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ABSTRACT 
There may be situations where positioning is 
required, but no service is available either due to 
signal blockage or cost of installing 
infrastructure. 
 I suggest an architecture where the navigation 
system is carried along as a group of 
people/devices are moving.  For simple 2-D 
positioning, a set of 4 ranging transponders are 
needed.  Initially, 2 of these devices are placed in 
fixed and “known” local positions (e.g. by a 
doorway), while the two others can roam freely 
into the area of interest.  Their position can be 
calculated with respect to the “known” initial 
position.  At some point one or both of the 
mobile units are commanded to stop, and one or 
both of the fixed units are allowed to move.  As 
time progresses, all units take turns acting as 
fixed or mobile stations, and the entire group can 
leapfrog their way towards a common goal.  
 Positioning accuracies will deteriorate 
predictably as a function of network topology 
and individual ranging accuracies.  Applications 
may range from firemen navigating through 
burning buildings or tunnels to groups of rovers 
exploring distant planets. 

1 INTRODUCTION 
The Leapfrog architecture crystallized from 
working with indoor navigation systems.  This 
architecture is meant to provide local positioning 
services in areas where other navigation signals 
might be blocked or navigation infrastructure is 
too costly to install.  In short, why don’t we 
bring the navigation system along? 
 Inertial Navigation Systems (INS) are 
excellent examples of such self-contained 
navigation systems [1].  However, INS-es are 
generally very expensive, and positioning errors 
grow as function of time. 
 Several companies and academic groups work 
on self-configuring navigation systems.  The 
Mars Rover project at Stanford University use 
GPS transceivers and motion algorithms to 
resolve both cycle ambiguities and individual 

relative locations of a rover and 3 fixed stations 
[2]. 
 A group at Worchester Polytechnic Institute 
has suggested a real-time deployable geolocation 
system based on UWB transponders [3].  Such a 
system consists of a fixed reference station, 
several “thrown” pseudolites in random but fixed 
locations and multiple mobile users.   
 Æther Wire and Location Inc. are working on 
self-configuring networks of UWB localizers [4]. 
 A group at the Seoul National University GPS 
Lab (SNUGL) also has a novel way of surveying 
locations of indoors pseudolites [5]. 
 In its simplest 2-D form a Leapfrog navigation 
system consists of 4 units.  Whereas two of the 
units are mobile, the two others are initially in 
fixed and “known” local positions.  Positioning 
is done relative to the fixed units, and the 
mobiles are free to rove into the area of interest.  
At some point, one or both of the mobiles are 
commanded to stop, releasing one or both of the 
fixed units to move.  As long as at least two units 
are fixed, the location of any of the 4 units can 
be referenced back to the initial two fixed 
positions.  Positioning errors accumulate every 
time a unit switches state, but error bounds can 
be predicted based on ranging error statistics and 
local geometry. 
 The analysis presented in this paper is generic, 
but the ultimate intent is to use ranging 
transponders either based on GPS or UWB 
technology. 

2 THEORY 
In the following I have assumed use of 
transponder based ranging devices with the 
following basic navigation equation: 

( ) ( ) ( )2 2 2
1 12dϕ δ= +               Eq. 1 

In the above equation ( )2
1ϕ is the round-trip 

delay measurement between transponders 1 and 

2, ( )2
1d is the distance between the transponders, 



and ( )2δ  is the (known) processing delay of 
transponder 2 (ignoring any error terms for now). 
We may want to use measurements going both 
ways in order to reduce error effects.  Thus, we 
can expand Eq. 1 as follows 
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 If we stack all available measurements into a 
vector and linearize about the estimated positions 
of mobile units 3 and 4, we get the matrix 
equation below (units 1 and 2 fixed). 
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Eq. 3 Linearized navigation equations 

 All x∆  and y∆  are perturbations around the 
current position estimates, and all los are line-of-
sight vectors between the different units.  The 
equation set might not converge globally through 
straight iterations, but non-linear algorithms can 
resolve such problems [6]. 

3 COVARIANCE ANALYSIS 
One can include previous error statistics of the 
initially fixed units in the covariance 
calculations, e.g. if those initial positions were 
found using GPS.  In the matrix equation below, 
measurements on Eq. 2 form has been linearized 
around both fixed and mobile unit locations.  
However, the terms containing fixed units have 
been moved to the left side of the equation set 
since their positions already are “known.” 
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Eq. 4 Nav. equations with fixed position 

 In order to more easily perform algebra on the 
above equation set I introduce the following 
substitutions. 

0 F F M MA B d G x G xϕ δ⋅ − ⋅ − + ⋅ = ⋅
r rr r r

     Eq. 5 

Here, ϕ
r

 and δ
r

 are the vectors of round trip 
delay measurements and transponder processing 
delays.  A and B are the matrices that combine 

ϕ
r

 and δ
r

  to Eq. 4 format.  0d
r

 holds the 
current distance estimates between units.  
Whereas, Fx

r
 and Mx

r
 contain the fixed and 

mobile unit locations, FG  and MG  are their 
respective G-matrices.  Let’s find the covariance 
of the previous equation [7]. 
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 Furthermore, it is assumed thatϕ
r

, δ
r

and Fx
r

 
all are unbiased separate Independent Identically 
Distributed (I.I.D.) Gaussian variables.  Fx

r
 is 

also Gaussian, since any linear sum of Gaussian 
variables also is Gaussian.  Algebra yields. 
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 Let’s solve for the covariances of the mobile 
units (assuming a generally over-determined 
equation set). 
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Eq. 7 Covariance solution 

 The above equation relates position accuracies 
of the mobile units to variations in ranging 
measurements and processing delays as well as 
position uncertainties of the fixed stations.  The 
same equation can be used to propagate 
covariances when units switch states between 
being mobile and stationary.  If both mobile 
units were to switch to fixed mode at the same 
time, the current ( )T

M ME x x
r r  could be copied 

directly to the new ( )T
F FE x x

r r .  All previous cross-

unit terms of ( )T
F FE x x

r r  should be set to zero if 

only one mobile and one fixed unit switch at a 



time.  The matrices on the next page show the 
transition in ( )T

F FE x x
r r  when fixing mobile unit 3 

and releasing fixed unit 1. 
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The lower right hand terms are left untouched 
from the original matrix, and the upper left hand 
terms are copied from the corresponding terms 
in ( )T

M ME x x
r r . 

4 SIMULATIONS 
 I’ve considered 3 operational scenarios and 
simulated positioning performance of the 
leapfrog system.  First, planetary exploration 
with a group of 4 rovers.  In this case, one has 
freedom in optimizing geometry of the rover 
group.  Second, a single bootstrap configuration 
for use by e.g. firemen in a burning building.  
Motion will be more random, but certain 
constraints will be enforced on who gets to move 
and who must remain stationary.  Third, dual 
bootstrap with 2 or 3 team members.  Motion is 
still random, but the previous constraints are 
relaxed. 

4.1 PLANETARY EXPLORATION 
Future Mars missions may include rovers that 
will venture away from the comforts of the 
mother ship landing site.  Such vehicles may be 
sent out to collect soil and rock samples for 
further analysis either back at the landing site or 
back on Earth.  Not only would it be important to 
know where samples were taken, but also how to 
find the way back to the landing site. 
 Self-surveying of the original location can be 
done with techniques described in [6].   
 In the following I have assumed a ranging 
transponder system with fundamental ranging 
accuracies of 10cm and processing delay 
variations of 10cm for all units.  Furthermore, I 
start with a 100m baseline between the two fixed 
units.  The mobile units keep that same spacing, 
move away in lines perpendicular to the baseline 
between the fixed units, then stop and let those 
units leapfrog by. 
 The next plot shows horizontal root mean 
squared (HRMS) error for one mobile unit as 
function of distance from reference baseline. 
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Figure 1 Horizontal RMS error vs. distance 

 Intuitively one might be inclined to choose the 
leapfrog distance (how far the mobiles go before 
they stop)  that minimizes HRMS error (~0 in our 
case).  That distance ensures minimum error 
growth per step, but might not give the minimum 
error growth as function of total distance 
traveled.  This point is clearly made by the curve 
traces in the plot below. 
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Figure 2 Error growth vs. leapfrog distance 

 Given a maximum error tolerance, one can 
find the maximum range of the system from 
Figure 2.  The group of rovers could travel 3 km 
away from the landing site and still find back to 
their original locations to within 10 meters (half 
the distance out, the other half returning) if the 
leapfrog distance is more than 400m. 
 Greater system range would be gained if 
fundamental ranging errors and processing delay 
variations decrease, or the baseline distance is 
increased.  This last point can be understood by 
the fact that along-track errors generally are 
small, but cross-track ones tend to be large.  
Increasing the baseline distance, will generally 
improve geometry in the cross-track direction.  
The figure on the next page shows the error 
ellipse of one of the  mobile stations after having 
leapfrogged 6 km (400m leapfrog distance). 
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Figure 3 Error ellipse 

4.2 SINGLE BOOTSTRAP 
There may be situations where firemen require a 
navigation aid, but few or no services exist.  I 
suggest a system where every person in a team is 
outfitted with their own ranging device (e.g. GPS 
transceiver or UWB transponder).  To minimize 
moment-arm errors, such devices should be 
located close to the floor, i.e. on somebody’s 
boot.  Hence, bootstrap. 
 Operationally, a team of 4 people could be 
outfitted with such transponders.  Each teammate 
would have a light indicator showing green for 
free-to-move, or red for stop.  Two of the 
teammates would go just inside the doorway of a 
building, and their initial positions would serve 
as reference.  The two other teammates would 
then be free to move farther into the building.  At 
some point, one or both of the roaming 
teammates stop and one or both of the fixed ones 
gets to move.  The process is repeated, and the 
unit as a whole leapfrogs into the building. 
 In bootstrap mode one doesn’t have the luxury 
of optimizing path geometry, as the situation 
may be rather chaotic.  Instead, I used Monte-
Carlo simulations to predict navigation system 
performance.  In addition to the constraints of 
having two people stopped at all times, I 
constrained mode switching to regions with 
favorable HDOP.  Simulations were done with 
different HDOP thresholds and with goals of 
either maximizing or minimizing the baseline 
between stopped units.  These scenarios were 
simulated in a 3-by-20 meter hallway.  The 
figure below shows all mobile and fixed unit 
locations for one simulation run with HDOP 
threshold of 2.5 and the goal of maximizing 
fixed-unit baseline distance. 
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 The next plot shows mobile-unit 
ensemble-statistics of HRMS errors after 200 
simulation runs. 
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Figure 5 HRMS errors. Maximize distance 

 At each time step none, one or both mobile 
units stop, and the corresponding fixed units are 
released.  This process is decided by the given 
HDOP at each mobile unit.  If only one unit 
stops, baseline distance concerns decide which of 
the fixed units are released. 
 The next plot shows HRMS error statistics 
using the same HDOP threshold as above, but 
instead trying to minimize baseline distance. 
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Figure 6 HRMS errors. Minimize distance 



 Eventually both strategies led to huge HRMS 
errors, but minimizing baseline distance leads to 
more well-behaved error statistics.  In Figure 5 
the 1σ error bound has a monotonically 
increasing trend, and it crosses 1 km after only 
30 epochs.  Similarly, Figure 6 shows the same 
general trend, but the error bound never goes 
much beyond 50 m even after 50 epochs. 

4.3 DUAL BOOTSTRAP 
The single bootstrap scenario puts a few 
constraints on the operators in the unit; a 
minimum of 4 people is required and any 2 must 
always be stationary. 
 In order to loosen some of the previous 
constraint, I also considered a case where each 
team member has two ranging transponders; one 
on each boot.  The minimum team size shrinks to 
2  (4 transponders total).  Now no one has to 
remain fixed, but at least 2 boots must be on the 
ground at all times.  Practically speaking this 
would mean walking, but no running or jumping.  
 Unit control would also be significantly 
simpler, since each boot could be outfitted with a 
pressure switch to tell whether it is on the ground 
or not (no need for stop/go light indicator). 
 The price to pay for relaxed operator 
constraints is total system complexity.  Now 
everybody has to carry twice as many ranging 
units. 
 For the dual bootstrap simulations I literally 
implemented a “random walk” algorithm.  Each 
person always makes a step that’s uniformly 
distributed between 1 and 3 feet and ranges in a 
semicircle around each foot.  Everything is 
further constrained by the same 3-by-20 hallway, 
and by not bumping into one another.  The figure 
below shows possible steps for each foot. 

 
Figure 7 Dual bootstrap step 

 The next plot shows RMS error ellipses 
around the first 20 step locations. 
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Figure 8 Error ellipses 4-unit dual bootstrap 

 Figure 9 shows HRMS error statistics of 200 
simulation runs for 500 steps. 
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Figure 9 HRMS errors 4-unit dual bootstrap 

 Another simulation was done with a group of 3 
firemen for comparison reasons.  Error ellipses 
for the first 20 steps are plotted in Figure 10.  
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Figure 10 Error ellipses 6-unit dual bootstrap 

 The corresponding HRMS error statistics are 
plotted in the Figure 11. 
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Figure 11 HRMS errors 6-unit dual bootstrap 

5 CONCLUSION 
In the research presented in this paper I find that 
the leapfrog architecture has great potential for 
solving navigation needs in areas where other 
services are scarce. 
 For planetary exploration, simulations show 
that a group of rovers could travel several 
kilometers away from a landing site, and still 
find their way back with position errors of only 
10 meters. 
 In a constrained space scenario I find that error 
growth is minimized if a minimum-baseline 
strategy is applied for single bootstrap.  It may 
sound more intuitive to have a large baseline 
distance between fixed stations.  However, the 
area around the baseline has very poor DOP, and 
the larger the baseline distance the greater the 
area of poor DOP. 
 Dual bootstrap generally performs better than 
single bootstrap, which also constrains user 
operation more.  Further positioning 
improvement is gained when the total number of 
navigation units is increased.  This point comes 
as no surprise since adding units improves 
geometry.  There is a price to pay for adding 
units, though.  With ( )1 2n n⋅ −  cross-link 

baselines, and 2n unit coordinates to solve for, 
the G-matrix increases quickly. 
 A leapfrog navigation system could also be 
integrated with other navigation devices.  
Augmenting standard GPS with a leapfrog 
system could improve total positioning 
performance even when SV visibility is good [8].  
As GPS gets obstructed, the units go over to 
leapfrog mode.  However, scattered GPS fixes 
may reset error growth, much like GPS can be 
used to update an INS.  Given an error tolerance, 
curves in e.g. Figure 11 can be used to predict 
how often such a fix must occur. 

 In this paper I only considered 2-D navigation, 
and 3-D is left for future research. 
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