforms. Some methods focus on the 

use of monitoring metrics within the receiver [1], additional measurements taken from independent 

instruments such as IMUs [2], and authentication of the spreading code [3]. The methods that are focused 

upon in this research are cryptographic methods that will soon be implemented on the European 

constellation Galileo and may be implemented on Satellite Based Augmentation Systems (SBAS) and other 

GNSS signals in the future. Cryptography in the form of digital authentication will be implemented to 

protect GNSS data and can serve to mitigate many simple spoofing attacks available to adversaries today.  

One algorithm that has been given considerable attention is the Timed Efficient Stream Loss-Tolerant 

Algorithm (TESLA) [4]. Small signature length, high security, and robustness to quantum computing attacks 

make it an ideal candidate for SBAS authentication. TESLA’s security relies on a “keychain” that is derived 

using a one-way function, in this case a secure hash function SHA-256. The common way to denote this 

function is ℎ(𝑥) = 𝑦 where ℎ is the hashing function, 𝑥 is the input value and 𝑦 is the output. This one-

way function is pre-image resistant, meaning there is no easy way to compute ℎ−1(𝑦) = 𝑥. This one-way 

function is also collision resistant, meaning there is no easy way to find 𝑥∗ where 𝑥∗ ≠ 𝑥, such that 

ℎ(𝑥∗) = ℎ(𝑥) = 𝑦. The security of these hash functions can be compared using a metric known as the 

security level. This metric serves as a common reference for different cryptographic schemes and 

represents the effort required to break these schemes. Keys from the TESLA keychain have a limited 

window of time in which they are valid. This introduces a key feature when incorporating cryptography in 



GNSS signals: the signals are only vulnerable for only a short period of time. Whereas a low security level 

might be disadvantageous for information that is valid for long periods of time, low security levels for a 

GNSS signal may be tolerable if the window of vulnerability is similarly small. 

There are several variables that can significantly alter an attackers ability to discover a keychain. The 

length of the keychain, 𝐿, can change the number of opportunities an attacker has to collide their keychain 

with the true keychain as well as change the total number of hash functions an attacker must compute to 

find a collision. The key length, 𝑛, can exponentially change the probability of collision. The time between 

authentication (TBA) and time between key release can also change the frequency of how often a new 

keychain must be introduced. These parameters are constrained by bandwidth of the signal and the 

computing power of the receivers. The best design of the TESLA keychain will take these different factors 

into account in order to find the pareto optimum between security, bandwidth, and user effort.  

This paper is divided into the following sections: Section II provides an overview of the TESLA algorithm; 

Section III briefly introduces the probabilistic model for TESLA security from [5] and derives an updated 

version of the attacker model; Section IV covers the trade space for the TESLA keychain design that is 

within the scope of this paper; Section V provides results and Section VI provides conclusions and 

recommendations from the trade space analysis. 

II: The TESLA Algorithm 
One proposed method of mitigating and detecting spoofing attacks is incorporating an authentication 

message type in addition to the current SBAS messages. This message would provide the user with the 

ability to determine whether the messages received by the receiver were valid messages that originated 

from the SBAS satellites. Currently, a Cyclic Redundancy Check (CRC) appends the messages and allows 

the user to determine whether the message received has any errors, but this CRC does not verify the 

origin of the message itself. If a spoofer wished to attack the SBAS signal with synthetic messages made 

by the attacker, the CRC for those messages could still be pre-computed and sent along with the false 

message. 

Authentication, on the other hand, strives to provide the user with a signature on the message that can 

only originate from the valid sender. This is accomplished in cryptography with the use of hard 

mathematical problems. There are two types of cryptographic systems: symmetric and asymmetric. 

Symmetric systems require both the sender and receiver to share a secret key. With this secret key they 

are able to encrypt and send messages. Only those with a valid secret key are able to decrypt the messages 

and read the plaintext content. Asymmetric algorithms make use of a public key, secret key architecture. 

The sender is the only one in possession of the secret key, but instead of encrypting messages, the sender 

creates a signature of the message and sends the signature appended with the plaintext message. The 

receiver then uses the received message, signature and the public key to verify the authenticity of the 

message. Figure 1 shows both processes. As SBAS is a widely used system and the problems with keeping 

secret keys secure among all users are insurmountable, authentication using asymmetric methods are the 

most applicable in this case. 



 

Figure 1: Symmetric and Asymmetric cryptography 

An outline of TESLA is given in [6] and the basics of the method are covered here. TESLA is a symmetric 

cryptographic algorithm that creates asymmetry by the delayed release of keys used to authenticate 

signatures called Message Authentication Codes (MACs). A message is sent appended with the MAC that 

authenticates it, or a series of messages. After a period of time, the key is sent to “unlock” the MAC and 

verify the contents of the message(s) it authenticates. The main advantage for using TESLA as an 

authentication algorithm for SBAS is that it is computationally more efficient than other asymmetric 

algorithms which is important for receivers using low power, low speed embedded processing 

architectures. Similar to Figure 1, Figure 2 shows the basic architecture of TESLA. 

 

Figure 2: TESLA Architecture 



Since TESLA is a symmetric algorithm, anyone with the correct key could generate their own message and 

corresponding MAC in an attempt to spoof GNSS data. Because of this, the key that is released must also 

be authenticated and so is a part of a keychain, created by a one-way function released in the order 

opposite from which it was created. A keychain, shown in Figure 3, is generated using one-way functions 

recursively, shown in Figure 4, where the subscript denotes the index of the key and hash function used 

and 𝑘0 is the root key. There must be a separate, truly asymmetric algorithm that authenticates 𝑘0. In this 

way, it is hard for an attacker to generate their own keys that will be authenticated. These keychains must 

be carefully designed and implemented in order to operate with a high degree of certainty that an attacker 

would never be capable of discovering the true keychain or any keychain that would be authenticated. In 

Figure 5, messages 𝑚𝑗=1,𝑖 → 𝑚𝑗=𝒥,𝑖 are sent and a MAC/key combination is sent in a message afterwards. 

The MAC is computed using the previous messages shown in Figure 5 and the key, 𝑘𝑖. The key, 𝑘𝑖−1, is 

sent so the user can verify the previous MAC, 𝑀𝐴𝐶1:𝒥,𝑖−1. Figure 6 shows the algorithm for using TESLA to 

authenticate messages. 

 

Figure 3: Keychain for TESLA 

 

Figure 4: Example of one-way function 

 

Figure 5: Basic authentication message sequence for an L5 SBAS signal 



 

Figure 6: TESLA algorithm implementation outline 

If SBAS messages are to be authenticated using the in-phase L5 channel, multiple messages will need to 

be authenticated at once as the requirements on the system precludes having every message 

authenticated individually. In this case there are 𝒥 total messages per authentication group and in practice 

this number can vary from authentication to authentication. Indeed, this number of messages, 𝒥, will 

need to be flexible in order to accommodate GNSS fault alert requirements. 

The SBAS L5 message has 216 bits available in a single message. SHA256 has an output of 256 bits and so 

the output of the hash will need to be truncated at each step in the creation of the keychain if the key and 

MAC are to fit in a single message. Using only a hash function and truncation in the creation of keys 

provides a deterministic function for deriving the keychain. This characteristic of being deterministic offers 

receivers the ability to recover the keychain in the event that messages are lost, but it also allows attackers 

the ability to carry out pre-computation attacks. The addition of a “salt”, or cryptographic randomness, to 

the key creation process has been proposed in previous literature [5][7][8]. This salt can come in the form 

of incorporating a time-varying hash function that changes with each iteration of key creation in the 

keychain. An example would simply be appending the key with its time of transmission at each key in the 

keychain before taking the hash and deriving the next key. In order to enable key recovery in the event 

that a receiver missed messages, these time-varying hash functions need to be deterministic, which is 

possible for message structures within GPS or Galileo but is not suitable for SBAS. An alternative would 

be to include a fixed set of bits that are constant with respect to each keychain but are randomly chosen 

between different keychains so a salt for a future keychain is unpredictable. This salt is appended to each 

key before it is hashed to find the previous key and the salt would be broadcast and authenticated 

alongside the root key so that receivers could utilize it once the keychain is in use. If the salt is reasonably 

large, precomputation attacks on the keychain would be infeasible. Further discussion on this salt will be 

given in Section IV.  

There are several places within this SBAS authentication process that a spoofer might try to attack. One 

vulnerability is that TESLA requires sufficient time synchronization between the sender and receiver for 



the signatures to be trusted. Once a key is published, it can be used to create a false MAC verifying false 

data if the spoofer is able to convince a receiver that they are operating at a time before the current time. 

An external, trusted source for time, such as the user’s clock, must be used to check against the incoming 

signal time stamps and verify that the time is correct. Clocks drift over time and users will need to 

periodically sync their clocks to GNSS clocks through a trusted source outside of GNSS. This poses a large 

challenge for aviation users and will need to be solved before TESLA can be implemented in SBAS. 

Other potential vulnerabilities in this authentication process include the asymmetric algorithm that 

authenticates the root key of the TESLA keychain. If an attacker were able to authenticate a false root key, 

they would then be able to create a false keychain that receivers would verify and accept. With the advent 

of quantum computing [6], many asymmetric algorithms lose their assumed security and so the selection 

of this asymmetric algorithm will be critical.  

The GNSS and SBAS infrastructure are also vulnerable to more conventional cyber-attacks aimed at 

learning the secret keys and keychains to be used in the future, so care must be taken to protect this 

information.  

The mode of attack this paper will address is an attack on the TESLA keychain itself. With enough 

resources, an attacker may try to discover the keychain with a brute force attack by guessing final keys 

and performing the necessary one-way to discover a valid keychain.  

III: Probabilistic Attack Model for TESLA security 
A standard L5 SBAS message contains 250 bits: a 4-bit preamble, a 6-bit message type identifier, a 216-bit 

data field, and a 24-bit CRC. The one-way function that is proposed for use in the creation of the TESLA 

keychain is the SHA256 algorithm. This Secure Hash Algorithm (SHA) acts as a standard one-way function 

in cryptography that is capable of taking an arbitrarily sized bit-field and creating a 256-bit output. This 

function is deterministic and has no known inverse, making it an ideal candidate for computing the TESLA 

keychain. The keys in the keychain will be derived from this one-way function by truncating the output of 

the hash to create each key. In [5], it was pointed out that one needs to be careful when truncating the 

output of the SHA256 function to create the keychain. A pre-image or second pre-image becomes more 

likely to be found as the amount of truncation increases.  

The attack is set up as follows: A keychain is created in secret by the SBAS command segment and stored 

in secret. An attacker has a window of attack where they plan to broadcast a spoofed SBAS signal and 

change the time or position of a user. The attacker wishes to discover ℓ keys between 𝑘𝑖 and 𝑘𝑖+ℓ in order 

to forge messages and have the user accept these messages as valid. Figure 7 shows this window of attack 

within the keychain. 



 

Figure 7: Window of attack desired by attacker 

In this paper, 𝑘0 represents the root key and 𝐿 represents the length of the full keychain. The attacker 

would guess a value �̂�𝑖+ℓ, recursively hash and truncate this value ℓ times and check if 𝑘𝑖 = �̂�𝑖. If true, the 

attacker has found a keychain that a receiver would accept and begins to spoof, otherwise the attacker 

guesses another �̂�𝑖+ℓ and tries again. If the attacker begins this method before the release of 𝑘𝑖, computed 

[�̂�𝑖, �̂�𝑖+ℓ] pairs are stored, and a search is performed once 𝑘𝑖 is released. Let 𝑇𝑘 represent the period of 

time between message authentications, which will be roughly constant in practice and will be treated as 

constant here. If a salt is added, preventing the attacker from carrying out a precomputation attack, then 

the time available for the attacker to find a valid keychain is given in Equation 1. 

 𝑇 = 𝑇𝑘(𝑖 + ℓ)   1 

 

A probabilistic model was derived in [5] to assess the security of the keychain and a metric known as the 

probability of a successful attack, 𝑃𝑠, was computed. The probability of success is given in Equation 2 for 

the case where the keys are generated using a combination of hashes, truncations, and padding. 

 
𝑃𝑠 = (1 +

1

ℓ
) (

𝑅ℎ𝑇

𝑁
)  

  2 

 

In this equation, 𝑅ℎ is the computing power of the attacker expressed in terms of hash/s and 𝑁 is the total 

number of possible permutations for the set of keys; if keys are n-bits then 𝑁 = 2𝑛. The probability of 

success against an ideal keychain, where the key generation function is a true one-to-one function without 

collisions, is given in Equation 3. 

 
𝑃𝑠 = (

1

ℓ
) (

𝑅ℎ𝑇

𝑁
)  

   3 

 

As ℓ → ∞, the probability of a successful attack for the non-ideal method becomes dependent upon the 

hardware and time available to the attacker and the effect of the length of the keychain diminishes with 

respect to the ideal key creation method. It was shown [5] that for the assumed case where the keys were 

truncated to 80 bits, a brute force attack using modern computing hardware on the keychain yielded a 

10−4 probability of success. Since then, longer keys have been proposed to be used and this paper will 

give recommendations to the minimum key length to be used for the TESLA keychain.  



The attacker model that was developed in [5] consisted of a malicious actor targeting a specific set of keys 

within their window of attack. The attacker would know they were successful if their computed keychain 

reached the same key, 𝑘𝑖, by the time that key was released. The attack occurred under the assumption 

that a time-varying hash function was used in the creation of the keychain, so an attacker could not carry 

out a precomputation attack on the keychain. If the attacker is not particular about when they would like 

to attack, the limiting case for the window of attack is the entire keychain (ℓ = 𝐿), shown in Figure 8. In 

this case, using the above attack model, the attacker would hash each guess of the final key 𝐿 times until 

a guessed root key was calculated. Once the keychain begins to be used, an attacker would only have to 

hash down to the most recently released key to check if their computed keychain is valid, thereby 

minimizing the total number of hash functions that they would have to perform. This particular strategy 

will change the probability of success metric and that change is derived as follows. 

 

Figure 8: Attack on an entire keychain 

From [5], the definition of a successful single guess using a brute force attack on the keychain is given as 

Equation 4, where 𝑆𝑗 is the condition of success for guess 𝑗, 𝑖 is the index of the disclosed key along the 

keychain (which may or may not be the root key), ℓ is the length of the keychain the attacker wants to 

spoof, �̂�𝑖 is the guessed key at the end of the keychain computed by the attacker, and 𝑘𝑖 is the disclosed 

key. 

 𝑆𝑗(𝑖, ℓ) = {�̂�𝑖
𝑗

= 𝑘𝑖}      4 

 

For the case of an attack on the entire keychain mentioned above, the success criteria for a single guess 

is rewritten as Equation 5. 

 𝑆𝑗(0, 𝐿) = {�̂�0
𝑗

= 𝑘0}      5 

 

If Equation 5 defines the condition of success for a single guess, then Equation 6 defines the condition for 

success for an entire attack, where 𝑁𝐴 is the set of all permutations within in the computational scope of 

the attacker constrained by computing power and time. 

 

𝕊(0, 𝐿, 𝑁𝐴) = ⋃ 𝑆𝑗(0, 𝐿)

𝑁𝐴

𝑗=1

  

    6 



 

The probability of success defined in Equation 2 is predicated on the notion that the attacker will perform 

𝐿 key generations (padding → hash → truncation) at each guess 𝑗 for an attack on the full keychain. As the 

attacker is attempting to brute force attack the keychain, however, keys are continuing to be released. It 

is not necessarily in the interest of the attacker to find a keychain that arrives at the root key, but to find 

a keychain that arrives at the most recently released key. If an attacker finds a keychain that arrives at the 

root key but arrives there through a second pre-image that occurs farther down in the keychain than the 

most recently released key, the attack is not a successful attack as the receiver would not authenticate 

this false keychain if they had any recently saved keys in memory. Any key generation computations past 

the most recently released key is also a waste of time and computing resources. For long keychains, it 

would be unnecessary to compute large sections of the keychain if they have already been released. 

Therefore, an attacker would likely listen to the SBAS service and continually update the target key, 𝑘𝑖, to 

match the most recently released key. 

As noted in [5], if the assumption holds that 𝑃[𝑆𝑗(0, 𝐿)] ≪ 1/𝑁𝐴 , the attack is well approximated by its 

union bound: 

  

 

𝑃𝑠 = 𝑃[𝕊(0, 𝐿, 𝑁𝐴)] = ∑ 𝑃[𝑆𝑗(0, 𝐿)]

𝑁𝐴

𝑗=1

 

    7 

 

Where the set of attacker permutations is 𝑁𝐴 = 𝑅ℎ𝑇/𝐿. For a model where the attacker computes no 

keys past the most recent key, the sum in Equation 7 is split into a sum of sums shown in Equation 8. 

 

𝑃𝑠 = ∑ ∑ 𝑃[𝑆𝑗(𝑚, 𝐿 − 𝑚)]

𝑁𝑚

𝑗=1

𝐿−1

𝑚=0

 

    8 

 

In Equation 8, 𝑁𝑚 is the set of all guesses that can be computed by an attacker in between key releases 

and is now a function of the number of keys that have been released since the start of the attack. In this 

case, 𝑁𝑚 =
𝑅ℎ𝑇𝑘

𝐿−𝑚
 , where 𝑇𝑘 is the interval in seconds between key release. As time moves forward and 𝑚 

increases, 𝑁𝑚 increases linearly as one would expect when the length of the keychain that must be 

computed decreases. Since 
1

𝑁𝑚
>

1

𝑁𝐴
 , the probability of success is still approximated well by its union 

bound. The average single attempt success probability derived in [5] is given in Equation 9, and remains 

true for this new model. 

 
𝑃[𝑆𝑗(0, 𝐿)] =

𝐿 + 1

𝑁
 

    9 

 

The sum of Equation 8 is thus presented as  

 



 
𝑃𝑠 =

𝐿 + 1

𝑁
(

𝑅ℎ𝑇𝑘

𝐿
) + ⋯ +

𝐿 − 𝑚 + 1

𝑁
(

𝑅ℎ𝑇𝑘

𝐿 − 𝑚
) + ⋯ +

2

𝑁
(

𝑅ℎ𝑇𝑘

1
) 

 

𝑃𝑠 = ([ ∑
1

𝐿 − 𝑚
 

𝐿−1

𝑚=0

] + 𝐿) (
𝑅ℎ𝑇𝑘

𝑁
) 

    

 

    10 

 

Where the sum inside of Equation 10 is the 𝐿-th harmonic number. There is no closed form solution for 

the harmonic numbers, but for large values of 𝐿, they are well approximated by Equation 11 where 𝛾 is 

the Euler-Mascheroni constant. 

 
𝐻𝐿 = ∑

1

𝐿 − 𝑚
 

𝐿−1

𝑚=0

≈ ln 𝐿 + 𝛾 +
1

2𝐿
−

1

12𝐿2
+

1

120𝐿4
 

    11 

 

With this relation, Equation 10 can be rewritten in the familiar form seen in Equation 12 where one notices 

that the time available to attack the keychain is 𝑇 ≤ 𝐿𝑇𝑘 assuming the attack begins when the root key 

and salt are released. 

 
𝑃𝑠 = (1 +

𝐻𝐿

𝐿
) (

𝑅ℎ𝑇

𝑁
)  

  12 

 

As 𝐿 increases, 𝐻𝐿 increases logarithmically, and so probability of success converges to the solution given 

in Equation 2. As a formal exercise, the result found in Equation 12 shows that even with this updated 

attack model, the benefit to the attacker is linear and not exponential. 

The equation for the probability of a successful attack given thus far assumes the use of a time-varying 

hash function or a salt that serves to add entropy to the key generation process and prevent pre-

computation attacks. As mentioned previously, for an L1 or L5 authentication message type on an SBAS I-

channel, time-varying hash functions pose a challenge as the rigid message structure associated with 

systems such as GPS and Galileo is not present. If a receiver comes online after a period of downtime and 

needs to perform the recursive key generation scheme to recover the TESLA keychain, this process 

becomes difficult if the keys generated in the intervening time use a hash that is salted with information 

that cannot be recovered autonomously. SBAS alert messages take precedence which may delay an 

authentication message, making temporally consistent authentication messages impossible to guarantee.  

In the case where there is no keychain salt and a time-independent hash function is used in the generation 

of the keychain, attackers can use precomputation attacks to discover the keychain long before the 

keychain is released. The probability of success is then dependent upon the attacker’s ability to find a 

collision on the keychain which is derived in [5] and given as 

 
𝐸[𝑝𝑐] ≅  

𝑅ℎ𝑇

𝑁
 

    13 

 



Where the attack time 𝑇 in Equation 13 is no longer bounded by the length of the keychain as it has been 

previously. If an attacker is given years to attack the keychain, the probability of computing a valid 

keychain increases linearly with precomputation time. 

IV: TESLA Trade Space 
There are several variables that are malleable in the design of the TESLA keychain. Each variable is 

constrained by limits in bandwidth, security, authentication error rate (AER), receiver effort and other 

factors crucial to the purpose of SBAS signals. It is important to understand how each of these variables 

effect these performance parameters and so an analysis is carried out using the mathematical models 

derived in this and previous works. This work will focus primarily on the affects these variables have on 

the security of the system. A more detailed analysis incorporating bandwidth and continuity will be done 

in future work. 

The variables that are considered in this work are thought to have the greatest impact on these 

performance parameters. The number of keys in a keychain (𝐿) can affect the security of the TESLA 

scheme along with the length of the keys (𝑛). Time between authentication (TBA), represented in this 

paper by the variable 𝑇𝑘, impacts the bandwidth the authentication messages consume in the L5 SBAS 

signal, affects the AER, and the effort the receiver must exert periodically when authenticating the 

message. TBA also has implications in the security of the keychain if 𝐿 is chosen independently. The use 

of a salt in order to prevent precomputation attacks will affect the security of the TESLA keychain as well.  

A model for the computational abilities for an attacker is derived using hardware that is specialized in the 

mining of cryptocurrencies. One of the most productive cryptocurrency mining facility exists in Ordos, 

China that uses 25,000 machines 24 hours a day [9]. Some of the best machines that are available today 

run are capable of running at speeds of up to 1.4 ⋅ 1013 hash/sec [10]. A generous model for the 

computational ability of an attacker can be estimated at 𝑅ℎ = 25,000(1.4 ⋅ 1013) hash/sec. 

Proper selection of the keychain length and key length should be chosen to make the probability of a 

successful attack negligible. This threshold is set to 10−9 for this work and only parameters that render 

the possibility of a successful attack to this value or lower will be considered. First, the case where a salt 

is added to the keychain, thereby rendering precomputation attacks infeasible, is considered. Using a TBA 

of 6 seconds, Figure 9 shows a contour plot of the probabilities of a successful brute force attack on the 

TESLA keychain with various combinations of key length and keychain length. It is clear from the plot that 

there is a logarithmic relationship between the keychain length and the probability of a successful attack. 

Figure 10 uses the same parameters and plots the keychain length logarithmic in time. 



 

Figure 9: Probability of Success with keychain length linear in time. TBA = 6s. 

 

Figure 10: Probability of Success with keychain length logarithmic in time. TBA = 6s. 



The data field within the L5 SBAS message is 216 bits long, which will be sufficient to fit the key, MAC and 

extra bits carrying information about the root key and salt. An attack on forging the MAC itself by guess 

has a one-time opportunity for success. If successive MACs do not authenticate the data, the receiver will 

be alerted and will not trust the associated SBAS data. The probability of guessing the correct MAC given 

in Equation 14 where 𝑚 is the number of bits allocated to the MAC. For the probability of a successful 

single MAC forgery to be 𝑃𝑀𝐴𝐶 ≤ 10−9, the minimum MAC length needs to be is 𝑚 = 30 bits. For a 216-

bit data field with a 30-bit MAC, 186 bits remain for the key and other information. 

 𝑃𝑀𝐴𝐶 = 2−𝑚     14 

 

From Figure 9 and Figure 10, a key length of 115 bits would be sufficiently secure for the assumed TBA 

and 𝑅ℎ for keychains not lasting more than several years. This would leave 71 bits in the L5 message for 

extra information that could be used for over-the-air rekeying (OTAR), salt information and root key 

information. 

The above figures assume there is salt added to the keychain preventing pre-computation attacks. Figure 

11 below shows the equivalent plot of Figure 10, assuming the attacker performs a precomputation attack 

lasting 30 years with a TBA of 6 seconds. The probability of success is not a function of the keychain length 

if the attacker is able to precompute a keychain, and in this case a 115-bit key leads to a probability of 

success slightly under 10−8. 

 

Figure 11: Probability of Success with no salt added to the keychain. TBA = 6s and 30 years of pre-computation. 

The effects of the chosen TBA and assumed computing power (𝑅ℎ) of the adversary are shown in Figure 

12 and Figure 13, respectively. In Figure 12, a TBA = 1s refers to a key/MAC message existing on the 



quadrature channel and in Figure 13, an 𝑅ℎ = 350000 Thash/s is equivalent to the attackers computing 

capabilities assumed throughout the rest of the paper.  

 

Figure 12: Effect of TBA on requisite key length for Ps = 1e-9 



 

Figure 13: Effect of Rh on requisite key length for Ps = 1e-9. Rh = 350000 Thash/s is equivalent to the computational ability 
assumed throughout the paper. 

These plots show isolines for 𝑃𝑠 = 10−9 for varying key and keychain lengths as TBA and 𝑅ℎ are changed. 

Due to the exponential effect the key length has, for fixed keychain lengths both the TBA and 𝑅ℎ change 

the key length by several bits. In this way, the risk of being too conservative in the key length has a limited 

effect on the bandwidth of the L5 SBAS message. 

V: Conclusions and Recommendations 
A model for the security of the TESLA keychain that was derived in an earlier paper [5] was modified to 

accommodate a new form of attack. A security-based trade analysis was carried out to look at the role 

different variables played in the effectiveness of the TESLA keychain. The data field for an L5 SBAS message 

is 216 bits that will include a MAC, key, and other authentication information, bandwidth permitting. 

Contour plots where created looking at the effect that key and keychain length combinations had on the 

security of the keychain. The security of the keychain scales exponentially with linear increases in the key 

length. The addition of salt proved to be a robust method to prevent precomputation attacks on the 

keychain. If a 30-bit salt is used, an attacker would have a 𝑃𝑠 = 10−9 of correctly guessing a future salt, 

similar to the length of the MAC. 

To look at the consequence that time between authentication and computational ability played on the 

security of the keychain, plots containing iso-lines were created to illustrate the magnitude of the change 

each variable had on the security. In both cases, large changes in the independent variable only resulted 



in small changes in the required key lengths, giving confidence that if a system is designed with sufficient 

margin in the key length, the security of the keychain increases exponentially. 

From this work, for keychains lasting less that 1 year in duration, 115-bit keys may be sufficient for security 

against an attacker with the above assumed capabilities. For an added precaution, 125 bits adds an 

decreases the probability of a successful attack by nearly three orders of magnitude at minimal cost to 

the data-field. If a 30-bit MAC is used, 61 bits are then left in the data field to be used for other 

authentication information. These may include information on the authentication of the root key, key 

updates, key revocation, salt, and other necessary information. 

For future work, impact of these parameters on bandwidth and continuity will need to be calculated. 

While observing the security of the keychain will give a lower bound on the length of the key and keychain, 

the bandwidth and continuity are likely to give an upper bound to these variables in the system as well as 

help narrow down other variables such as TBA. The asymmetric algorithm used to authenticate the root 

key will need to be chosen. This has proven to be a more difficult task, as the threat of quantum computing 

negates the use of many popular, standardized algorithms. Moreover, standardized algorithms that are 

resistant to quantum computing are not expected to be available until well into the next decade. Finally, 

the guarantee of sufficient time synchronization between the sender and receiver is a technical problem 

that is likely to be the largest hurdle before a secure implementation of TESLA on SBAS. This problem in 

particular will need to be solved before any implementation of the system can be deemed secure. 

References 
[1] E. G. Manfredini, P. Torino, D. M. Akos, and Y. Chen, “Effective GPS Spoofing Detection Utilizing 

Metrics from Commercial Receivers,” in Proceedings of the Institute of Navigation International 
Technical Meeting, 2018. 

[2] S. Lo and H. C. Yu, “The Benefit of Low Cost Accelerometers for GNSS Anti-Spoofing,” in 
Proceedings of the ION 2017 Pacific PNT Meeting, 2017. 

[3] L. Scott, “Anti-Spoofing and Authenticated Signal Architectures for Civil Navigation Systems,” 
Proc. 16th Int. Tech. Meet. Satell. Div. Inst. Navig. (ION GPS/GNSS 2003), pp. 1543–1552, 2003. 

[4] A. Perrig, R. Canetti, J. D. Tygar, and D. Song, “Efficient authentication and signing of multicast 
streams over lossy channels,” in Proceedings of the IEEE Computer Society Symposium on 
Research in Security and Privacy, 2000, pp. 56–73. 

[5] G. Caparra, S. Sturaro, N. Laurenti, and C. Wullems, “Evaluating the security of one-way key 
chains in TESLA-based GNSS Navigation Message Authentication schemes,” in Proceedings of 
2016 International Conference on Localization and GNSS, ICL-GNSS 2016, 2016. 

[6] A. Neish, T. Walter, and P. K. Enge, “Quantum Resistant Authentication Algorithms for Satellite-
Based Augmentation Systems,” in Proceedings of the Institute of Navigation International 
Technical Meeting, 2018, pp. 365–379. 

[7] A. J. Kerns, K. D. Wesson, and T. E. Humphreys, “A blueprint for civil GPS navigation message 
authentication,” in IEEE PLANS, Position Location and Navigation Symposium, 2014, pp. 262–269. 

[8] I. Fernández-Hernández, V. Rijmen, G. Seco-Granados, J. Simon, I. Rodríguez, and J. D. Calle, “A 
Navigation Message Authentication Proposal for the Galileo Open Service,” Navig. J. Inst. Navig., 
vol. 63, no. 1, pp. 85–102, 2016. 



[9] J. I. Wong and J. Simon, “Photos: Inside one of the world’s largest bitcoin mines,” Quartz, 2017. 
[Online]. Available: https://qz.com/1055126/photos-china-has-one-of-worlds-largest-bitcoin-
mines/. 

[10] “Bitmain,” 2018. [Online]. Available: https://www.bitmain.com/. 

 


