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ABSTRACT 
 
Enhanced Loran (eLoran) is designed to support maritime 
harbor entrance approach (HEA) operations. As a result, 
the Radio Technical Commission for Maritime Services 
(RTCM) special committee 127 (SC127) is developing 
minimum performance specifications (MPS) for HEA 
eLoran receiver. The MPS specify required algorithms 
and processes to ensure safe operations of the receiver. 
One important algorithm is the high integrity 
determination of the tracked Loran cycle. This paper 
details and examines some of the algorithms being 
developed and analyzed by SC127.  
 
SC 127 is developing simplified eLoran cycle error 
detection algorithms for the eLoran HEA MPS. Correct 
Loran cycle selection is needed to ensure safety as a cycle 
selection error results in range errors of 3 km or more. As 
HEA operations require accuracy levels of 10 meters, 
such errors pose a significant hazard. While other high 
integrity Loran cycle error detection algorithms have been 
proposed, these are require complex calculations and 
significant processing. The use of differential Loran in 
HEA supported areas can be leveraged to create a 
significantly simpler algorithm allowing for easier and 
lower cost implementation.  
 
This paper develops and examines two simplified 
algorithms for cycle error detection for HEA.  These 
algorithms use receiver autonomous integrity monitoring 
(RAIM) basic techniques of residual error and solution 
separation.  The paper describes the algorithms, their 
implementation and demonstrates its capabilities in the 
conterminous United States (CONUS). 
 
The goal of the work is to provide and demonstrate 
feasible algorithms for manufacturers to use for their MPS 
compliant HEA receiver. 
 
INTRODUCTION  
 
Cycle error and its detection is an essential step needed in 
processing the Loran signal and determining an accurate 
time of arrival (TOA) or time difference of arrival 

(TDOA).  Loran receivers all perform some form of cycle 
identification.  However, when we use Loran for safety of 
life applications such as non precision approach (NPA) or 
harbour entrance and approach (HEA), the fidelity of the 
cycle determination needs to be demonstrated. 
 
Early in the Federal Aviation Administration (FAA) 
Loran Evaluation program it was recognized that proving 
cycle integrity to the required level was going to be the 
most difficult task in the program.  We developed a 
residual test using a weighted sum of squared errors 
(WSSE) approach. [1].  Since this was first developed 
nearly six years ago, we have noted issues with the 
approach.    The first was complexity.  It required the 
calculation cumulative distribution functions (cdf) of χ2 
squared distributions with and without a non centrality 
parameter. Even then we could not accurately model 
distribution of sum of bias and noise.  Bias errors are not 
known as so overbounds and conservative combinations 
had to be determined.  This further increased complexity 
and resulted in significant conservatism.  The complexity 
of the WSSE algorithm is a consequence of the integrity 
requirements for aviation and because of the significant 
residual range error and biases of eLoran implemented for 
aviation.  Both these requirements are different under 
HEA.  In HEA, differential corrections are provided 
resulting in significantly lower levels of error.  The 
second major issue was performance.  Because of large 
variation in signal to noise ratio (SNR) among stations, 
weak signals weighted out of the WSSE test statistic, and 
cycle errors on these most vulnerable signals became 
undetectable.  These issues made it desirable to develop a 
simpler, better performing approach to proving cycle 
integrity and two such approaches are presented here. 
 
Two detection algorithms based on redundancy on 
measurements and hypothesis testing were developed. 
Simplification is possible as nominal differentially 
corrected ranges have errors of a few meters compared to 
incorrect cycle selection which have errors of kilometers. 
Both methods are based on techniques used traditionally 
by receiver autonomous integrity monitoring (RAIM) 
algorithms. The first method performs a test on the sum 
squared error (SSE) or residuals. The second method is 



based on multiple hypothesis solution separation (MHSS) 
techniques. This technique calculates solutions based on 
multiple subsets of ranging signals and examines their 
solution differences.  
 
 
SUM SQUARED ERROR (SSE) OR 
RESIDUALS APPROACH 
 
Deriving the sum squared error approach starts with 
calculating G, the geometry or direction cosine matrix.  
The calculation of the ith row of the standard n x 3 matrix 
of direction cosines is given by Equation 1 with Azi being 
the azimuth to the ith station. 
 

G(i,1:3) = [cos(Azi)  sin(Azi) 1] (1) 
 
If Re is pseudorange error vector, the Least Squares 
position error vector (Pe) is given by Equation 2. 
 

Pe = (GTG)-1GT Re   (2) 
 
The residual vector (R) is given by Equation 3. 
 

R = Re – G Pe = (I – G (GTG) -1GT) Re = A Re     (3) 
 
This observability matrix, given by Equation 4, provides 
the desired mapping from range error to residuals. 
  

A = I – G (GTG) -1GT  (4) 
  
This matrix, A, is a function of only geometry.  It will tell 
us: 
 

 Which geometries will or will not allow us to 
detect a single cycle or larger (i.e. skywave) 
error. 

 Which individual errors are detectable & which 
are not. 

 Which geometries will or will not allow us to 
detect double cycle errors. 

 Which combinations of two errors are detectable 
and which are not. 

 
For fault free measurements, we will assume the sum of 
bias and noise on each pseudorange has bound to some 
required integrity bound.  This simplifying assumption 
eliminates the calculation of chi square distributions.  In 
the HEA case, differential Loran and a 25 m alarm limit, 
this bound has to be or order of 30-50 nanoseconds (ns) or 
less or fault free case will not meet requirement. Off-
shore and non differential eLoran, this bound will be 300-
500 ns. 
 
 
SOLUTION SEPARATION APPROACH 
 

Another approach commonly employed in RAIM is 
multiple hypothesis solution separation or, simply, 
solution separation (SS) [2][3].  Under solution 
separation, a comparison is conducted in the position 
domain amongst the solutions generated the various 
subset combination of measurements.  The maximum 
difference between solutions is the metric for determining 
whether a fault (or multiple faults) has occurred.  Solution 
separation can also be used for fault exclusion. 
 
UNDERLYING EQUATIONS 
 
Solution separation can be applied to Loran cycle 
integrity [4].  The basic formulation is to calculate the 
difference between the solution using subset i and j, zij.  
This is done for all combinations of different subsets.  
The technique can be assessed in a similar method.  
Equation 5 shows how to calculate zij where G is the 
geometry matrix, Gi, is the geometry matrix of ith subset 
and ε is the error vector.  It is easier to keep Gi the same 
size as G but zero out the rows corresponding to stations 
that are not part of the subset.  To examine the capabilities 
of solution separation, we need to compare the nominal 
error or fault free case with faulted (cycle slip) cases.   
Under fault free conditions, the error can be both random 
and biases (r, b, respectively).  The effects of these two 
forms of error are separated out to determine the solution 
separation under this condition.  This is seen in Equation 
6.   We conduct two analysis steps to determine the 
effects of the bias and random errors, respectively.  For 
the effect of bias, determine the error of each subset 
solution for each permutation of the biases.  From the 
results, the maximum solution separation for the bias case 
is found.  Biases are assumed to be at their maximum 
level and so only the relative direction or sign of the bias 
is of concern. There are 2n-1 different combinations of 
relative signs.  The second step is to look at the effect of 
random noise.  This is accomplished by examining the 
variance of each subset solution when differenced with 
the other subset solutions.  This is seen in Equation 7.  
Hence we derive the bias and variance of each possible 
solution separation.  
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If the random errors are independent and identically 
distributed, the variance is given by Equation 8. 
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Similarly, we can determine the solution separation for 
the faulted (cycle slip) case.  For each possible fault (a 
cycle slip forward and back in time on each station), 
conduct the analysis as detailed in the fault free case.  
That is, determine the mean and variance of the solution 
separation for all possible combinations of nominal bias 
with the fault.  As one can see, this becomes increasingly 
computationally intensive.  If there are ten stations, the 
one fault case requires that ten cycle slip cases with two 
possible signs are examined for each possible 
combination of biases.  Because the slip can be forward or 
back in time, we need to test two possible signs.  Thus, 
for one fault, we need to examine a total of 2*n*2n-1 
different cases, where n is the number of stations or 
measurements.   For two fault combinations, the number 
of cases that needs to be examined increases to 2*C(n,2)* 
2n-1 cases.  The factors of two are for the sign (direction) 
of each of the cycle slip and is C(n,2) is the number of 
two combinations given n elements.   
 
CYCLE SLIP HYPOTHESIS TESTING 
 
The result from the formulation above is that a worst case 
solution separation mean and variance is known.  The 
solution separation distribution is Gaussian provided that 
the measurement error is Gaussian.  Standard hypothesis 
testing can be conducted by looking at the distribution of 
the faulted (faulted case denoted by subscript 1) compared 
to that of the nominal (nominal case is denoted by 
subscript 0).  This is seen in Equation (9).  kUC 
corresponds to the complementary cdf (ccdf) probability 
level for undetected cycle error (PUC) and kFAC 
corresponds to the Gaussian cdf probability level desired 
for false alarm of cycle error (PFAC).   If the metric, h, is 
greater than zero for all cases, then the desired level of 
undetected cycle error and false alarm are met. 
 

    ,1 ,1 ,0 ,0 0ij UC ij ij FAC ijh z k z k       (9) 

 
IMPLEMENTATION 
 
There are a variety of ways the algorithms could be 
utilized.  As both algorithms perform the same function 
and provide the same output (confidence level on cycle 
selection), they are represent the same processing blocks 
in an overall approach to validating Loran cycle selection.  
 
In user equipment, an implementation would proceed as 
follows.  The implementation approach is seen in Figure 
1.  Start by examining the TOAs or pseudoranges and 
their corresponding SNR to see if the signals from at least 

three stations have SNRs above a threshold (i.e. are 
trusted or form a “trusted triad”), a least squares position 
is calculated from these trusted signals.  This fix is 
considered a trusted (but not final) fix.  If there does not 
exist three stations with SNRs above a threshold for being 
trusted, then perform the cycle confidence algorithm.  
Start by adding a fourth signal (N=4).  For SSE, calculate 
the observability matrix A.  If the geometry guarantees 
detection of cycle errors, or if the cycle errors that cannot 
be detected are only on trusted signals, the receiver would 
do preliminary least squares fix and perform a residual 
test.  If, neither of these criteria is satisfied, then repeat 
with signals from the fifth, sixth, etc. stations, until either 
one of these two criteria is satisfied, or the receiver 
determines it cannot obtain a trusted fix.  For solution 
separation, calculate the solution separation and 
distributions for these four stations and perform the 
hypothesis test given in Equation 9.  One only needs to 
consider faults on signals that are not “trusted”.  If the 
hypothesis test fails, then repeat with signals from the 
fifth, sixth, etc. stations, until it is passed.  Since solution 
separation becomes increasingly computationally 
intensive, a pragmatic approach is to limit the maximum 
number of stations to examine (Nmax) before N becomes 
too large.   Failure is presumed if the limit is reached 
without adequate confidence. 
 

 
Figure 1. Implementing cycle confidence algorithms 
 
When and if a trusted least squares fix is obtained, the 
receiver can add any additional signals that could improve 
accuracy of final fix, first checking to see if the TOA 
agrees with trusted fix.  The final fix is a weighted least 
square (WLS) fix using all trusted signals. 
 
VALIDATION 
 
There are several means to determine the utility of the 
algorithms. One method is to use a geometry based study 
on the major ports through the contiguous United States 
(CONUS) with Loran coverage.  This was conducted on 
the SSE algorithm. 
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Figure 2. Loran Signal levels at 45 selected ports in CONUS 
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Figure 3. Cycle Integrity Parameters for selected ports 



Second, a study of expected availability and performance 
of the algorithm can also be conducted using Loran 
Coverage Availability Simulation Tool (LCAST).  
LCAST was modified to perform solution separation and 
its hypothesis testing.  The tool was then used to examine 
the availability of the algorithm throughout the CONUS. 
Both single and double faults with cycle selection are 
considered. This study helps us determine the coverage 
limitations of the algorithms.  
 
GEOMETRY STUDY OF PORTS 
 
External to user equipment, a system provider could use 
the algorithm to analyze whether sufficient signals in 
space exist to enable HEA eLoran operations in a specific 
port or a regulating agency could use it specify acceptable 
constellations for that port.  To illustrate both how the 
algorithm works and how HEA availability can be 
analyzed using the algorithm it will be applied using the 
expected signals from a number of the largest container 
ports in conterminous United States (CONUS). 
 
The U.S. Maritime Administration (MARAD) website 
was used to determine the largest container ports.  
Starting with the 73 largest container ports, ports in 
Hawaii, Puerto Rico, and South Florida were eliminated 
due to the well known lack of eLoran coverage in these 
areas.  Duplicates (multiple terminals in same area, etc.) 
were also eliminated.  Also, no Alaska ports were 
considered. 
 
Analysis of the 45 remaining ports is shown in the 
following figures.  On the left side of Figure 2, these 45 
ports are listed starting with the largest port at the bottom.  
The 95% noise containment level with 10 dB credit for 
non-linear processing of impulse noise is used for Figure 
2.  For 99% noise containment the noise is 6.5 dB higher 
and therefore the  SNR’s 6.5 dB worse. The red asterisks 
in right side of Figure 2 show the SNR’s of the third 
strongest signal and indicate whether or not a trusted fix 
can be obtained with merely a triad.  At the 95% noise 
level, all but approximately three ports have the signals 
from three or more stations above 2 dB SNR and a trusted 
fix could be obtained.   
 
Figure 3 applies the algorithm to these 45 ports and shows 
whether or not a single or double cycle error could be 
detected if it existed.  The black asterisks show the 
minimum length residual vector for a single cycle error, 
the blue show this minimum length for any combination 
two cycle errors of either the same or opposite sign.  The 
green and red asterisks show the maximum length 
residual vector when the pseudorange errors are bounded 
by a 30 ns and 300 ns bound respectively.   
 
What we see is that in the case of Detroit, where the third 
strongest signal has the poorest SNR of any of the 45 

ports (Figure 2), there is no problem detecting either a 
single or double error.   
 
According to Figure 2, the third strongest station at 
Mobile also has a somewhat poor SNR and a trusted triad 
fix would not be available, particularly at the 99% noise 
containment level.  In Figure 3, it can be seen that a 
double cycle may not be detectable at Mobile.  Figure 4 
shows the azimuths and SNR’s of the stations available at 
Mobile.  The first number after the station name is the 
SNR at the 99% noise level and the second the SNR at the 
95% level.  At Mobile, the most difficult double error to 
detect is errors on Grangeville and Jupiter with opposite 
signs.  However, this error not possible due to the SNR of 
Grangeville.  
  

 
Figure 4. Azimuths and SNR’s of Loran stations seen 
at Mobile. 
 

 
Figure 5. Azimuths and SNR’s of Loran stations seen 
at Pascagoula. 
 
Figure 5 shows the same information at Pascagoula where 
as with Mobile, figure 1 indicated a low SNR on the third 
station and figure 2 indicated difficulty in detecting a 
double error.  However, just as with Mobile, the most 
difficult double error to detect is errors on Grangeville 



and Jupiter with opposite signs and this error not possible 
due to the SNR of Grangeville.  
 
Figure 3 also indicates that both a single error and a 
double error could not be detected at Fernandina Beach, 
FL.  Figure 6 shows the constellation at Fernandina 
Beach.  The single errors that cannot be detected are on 
Jupiter and Carolina Beach, and the undetectable double 
error is errors on Jupiter and Carolina Beach with the 
same sign.  Again, due to SNR’s these errors or 
combination of errors are precluded by high SNR.   
 
In general, it can be seen that both single and double 
errors can be detected in differential Loran case or 
undetectable errors precluded by high SNR 
 
In the offshore case, in some locations, it may be possible 
only to detect a single error, but not double errors. 
 

 
Figure 6. Azimuths and SNR’s of Loran stations seen 
at Fernandina Beach. 
 
COVERAGE SIMULATION STUDY 
 
Solution separation was implemented in LCAST in 
several ways.  First, it was implemented in a manner 
similar to that given in Figure 1.  In this case, solution 
separation was conducted only if a trusted triad or 
solution cannot be determined first.  There are a few 
differences from the method described in the prior 
section. First, given the computational complexity of 
examining a multitude of stations and faults, the solution 
separation implementation utilized only the top five 
strongest stations when available.  Essentially, this means 
N = 4 (if only 4 stations are available) or 5 and Nmax = 5.  
Additionally, a trusted station was still tested using 
solution separation unless there was a trusted triad. 
 
The result of this implementation can be seen in the next 
2 figures.  Figure 7 shows the implementation given no 
bias errors, 5% probability of missed detection of a false 
alarm of cycle error (PFAC) and 0.001% probability of an 

undetected cycle error (PUC).  The simulation assumes a 
maritime receiver averages for 60 second to determine 
cycles.  Parameters that were examined in the analysis 
were the effects of bias size and PFAC.  Note that a lower 
PFAC may be acceptable once cycle confidence is 
determined initially it only needs to be intermittently 
verified.   So, provided noise is not correlated between 
each attempt, a PFAC of 20% would result in an 
availability of 99.8% (that is 1 - 0.23) over three trials 
(minutes).  Analysis was performed for different biases up 
to 50 m and PFAC of up to 20%.  The end result of the 
analysis is that there is little variation in coverage despite 
varying the PFAC and the bias.  This can be seen by 
comparing Figure 7 with Figure 8 which is assumes 
biases at 50 m instead of 0 m.  The reason for this is that 
the cycles are generally being verified by having a trusted 
triad which does not depend on these factors. 
 

 
Figure 7. Cycle Coverage Algorithm with PFAC = 5% 
and 0 m bias 
 

 
Figure 8. Cycle Coverage Algorithm with PFAC = 5% 
and 50 m bias 
 
As with the port study, trusted triads provide much of the 
cycle verification.  This is not surprising since the same 



underlying noise model and clipping credit is used by 
LCAST.  Given that the prior results came predominately 
from using trusted triads, the performance of the 
algorithm without using trusted triads is also tested in 
LCAST.  In this implementation, only the solution 
separation is utilized.  Figure 9 and Figure 10 show the 
solution separation only results for bias error cases of 0 
and 5 m, respectively.  Both utilize a PFAC of 5% and a 
PUC of 0.001%.  Solution separation has reasonable 
availability on the coasts with some noticeable exceptions 
such as Florida.  Additionally, there are “spots” of poor 
availability likely due to geometry.  In Figure 11, the 
effect of changing the PFAC to 20% and PUC of 0.01% are 
seen.   The resulting coverage is not very different from 
the previous 2 figures.  Analysis suggests that the low 
availability areas may be due more to geometry than the 
selected levels for false alarm of cycle error or undetected 
cycle error.   
 

 
Figure 9. Solution Separation Cycle Coverage 
Algorithm Only with PFAC = 5% and 0 m bias 
 

 
Figure 10. Solution Separation Cycle Coverage 
Algorithm Only with PFAC = 5% and 5 m bias 
 

 
Figure 11.  Solution Separation Cycle Coverage 
Algorithm Only with PFAC = 20%, PUC = 0.01% and 0 
m bias 
 
 
CONCLUSIONS 
 
This paper develops the two algorithms for determining 
cycle confidence when using differential Loran.  The 
primary benefit of these algorithms is that it is much 
easier to implement in receiver than the previous WSSE 
based algorithm.  This is critical for keeping 
computational requirements and hence costs reasonable 
for receiver manufacturers. 
 
The analysis shows that regardless of whether solution 
separation or residuals are used, trusted triads will provide 
the majority of the cycle verification.  However, trusted 
triads are not always available and it is vital to have 
another algorithm to validate cycles.  Both sum square 
error and solution separation seem to have acceptable 
availability in coastal ports.  The sum square error 
(residual) method is easier to implement and less 
computationally intensive.   The integrity of the solution 
separation method can be computed more readily. 
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