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ABSTRACT 
 
Signal Quality Monitoring (SQM) algorithms propose to 
detect anomalous signal distortions primarily through the 
use of SQM receivers.  These receivers employ anywhere 
from three or more correlator pairs per channel—each 
slaved to the tracking pair.  The measurements from each 
correlator output can be used to form detection metrics, 
which are, in general, simple algebraic combinations of 
the measurements.  However, previously such metrics 

have been derived based primarily on observations of the 
correlation peak distortions or based on modeled 
characteristics of the measurement noise.  This approach 
has traditionally led to a relatively large number of 
recommended detection metrics, and hence threshold 
tests.  SQM2b (the suite of detection metrics validated for 
Cat I LAAS SQM), for example, calls for 11 tests. 
 
For high-integrity applications, such as WAAS (and 
LAAS), large numbers of threshold tests pose several 
problems.  The first is a continuity problem, since each 
test effectively poses an additional risk of false alarm.  
Another concern is the amount of energy and resources 
(i.e., manpower) required to validate the tests.  For each, 
data must be collected, histograms must be analyzed, 
satisfactory overbounding must be performed for the 
integrity documentation.  Given three SQM receivers at 
each of 25 WAAS reference stations, this could pose a 
significant workload.  A third issue is one of efficiency 
and simplicity: fewer, more-effective tests should replace 
redundant and/or ineffective ones. 
 
A more-efficient metric would combine the measurements 
from all correlators in a way that accounts for the 
anomalous signal distortion and that due to thermal noise 
and multipath.  This paper describes an approach for 
formulating such metrics based on finding the 
eigenvectors of the signal-plus-noise system.  It then 
introduces one such metric based on the measurements 
from an SQM receiver having a 16MHz bandwidth and 
Early-minus-Late correlator spacings of 0.05, 0.1, 0.15, 
0.2 chips, respectively.  (The tracking pair was the 
narrowest pair of 0.05 chips.)  This paper assesses the 
performance of these tests in addition to several 
phenomenological or heuristic ones—including those 
analogous to the ones used to validate Cat I LAAS.  In 



 
addition, it provides and compares the alpha test specific 
to this SQM receivers, which is very similar to the ones 
expected for WAAS Offline Monitoring facilities. 
 
 
INTRODUCTION 
 
Signal Quality Monitoring (SQM) aims to prevent WAAS 
users from experiencing hazardously misleading 
information (HMI) caused by anomalous deformations of 
the GPS signal (i.e., so-called “evil waveforms”).   High-
integrity augmentation systems such as the Wide Area 
Augmentation System (WAAS) and the Local Area 
Augmentation System (LAAS) will employ multi-
correlator receivers to this end.  These receivers monitor 
the shape of the correlation function and detect any 
harmful signal deformations in the presence of noise and 
multipath. 
 
WAAS was commissioned for Initial Operational 
Capability (IOC) in July of 2003.  This first build offers 
full protection against the “Most Likely Subset”(MLS) 
signal deformation threat model, but it must equip its 
reference stations with SQM receivers and protect against 
all signal deformation threats to achieve compliance for 
FOC [9]. 
 
WAAS currently mitigates the MLS threat model using its 
Code-Carrier Coherence (CCC) Monitor.  This monitor 
measures the rate of divergence between the code and 
carrier measurements on each satellite signal.  The 
occurrence of hazardous MLS signal deformations causes 
this rate to exceed the detection threshold and cause the 
monitor to flag the SV as “Not Monitored.”   
 
Because of the pre-existing code-carrier divergence 
integrity threat, WAAS required no additional detection 
tests or monitors—beside the CCC monitor—to provide 
protection against the MLS signal deformation threats.  
The addition of true SQM receivers and accompanying 
multi-correlator processing techniques, however, will 
require that several additional threshold tests be 
performed to mitigate all deformation threats.  (The 
International Civil Aviation Organization (ICAO) 
codified the full set of anomalous signal deformation 
threats to GPS in May 2000.)  Accordingly, to date, the 
number of recommended SQM detection tests (e.g., for 
Cat I LAAS) has been relatively large [6]. 
However, in general, threshold tests are undesirable to 
add to an operational, high-integrity augmentation system.  
Each threshold test implemented increases the probability 
of false alarm and thereby hinders meeting stringent 
continuity requirements.  Also, additional tests often 
require extensive validation in terms of noise and 
multipath performance.  Since WAAS may have multiple 
SQM receivers at each of its (25 current) reference 
stations, the number of noise distributions to validate per 

threshold test may potentially become unmanageable.  It 
may also be difficult to develop effective, non-redundant 
tests given uncertain receiver configurations or changing 
hardware requirements. 
 
For all these reasons, it is preferable to have a reliable 
method for determining the minimal set of SQM detection 
metrics.  (Note that a single detection metric is a 
mathematical combination of measurements.  Each 
required metric corresponds to a single 
threshold/detection test.)  This paper describes a 
straightforward and flexible, quantitative approach to 
computing a highly-effective detection metric, whose 
detection performance compares favorably to the use of 
numerous heuristically-derived metrics. 
 
 
BACKGROUND 
 
SV19 
 
In 1993, a subtle failure occurred in the signal generating 
hardware aboard SV19.  This failure went unnoticed for 
an extended period of time and was eventually resolved 
by the Control Segment.  The OCS commanded the SV to 
switch to redundant signal generating hardware onboard 
the space vehicle.  However, the anomaly persisted long 
enough to be observed and recorded by three different 
parties.  [3] 
 
The University of Leeds measured the power spectrum of 
PRN19 and observed a large spike at the center of the 
main lobe [1].  Trimble Navigation, Ltd. employed a 
local-area differential system using a reference receiver at 
16MHz and 0.1 chips and a wide correlator at 4 observed 
3-8 meter vertical (differential) position errors resulted 
whenever they included SV19 into the position solution.  
The Air Force base at Camp Parks, California used a 
high-gain antenna to record oscilloscope traces of the 
individual C/A code chips.  They observed that the timing 
of the falling edge of this code had approximately a 33ns 
lag.  In addition, those traces revealed increased 
oscillations indicative of analog “ringing” along each chip 
length.   
 
ICAO Threat Model 
 
The ICAO threat model was created by integrating the 
three observations of the original SV19 event.  Although 
several other candidate threat models were considered, 
this model was the only one which was both realistic and 
able to create the three key correlation peak pathologies 
of concern to aviation users: false peaks, dead zones (or 
flat peaks), and distortions. [2]   
 
In addition, this model is very tractable and relatively 
simple to analyze.  It is formed by three parameters.  The 



 
lead/lag parameter, ∆ (chips) models a digital failure by 
modifying the rising or falling edge of the C/A code—as 
observed by Camp Parks—and create dead zones atop the 
correlation peak.  The two other parameters fd and σ, 
model analog failures as 2nd-order “ringing”; in certain 
combinations these can create false peaks and correlation 
peak distortion. 
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Figure 1. A “2nd-Order Step” anomalous waveform 
modeling both digital and analog failures and the 
corresponding correlation peak.  (In this example, fd 
=3MHz, σ= 0.8 MNepers/sec, ∆ = 0.3chips) 
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Figure 2. Parameter bounds for the full ICAO Threat 
Model 
 
 
HEURISTIC DETECTION METRICS 
 
Because Trimble Navigation, Ltd observed the original 
SV19 event using independent pseudorange differences, 
the first SQM detection metric designs envisioned on a 
number of independent pseudorange measurements taken 
from the same correlation peak.  Such designs require 
SQM receivers to implement a number of independent 
tracking loops—each with a different correlator spacing—
per receiver channel [3][8].  However, a more practical 
receiver implementation uses a single independent 
correlator spacing with additional (monitor) correlators 
arranged at fixed offsets relative to the tracking pair.  This 
provides a single pseudorange measurement and a number 
of correlator values (i.e. correlation amplitude) 
measurements equal to the total number of correlator taps.  
Fortuitously, these amplitude measurements are actually 
more versatile in that they permit more mathematical 
measures, or metrics, of correlation peak symmetry to be 
formed than would simple pseudorange differences. 
 
The first detection metrics leveraged experience and 
engineering judgment to formulate general rules, or 
heuristics, for determining the metrics most likely to 

detect the kinds of asymmetries likely to cause HMI.  The 
two primary heuristics were: 

• Independent pseudorange differences, which 
discovered the original SV19 event, should also 
be effective against significant ICAO threats 

• Ratio measurements measured with respect to 
the peak should help detect dead zones or peak 
flattening effects 

 
SQM2b 
 
The first SQM detection metrics were proposed and 
analyzed jointly by AJ Systems, Honeywell, Raytheon, 
STNA, and Stanford University [5].  One candidate suite 
of metrics, termed “SQM2b,” and was shown to meet the 
SQM performance for Category I LAAS installations 
using a total of three correlator pairs and a prompt 
measurement as depicted in Figure 2 below [6].   
 

IxIx

 
Figure 2. Illustration of a three-correlator pair SQM 
receiver configuration (with prompt measurement at 
peak).  Each correlator output (Ix) is in-phase at a code 
offset, x, from the peak.  
 
The correlator spacings—at code offsets, x—depicted in 
Figures 2-6 are (from left to right, in chips): [-0.1 -0.075 -
0.05 0 +0.05 +0.75 +0.1].  The tracking pair is the 
narrowest pair at ±0.05 chips.  Note that since the receiver 
is assumed to be phase-locked, only the in-phase 
measurements, Ix, are used for SQM.  Using these seven 
correlator measurements, SQM2b formed the following 
11 detection metrics (See Figure 3.): 
 

• Two “∆-metrics” (derived based on experiences 
with pseudorange differences): 
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• Three average ratio metrics: 
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• Six single-sided ratio metrics: 
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Figure 3. Generalized (heuristic) detection metrics for 
SQM2b. 
 
Asymmetric Ratio Metrics 
 
Intuitively, increasing the number of symmetry tests 
should increase the detection performance.  Figure 4 
illustrates how many more combinations of the correlator 

of the form 
y

x

I
I

 or 
0I
II yx −  (for arbitrary code offsets, x 

and y) outputs may be used to form new metrics.   
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Figure 4. Several possible (asymmetric) ways to combine 
correlator measurements. 
 
 
Polynomial Fit Metrics 
 
A more sophisticated approach combines several 
correlator outputs to better mitigate the noise and 
multipath on each.  Figure 5 illustrates two linear fits 
formed using the amplitudes and code offsets of the early 
and late sides of the correlation peak, respectively.  From 
each fit, two line parameters (i.e., slope, ξ1, and y-
intercept, ξ0) are found, and three amplitude estimates are 
given from the fit coefficients. 
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Figure 5. Two linear fits of correlator outputs (three early, 
three late).  A total of ten parameters result from this fit: 
four line coefficients and six correlator measurement 
estimates. 
 
More explicitly, for the aforementioned three-correlator 
pair SQM receiver, the linear fit metrics may be found 
from 
 

o ξ0, ξ1, ξ3, ξ4 

o +0.05,PR̂ , +0.075,PR̂ , +0.1,PR̂ , -0.05,PR̂ , 

-0.075,PR̂ , -0.1,PR̂  

where measured ratios
0

, I
IR x

Px = and fit parameters ξ0, ξ1, 

ξ3, ξ4 are obtained by solving the folowing relation (using 
least-squares) 
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+0.05,PR̂ , +0.075,PR̂ , +0.1,PR̂ , -0.05,PR̂ , -0.075,PR̂ , -0.1,PR̂  
are smoothed estimates of the single-side ratios (the right-
hand-side vectors in Equations 4 and 5 above).  These are 
given by 
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Similarly, Figure 6 illustrates a single parabolic fit formed 
using the amplitudes and code offsets of both the early 
and late sides of the correlation peak (and the prompt 
measurement).  From this second-order fit, three line 
parameters (i.e., c0, c1, and c2) are found, and six 
amplitude estimates may be found from the fit 
coefficients.  (Note that the prompt correlator must equal 
unity with or without any signal deformation present.) 
 
9 parabolic fit metrics 
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ξ5, ξ6, ξ7 are obtained by solving the folowing relation 
(using least-squares) 

2
-0.1,P

2
-0.075,P

2
-0.05,P5

6
2

+0.05,P7
2

+0.075,P
2

+0.1,P

R(0.1) 0.1 1
R(0.075) 0.075 1
R(0.05) 0.05 1

10 0 1
R(0.05) 0.05 1
R(0.075) 0.075 1
R(0.1) 0.1 1

ξ
ξ
ξ

   −
   −   
   −  
     =    
    +     

+   
   +      

    (8) 

+0.05,PR
(

, +0.075,PR
(

, +0.1,PR
(

, -0.05,PR
(

, -0.075,PR
(

, -0.1,PR
(

 
are obtained are smoothed estimates of the single-side 
ratios (the right-hand-side vectors in Equation 9 below.  
These are given by 
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Figure 6. A single parabolic fit of all seven correlator 
outputs.  A total of nine parameters result from this fit: 
three second-order fit coefficients and six correlator 
measurement estimates. 
 
The next section derives a metric design approach which 
meets addresses all of these considerations. 
 
 
ALPHA METRIC 
 
Since the heuristic approach to SQM detection metric 
design has no strict definition of success or performance, 
it is likely to result an unacceptably large number of 
metrics (and, hence, threshold tests), a more quantitative 
approach is needed.  It follows that a reasonable 
quantitative method designed to minimize the number of 
SQM detection tests required for WAAS and to maximize 
their effectiveness requires three key considerations: 

1) Use all available correlators: The metric should 
optimize performance by using all available 
measurements. 

2) Make use of all a priori information:  The metric 
should incorporate knowledge of the ICAO 
threat model and the noise and multipath effects 
on each correlator measurement 

3) Perform all complex computations offline: Any 
complex computations should only be done in 
the design stage.  The resulting metric should 
form a simple linear combination of the 
correlator outputs to best maintain any 

[ξ5, ξ6, ξ7]



 
assumptions on Gaussian nature of the resulting 
noise statistics. 

4) Support straightforward redesign for arbitrary 
SQM receiver configurations. 

 
Derivation 
 
To ensure detection, for a single (in-phase) correlation 
peak measurement, the distorted waveform value (Iewf) 
must exceed the nominal correlation peak (Iref) value by a 
function of the noise and the detection metric.  Equation 
xx1 below gives this expression for the case where the 
metric is a simple scalar multiple, α, of the in-phase 
correlator measurements, I. 
 

),( ασαα testrefewf fII +≥   (10) 
 
Minimum Detectable Errors (MDEs) define the minimum 
detection threshold (i.e., the deviation from nominal) 
required by a specific detection metric to meet the 
requirements on probability of false alarm (Pfa) and 
probability of missed detection (Pmd).  In general, we do 
not know the MDE without knowing the nature of 
nominal measurement conditions transformed by the 
detection metric.  For gaussian noise models of thermal 
noise and multipath, Pfa and Pmd yield scalar multiples of 
the metric standard deviation, σtest.  These are kffd and kmd, 
respectively.   
 
The effect of the metric on the nominal noise variance can 
be conservatively assumed as a product of multiple of the 
metric itself, λα.  Note that this simple assumption may 
always be considered conservative for sufficiently large, 
positive number, λ.)  This expression is given below in 
Equation 11 (where the absolute value has been ignored 
for now). 
 

[ ] λασαα ⋅++≥ )( mdffdtestrefewf kkII  (11) 
 
This may be extended for a matrix of correlation peak 
deformation responses, Iewf, as given in equation xx3. 
 

( ) ααα ΛΣ+≥ tottestrefewf kII   (12) 
 
where 

Iref is the corresponding nominal, in-phase 
correlation measurement matrix,  

testΣ  is the matrix of standard deviations, 
ktot is the sum of noise multipliers, kffd and kmd, 
Λ is a diagonal matrix of scalar multipliers 
α is the vector of constants multiplying each 
correlation measurements 
 

By recognizing that the distortions from nominal are 
given by 

refewfre III −=− ,  (13) 
Equation 12 can be re-written as  
 

( )αα ΛΣ≥− tottestre kI   (14) 
 
Equation 14 can be solved as an eigenvalue problem for a 
matrix of eigenvectors, A, by taking the pseudoinverse of 
matrix quantity tottestkΣ  according to Equation 15. 
 

( ) αα Λ≥Σ −retottestk I   (15) 
 
Practical Considerations 
 
To prioritize more harmful threats over less-harmful ones, 
each row of tottestkΣ should be divided by the 
pseudorange error corresponding to that threat (row).  
(These maximum range errors are easily-obtainable for 
typical Early-minus-Late or ∆∆ user receiver 
configurations through the analysis given in [5] and [6].)  
Note, however that the matrix ( )tottestkΣ  may be poorly-
conditioned under some circumstances (e.g., extremely 
small standard deviations on all correlator pairs).  For this 
reason, it may be helpful to condition the matrix prior to 
inversion.  This can be done by pre-multiplying the 
quantity each side of Equation 14 by a known matrix A as 
shown in Equation 16.  
 

( ) αα ΛΣ≥− tottestre kAAI  (16) 
 
Although the best possible matrix A has not yet been 
formulated, Equations 17 through 19 list three candidates 
which have been shown to yield good results. 
 
A = TI ref : 

( ) αα Λ≥Σ −rereftottestref k III TT( ) αα Λ≥Σ −rereftottestref k III TT

 (17) 
A = TIewf : 

 
( ) αα Λ≥Σ −reewftottestewf k III TT( ) αα Λ≥Σ −reewftottestewf k III TT

 (18) 
 
A = TI re− : 

( ) αα Λ≥Σ −−− reretottestre k III TT( ) αα Λ≥Σ −−− reretottestre k III TT

  (19) 
 
The alpha metric will be the real eigenvector α  that best 
mitigates the distortion threats contained in the matrix, 
Iewf.  It will correspond to the non-zero eigenvalue, λii. 
 



 
ANALYSIS AND RESULTS 
 
The SQM receiver configuration used to evaluate the 
alpha metric was a 4-correlator pair receiver with 
spacings—at code offsets, x—(from left-to-right, in chips) 
[-0.1 -0.075 -0.05 -0.025 +0.025 +0.05 +0.75 +0.1].  The 
tracking pair used the correlators at offsets 
x=±0.025chips.  (See Figure 7.) 
 

IxIxIx

 
Figure 7. Eight correlator pair SQM receiver 
configuration.  Ix refers to each (in-phase) correlator 
output at code offset x with respect to the ideal peak (at 
x=0). 
 
Nominal Noise and Multipath Measurements 
 
The thermal noise and multipath effects on each correlator 
measurement were measured using one of the rooftop 
antennas of the LAAS Integrity Monitoring Testbed at 
Stanford University [7].  The data uses four complete 
passes from SV5.  Figure 8 plots the standard deviations 
measured (x1000) at each correlator output.  (Note that 
the correlator measurements have been normalized by the 
average of the tracking pair at x=±0.025chips.) 
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Figure 8.  Standard deviations of noise and multipath on 
correlator measurements.  The measurements correspond 
to SV5 at a 5° elevation angle. 
 
As expected, the smallest standard deviation occurs for 
the tracking pair—which was used to normalized the 
others.  There is also significantly less distortion on the 

left half of the correlation peak than on the right.  This is 
due to the fact that multipath affects the late side of the 
correlation peak much more than it does the early side.  In 
fact, the largest standard deviation occurs at code offset 
x=+0.075chips, which indicates the presence of a 
significant multipath reflection at approximately this 
delay from the line-of-sight signal.  Of course, since 
multipath is site-dependent, this particular correlator-
noise distribution will not apply in general. 
 
The figure also shows the effects of smoothing on the 
standard deviation.  The uppermost line corresponds to 
unsmoothed data, while the lowermost corresponds to a 
100-second moving average.  Although much of the 
benefit is appears to be achieved after the first 20-second 
filter is applied, less than 100 seconds of averaging is 
seldom sufficient for good SQM performance.  Also, 
since 100 seconds has been a standard for SQM analyses 
in the past, subsequent analyses used 100-second filter 
noise levels [6]. 
 
Minimum Detectable Error (MDE) 
 
The minimum detectable errors (MDEs) define the 
detection threshold limits required to guarantee detection 
of the signal deformation with the specified probability of 
missed detection (Pmd) and false alarm probability (Pfa).  
For Phase I WAAS, the current fault tree allocation for 
SV19-like failures is 10-10 per approach and requires a Pfa 
of 3.2×10-8 false alarms per satellite per second (for all 
approach cases).  This corresponds to a constant standard 
deviation multiplier, kffd, of 5.54.   
 
The accompanying Pmd is found from the fault tree 
integrity risk (i.e., PHMI) allocations and a priori satellite 
failure rate probabilities.  The PHMI allocations for this 
monitor from the current WAAS fault tree and the GPS 
SV-19 threats is 8.333e-10 per approach.  For an a priori 
failure probability, Pf_apriori =1e-4, the Pmd requirement for 
GPS SV-19 failures is 8.33e-6.  This corresponds to a kmd 
of 4.46. [9].  Accordingly, for this analysis, ktot = kmd+kffd 
= 10.  (Note that for the analyses in this paper, the 
standard deviations have not been Gaussian 
overbounded.) 
 
Threat Model Discretization 
 
To analyze SQM performance—using either heuristically 
or more deterministically-derived methods—the three-
dimensional ICAO threat space must be discretized with a 
resolution sufficient to capture all significant threats 
[4][5].  Accordingly, for each parameter, the following 
discretizations were chosen: 
 
∆: varied from 0 to 0.12chips in increments of 0.01chips.  
(See Figure 9.) 



 
σ: varied from 0.8 to 8.8MNepers/sec in increments of 
0.5MNepers/sec.   
fd: varied from 4 to 17MHz (for the analog failure mode) 
and 7.3 to 13MHz in increments of 0.1MHz.   
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Figure 9.  Eight correlator outputs for the reference 
(nominal) correlation function and the 13 discretized 
lead/lag (∆) deformation threats—including ∆=0. 
 
Example: Two Signal Deformation Case 
 
Consider the case of only two deformations: one digital-
only failure (∆ = 0.12 chips, fd = 0MHz) and one purely 
analog (fd = 4MHz, σ = 0.8MNepers/sec, and ∆ = 0 
chips).  Assuming a normalized (model) correlation peak 
filtered at 16MHz using a 6th-order Buttterworth filter 
model, for the 8-correlator SQM receiver configuration 
depicted in Figure 7, the alpha metric may be formulated 
according to Equation 15.   
 
The nominal correlation matrix (Iref), the deformed 
correlation matrix (Iewf) and the MDE matrix ( tottestkΣ ) 
are each given by. 
 









=

0.91210.93980.97221.00001.00000.97740.95190.9263
0.9121 0.93980.97221.00001.00000.97740.95190.9263

I ref

 
 









=

0.86950.92830.97441.00001.00000.98750.96980.9455
0.97840.99180.99661.00001.00000.98600.96300.9368

Iewf

 
 









=Σ

1-1.39e1-3.41e1-1.39e4-1.43e4-1.43e2-2.70e2-3.73e2-5.58e
1-1..27e1-3.12e1-1.27e4-1.43e4-1.43e2-2.47e2-3.41e2-5.11e

k tot

 
Note that the rows of tottestkΣ have been scaled by each 
deformation’s maximum range errors—for Early-minus-
Late user receivers—of 0.0665 chips (19.5m) and 0.0607 
chips (17.8m), respectively.  (The virtual prompt values 
(i.e., 1.43e-4) have remained unscaled, however.) 
 

Here, the MDEs correspond to a 5° elevation angle and 
assume 5 WREs are available to average the noise.  
(These are minimum acceptance criteria for WAAS 
satellites.)  The net deformation matrix (Ie-r) simply 
subtracts Iref from Iewf and is given by 
 









=

0.0425-0.0116-0.00221.00001.00000.01010.01790.0192
0.06630.05190.02441.00001.00000.00860.01110.0105

I r-e

 

 
The non-zero eigenvalues (i.e., |λ|>ε>0) of Equation EE, 
will select the valid alpha metric candidates for all four of 
the candidate A matrices. 
 
The metric solutions are given below in Equation 21.    
Note that in all the results that follow, the eigenvalues (λ) 
and corresponding eigenvectors/alpha metrics (α ) have 
two subscript identifiers.  The first indicates to which of 
Equations 16-19 (numbered 1-4, respectively) they 
correspond.  The second subscript indicates number of the 
eigenvalue (i.e., the matrix column) selected within each 
respective solution.  (For succinctness, only the 
eigenvectors corresponding to Equation 17 are given in 
Equation 20.) 
 

{ }
{ }
{ }
{ }20

8,2

18
5,2
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4,2

3,2

1037.8:

1047.1:

1094.6:

0783.0:

−

−

−

≥

≥

≥

≥

x

x

x

ελ

ελ

ελ

ελ
  (20) 































==

0.7385
0.1471-

0.4197
0.0002-
0.0013-
0.1891-
0.3752-
0.2834-

5,2 bestαα
  (21) 

 
Figure 10 best shows the effectiveness of this alpha 
metric.  The product of the metric with the reference 
correlation measurements yields a nominal value of 
approximately 1.75.  (The units are dimensionless.)  The 
corresponding MDE—specific to the alpha metric—
brackets a range of values between which no 
deformations are detectable.  However, the product of the 
alpha metric with the deformation matrix (Iewf) causes the 
two deformations to fall well outside of this region.  This 
indicates the alpha metric can detect these deformations.  
In fact, they are detectable with margin. 
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Figure 10. Alpha metric detectability plot of two signal 
deformations for the “best” eigenvector solution.  
Deformations 1 and 2 correspond to the digital failure 
mode and analog failure mode, respectively. 
 
The second-best alpha metric in this example also detects 
both deformations.  However, it does so with slightly 
smaller margin.  (See Figure 11.)  As did the previous 
metric, this one also results from Equation 17. 
 































=

0.2268-
0.2410
0.2146-
0.0088-
0.0263-
0.1328-
0.5804-

0.6994

8,2α
   (22) 
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Figure 11. Alpha metric detectability plot of two signal 
deformations for the second-best eigenvector solution.  
Deformations 1 and 2 correspond to the digital failure 
mode and analog failure mode, respectively. 
 
Two primary observations can be made from this 
example.  First, the precise values of the eigenvalues are 

relatively unimportant.  Instead, the effectiveness of each 
alpha metric is of key concern.  Second, the value of the 
nominal product αrefI is also relatively unimportant.  Of 
significantly more importance is the range of values about 

αrefI  bracketed by the alpha metric MDE.  A narrower 
“undetectable” range implies better effective noise 
averaging by the metric. 
 
Example: Full ICAO Threat Model 
 
The discretized ICAO threat model consists of 15058 
deformation threats (including the one zero-deformation 
or nominal case), but the basic formulation of the problem 
remains the same.  However, for the same receiver 
configuration, Iewf now has 15058 rows and 8 columns; 
Iref, tottestkΣ , and Ie-r have the same dimensions.  Metric 
selection (i.e., from the eigenvalues with magnitudes 
greater than 10-20) is the same as in the two-deformation 
case.   
 
The “best” alpha metric is given below.  In addition, the 
second-best candidate metric ( 1,2α ) is shown.  This alpha 
metric evaluation is shown in Figure 12.  It detects all but 
840 of 15057 ICAO deformation threats (i.e., excluding 
the nominal, non-deformed case).  The second-best 
metric, 1,2α , leaves 4943 threats undetected. 
 






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























==

0.6134-
0.4895
0.6135-

0.0004
0.0004-
0.0456-
0.0614
0.0432

2,3 bestαα
   (23) 

 































=

0.6344-
0.3680-
0.6398-
0.0020
0.0013
0.0713-
0.0671-
0.2079-

1,2α
   (24) 

 
Recall that in the two-deformation case, all the candidate 
solutions were the same for each alpha metric equation.  
Also, there was only a single candidate metric (solution) 



 
for each equation.  Conversely, in this case, there are 15 
candidate alpha-metrics—only two of which are identical.  
It is only by evaluating the product αewfI  (as illustrated 
in Figure 12) that the best metric—the one which detects 
the most deformations—can be determined.   
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Figure 12. Alpha metric detectability plot of all ICAO 
signal deformation threats. 
 
Figures 13 and 14 illustrate the noise averaging capability 
of the alpha metric.  Figure 13 shows the standard 
deviation of the undetectable deformations compared 
against the MDEs on each correlator output.  The 
uppermost (red) curve shows the MDE for a single 
receiver.  The middle (blue) curve depicts the standard 
deviation of all the ICAO deformations versus correlator 
offset. The third (red) curve shows the results for the 
same receiver reduced by 5 (i.e., averaged by 5 WAAS 
SQM receivers).  Figure 14 shows the same two MDE 
curves compared against the standard deviation of the 840 
deformations remaining after application of the alpha 
metric.  Note that these variations are well below the 
MDEs on each correlator output.  This indicates that 
detecting these remaining deformations is significantly 
more difficult. 
 
Figure 15 compares the user differential pseudorange 
errors remaining after applying the alpha metric to those 
remaining after applying the most effective of 56 heuristic 
metrics of the type described previously.  (For the eight-
correlator pair configuration, the heuristic tests included 
six delta metrics, 27 ratios and 23 curve fit—both linear 
and parabolic—metrics.)  However, only four of the 56 
heuristic tests are actually required; others are either 
redundant or detect no ICAO deformations at all.  
Interestingly, the most effective heuristic test—for this 
receiver configuration and multipath environment—
comes from one of the parabolic fit estimates of the 
correlator location.  For these MDEs (and this receiver 
configuration), it detects even more (737 of 15057) 
deformation threats than does the alpha metric. 
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Figure 13.  Comparison of pre-detection deformation 
standard deviation to correlation noise measurement 
variations.  The MDE measurements (in red) correspond 
to a 5° elevation angle 
 

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Correlator Code Offset (chips)

Standard Deviation of 
Undetected ICAO Model 
Deformations

( ) totmdffd kkk ⋅=+⋅ σσ

5
totk⋅σ

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Correlator Code Offset (chips)

Standard Deviation of 
Undetected ICAO Model 
Deformations

( ) totmdffd kkk ⋅=+⋅ σσ

5
totk⋅σ

 
Figure 14.  Comparison of post-detection deformation 
standard deviation to correlation noise measurement 
variations.  The MDE measurements (in red) correspond 
to a 5° elevation angle. 
 
The plot also shows that the alpha metric actually 
produces somewhat smaller (albeit comparable) 
maximum user range errors—despite detecting fewer total 
threats than the best heuristic test.  This seeming 
contradiction arises from the fact that the threats most 
difficult to detect tend to cause relatively small (but 
comparable) user range errors.  In this case, the alpha 
metric detects a few that actually are slightly more 
harmful to the user than those detected by the best 
heuristic metric.  Recall that this occurs by design since 
the maximum range errors for each threat are used to 
scale the detection thresholds in the alpha metric 
formulation. 
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Figure 15. Maximum user pseudorange error comparison 
of effectiveness of the alpha metric (red) to all required 
heuristic metrics (green).  The number of undetected 
deformations after the application of each metric is 
provided in parentheses above each respective metric 
index. 
 
It follows that the combination of the best heuristic metric 
and the alpha metric detects the largest number of threats 
and leaves the smallest user range errors.  As shown in 
Figure 15, this combination leaves only 213 threats 
undetected and results in a maximum user error below the 
smallest UDRE WAAS can provide.  (Figure 16 shows 
which portion of the ICAO threat space these remaining 
deformations occupy.)  No other heuristic metrics 
improve the detection capability beyond this.  Still, were 
this SQM receiver configuration (and these noise and 
multipath levels) valid for WAAS, only two 
detection/threshold tests would nominally satisfy the all 
future (steady-state) SQM performance requirements [9]. 
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Figure 16.  Locations of 213 remaining deformations 
within the ICAO threat space after application of alpha 
metric and the best heuristic detection metric. 
 
 
 
 
 

CONCLUSIONS 
 
The alpha metric is a simple linear combination of 
correlator measurements derived based on a known 
receiver configuration and given the noise measurements 
on each correlator output.  Conventional, heuristic 
approaches do not rely on this information in their design.  
As a result many metrics (and, hence, threshold tests) are 
needed to assure satisfactory SQM performance under a 
variety of antenna siting and environmental conditions.  
Numerous threshold tests are undesirable since they imply 
an increase in false alarm probability and algorithm 
complexity. 
 
A single alpha metric together with the best heuristic 
metrics may be the most efficient way to achieve 
satisfactory SQM performance with the least number of 
tests.  Accordingly, the two primary advantages of 
implementing the alpha metric are as follows: 

1) It can significantly reduce the total number of 
tests required to meet the SQM performance 
requirements. 

2) It provides a straightforward method to redesign 
based on an arbitrary SQM receiver 
configuration and/or multipath environment.  
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