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Abstract — Current methods for GPS receiver
autonomous integrity monitoring are limited by the
assumptions they make. Using published studies of
navigation system reliability, this paper develops a prior
probability model for spacecraft and receiver anomalies
based on non-ideal failure models and the uncertainty present
in their failure distribution parameters. With this model,
the thresholds for a residuals test statistic are found to
optimize an arbitrary objective function based on relative
costs for false alarm and missed detection errors. The
outputs of Monte Carlo simulations allow thresholds to be
computed for each geometry case using trial-and-error
optimization. The simulation outputs suggest that the
assumptions of traditional RAIM may be partially invalid.
These results are useful for both snapshot RAIM tests as
well as multi-step integrity algorithms which use Bayesian
updating to generate posterior failure probabilities. Multi-
step algorithms may be a valuable addition to the future
GIC integrity structure.

1.0 INTRODUCTION

The basic concept behind GPS receiver autonomous
integrity monitoring (RAIM) is the use of additional
information to verify position solutions. Since more than
the minimum number of four satellites (needed to solve for
3-dimensional position and the clock bias) will be visiblein
almost all cases[1], redundant satellite pseudo-range (PR)
information is available, and the position fix may be
computed from a best fit to the overdetermined data. The
consistency of the redundant measurements provides a clue
as to whether a GPS satellite or some other unit is
operating out of specification and whether this error makes
the position solution unusable.

This general approach to RAIM has been developed into
various tests of the system geometry and the pseudo-range
error residuals [2,3,4] which are for the most part
functionally equivalent [5]. However, these "traditional"
methods only use the pseudo-range data for a single receiver
sample, ignoring previous samples that are only minutes
old. Even more importantly, these methods assume no

prior knowledge of satellite, receiver, and ground station
failure modes. Instead, failure mode and effect models are
represented in avery simplified way. These features suggest
that the approximations on which RAIM is based should be
carefully checked by a more general model that attempts to
simulate uncertainties in the GPS system.

This paper presents the results of such a study. These
results are based on a simulation of the GPS constellation
geometry along with distributions which model user
uncertainty regarding the probability of failures in the
satellites and ground equipment. The outputs of the
simulation are observed probabilities of errors given
knowledge of the current geometry. Thus, given a cost
function which models the negative utility of RAIM
decision errors for a given application, we can not only
check the theoretical error predictions assumed by current
RAIM methods; we can also directly choose an optimal
threshold for each geometry case.

The results of this study suggest a further look at multi-
step RAIM algorithms which use prior as well as current
measurements. Bayesian updating (starting with the prior
probability model) is the most general way yet considered of
tackling this problem. Also, the addition of a GPS
Integrity Channel (GIC) should result in a coordinated
RAIM system whose parameters can be optimized from the
top down by simulation-based search methods such as
simulated annealing. A basic framework for these concepts
is presented here along with suggestions for future work.

2.0 TRADITIONAL RAIM METHODS

As mentioned above, the traditional RAIM methods are
based on variations of the parity-vector based threshold tests
described in [2,3,4]. Most of these algorithms have been
shown to be functionally identical in [5]. Because they are
expressed as practical, usable algorithms, the CFAR and
CPOD algorithms given in [4] will be taken as
representative of this methodol ogy.

Given the basic measurement equation:
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where z is the vector of pseudorange (PR) measurements
for M satellites in view, x is the 4 x 1 navigation state
vector in three position coordinates and the clock bias, nis
the vector of gaussian PR noise with mean 0 and variance
on2, and H is the M x 4 observation matrix consisting of
M line-of-sight row vectors to visible satellites augmented
by a column vector of 1's for the clock bias state.
Assuming 10 second averaging of PR measurements
sampled at 1 Hz, the noise standard deviation op, for the case
of uncorrected C/A codeis computed in [4] to be about 32.4
meters due to selective availability, satellite clock and
ephemeris errors, propagation uncertainties, and receiver
noise and multipath. Note that (1) can express the errorsin
z and x since the equation and assumptions are linear.

A least-squares estimate of the true navigation state vector
is given by:
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A least-squares residual statistic of the form:
D = zT[IM—HH*]z 3

is computed anew at every RAIM decision step. Normally,
D is computed and compared to a predetermined threshold T.
If D> T, anintegrity alarm is issued. Otherwise, hormal
(no-fault) operation is assumed. In addition, cases of "bad"
GPS satellite geometry are designated as non-available
RAIM cases, i.e. no failure determination can be issued.

Generally, traditional RAIM algorithms choose T either
by Monte Carlo sampling [2] or by the chi-square
probability distribution [3,4] to give desired false alarm
(FA) and missed detection (MD) probabilities:

P., = P[D>T|dx < RPE] )
Puw = P[D < T|x> RPE] &)

where dx is the true (unknown) position error and RPE is
the allowed position error limit. Official RTCA
specifications of maximum probabilities are given in [4].
Non-availability thresholds are chosen based on geometry
dilution of precision parameters (such as HDOP and PDOP)
which relate the noise standard deviation op, to the position
error standard deviation. These limits may correspond to a
specification on Py p when the threshold T is chosen to
meet a false alarm requirement [4]. More complicated
availability criteria are described in [5], such as those which
utilize delta-Hmax as described below.

Because the residual statistic D is a quadratic function of
z, which is itself a linear function of the normal random
vector nin (1), the false alarm probability is given by the
chi-square distribution:

Pea = Q (Tz/o.g | M _4)- ©)

In traditional RAIM, only bias failures on a single satellite
are considered; thus a constant bias vector b (with only one
non-zero entry) would be added to the right-hand side of (1).
The missed detection probability is then bounded by the
non-central chi-square distribution:

Pwo < P(T?/0,2| M=4, RPE/0, 8H,,,.). ()

in which dHmax is a geometry parameter defined in
[4] which measures the |east-detectable satellite failure.

In theory, this RAIM approach alows oneto choose T to
meet specifications on either PEa or Py p while checking
to ensure that the requirement on the other is not exceeded
[4]. However, there are many assumptions embedded in the
above equations, such as neglecting multiple-fault cases.
Note that Pra in (6) implicitly assumes that any bias fault
will lead to a position error exceeding the RPE. More to
the point, the true utility of the RAIM algorithm should be
a function of more than just PEa and worst-case Ppp as
defined here.

3.0 PRIOR PROBABILITY MODEL

The assumptions made by traditional RAIM not only
contain simplifications; they do not consider any prior

probability information that might influence PFa and
PMD- They essentially consider that there is one possible
spacecraft failure mode of unknown but small probability.
While it is true that only limited data on navigation satellite
and receiver integrity has been made public, it is sufficient
to at least attempt to express a prior probability model
(PPM) and examine its usefulness in computing optimal
RAIM thresholds. This PPM would express our
uncertainty regarding whether or not system failures are
present before any measurements are conducted.

In an attempt to predict the likelihood of GPS position
fix availability for various classes of users, two studies have
been conducted from which our PPM can be drawn. The
more useful study is [6], which is based on failure models
drawn from previous space-based and inertial navigation
systems. A spacecraft failure/renewal model was assumed,
and ten separate parameter sets were selected as
representative of the uncertainty of the GPS constellation.
Using the model in [6], we divide failures into “hard” and
“soft” cases, “hard” meaning complete spacecraft shutdowns
and “soft” meaning spacecraft operating with GPS signal



errors. The other study [7], conducted by IBM for the
Department of Defense, does not break down failure modes
by satellite and in any case seems to assume that the DoD
specifications for GPS system availability are automatically
met.

Rather than using ten discrete failure parameter setsasin
[6], our PPM wuses continuous Gamma(ab) and
Normal (i,0) distributions to model the uncertainty in the
failure parameters based on the datain [6]. For spacecraft
failures, the key parametersin a simple renewal model are
the mean-time-between-failures (MTBF) and the mean-
time-to-restore (MTTR). These distributions and the
parameter uncertainty models are shown in Table 1 below.
In addition, models for GPS receiver soft failures are given,
although it is assumed that most receiver faults will be hard
failures which make GPS position fixes impossible. From
these models of our failure parameter uncertainty, we can
generate probabilities of system failures for each trial and
then apply them to the GPS constellation.

Parameter Dist. | mean () | s.dev. (o)
SV hard MTBF Gamma | 100 mo. 12 mo.
SV hard MTTR Gamma [ 1.5 mo. | 0.6 mo.
SV soft MTBF Gamma | 16 mo. 6 mo.
SV soft MTTR Normal 28 hr. 8 hr.
SV soft PR hias Gamma 300 m 240 m
SV soft fail. flag Uniform | 400 m 230.9 m
RCR failure prob. Norma 0.0015 0.0025
RCR channel bias Gamma 30m 24 m
RCR noise multiple | Norma 8.0 2.5

Note: Normal distribution outcomes < 0 are taken to be 0.

Table 1: Prior Probability Model Parameters

Modeling the effects of system failures is much trickier
because of the many possible failure modes that can exist.
There is little information to go by; thus the Gamma
distributions in Table 1 which model the likelihood of bias
magnitude have a large variance. This represents
considerable prior uncertainty. No detailed attempt has been
made to break down the causes of failures because there are
too many possibilities. Therefore, the models in Table 1
simply try to model our uncertainty regarding the possible
bias outputs. Note that these failures are above and beyond

the uncertainties modeled as noise in on? [4].

4.0 SIMULATION OF GPS SYSTEM UNDER PPM

The GPS performance consequences of the prior
probability model outlined above cannot be calculated
analytically; Monte Carlo simulation is the best way to
perform the analysis without having to make severe
limiting assumptions on the PPM. For this study, a
simulation of the GPS primary 21+3 satellite constellation
[1], the PPM, and the results of RAIM-assisted position

fixes was written in C. It is afollow-on to the simulation
developedin [8].

Each simulation run executes Nmagx position fix trials.
Asin [8], from one trial to the next, a clock is incremented
by a random time interval that is uniformly distributed
between 0 and 30 minutes. The GPS constellation position
is then updated accordingly. Beyond this step, however, no
continuity between trials is assumed. For each trial, new
values of the PPM failure parameters are randomly generated
from the distributions given in Table 1. Given the MTBF
and MTTR for both hard and soft satellite failures for a
given trial, the probability of being in afailure state at that
instant is given by renewal theory [6]:

MTTR
P. = . ©)
MTBF + MTTR

Each of the 24 satellites is then checked for failure against
the resulting Pg's. Those that suffer hard failures are
simply removed from possible visibility for that trial
(only). Those which suffer soft failures receive a randomly
generated bias which is assumed to be static for the
purposes of a single trial (dynamic effects such as ramp
errors are not considered here). This random bias is then
compared to a uniform random number to determine if the
bias has been "flagged" by ground control. The higher the
bias, the more likely it is to be flagged. Flagged soft
failure effects are the same as those for hard failures; i.e.
these satellites are not used if they are visible.

Once the status of all satellites is determined, the GPS
geometry is resolved to determine the number of satellites
visible to a receiver positioned at San Francisco (this

position does not change) with a 7.5° mask angle. Using
the PPM, it is possible that one or more of the apparently
usable satellites has an unflagged bias error. Next the
probability of receiver error is generated, and the receiver
error state is simulated for this trial. If a (soft) failure
exists, it is assumed to be single-channel based with 50%
probability, inducing an apparent bias on the relevant
spacecraft. Otherwise, it is assumed to be system-wide,
thereby increasing the receiver noise by a randomly-
generated multiplicative factor (see Table 1).

Next, white noise with variance 0n2 is added to the
output pseudorange of each satellite using the variances
given in [4] and assuming a 10 second averaging time.
GPS position is then computed and compared to the known
user position. In addition to the position fix error
magnitude ox, the |east-squares residual magnitude D = dr is
computed as the RAIM decision test statistic from (3).

These results are stored in histogram arrays that contain
the number of occurrences of the discretized index valuesin
question. One bin equals 10 metersin &r and dx and 0.1 in
HDOP. Each tria is recorded according to the number of



usable (non-flagged) satellites in view (called n_view) and
the HDOP of the visible spacecraft geometry. In addition to
recording &r vs. dx within the prevailing n_view and
HDOP, marginal distributions of &r vs. dx along with
satellite failure state, PR error, receiver error, and others are
stored for later analysis.

5.0 RISK-BASED RAIM COST MODEL

As mentioned in Section 2.0, traditional RAIM methods
use the chi-sguare distribution to set thresholds to meet
specifications on PEp and Py p for various types of
missions. In [4], thresholds are set for the non-precision
approach case (RPE = 550 m) to give PEp = 1.4 X 102 and

PvD = 104 based on equations (6,7). Heretofore, these
RTCA specifications have been the only guidelines for
RAIM threshold calculation.

The question of where these specifications came from has
seldom been asked, however. Clearly, they should represent
the “cost” to the user of afalse alarm, missed detection, or
non-availability result. These costs may not be uniform for
all users. Furthermore, as pointed out in [9], absolute
specifications cannot be demonstrated to 100% confidencein
any case. Since uncertainty is unavoidable, it may be better
to use a cost-based method that more easily models
uncertainty and risk aversion.

A basis for both the RTCA specifications and a cost-
based model can be found in the RNP Tunnel Concept for
precision aircraft approaches and landings [10]. It describes
a means of setting position error specifications along an
approach “tunnel”, and it estimates the consequences of
straying outside the tunnel based on the historical record of
commercial aviation accidents. For a precision approach,
integrity decisions must be made close to the ground. A
false alarm (causing an aborted landing) has a small but
significant probability of leading to a fatal accident, while
the more serious missed detection has a much higher chance
of leading to a fatal accident. Since non-availability
decisions are made before the final approach begins (based
on satellite geometry for example), there is minimal risk
involved, but there is still a small inconvenience cost that
must be weighted against the fatal accident risks.

The non-precision approach case studied here does not face
the same exacting requirements, so the relative costs are
harder to specify. The RPE in this case is much looser,
however, so violating it still poses considerable risk if not
detected. Any detected violation (known asa*“bad” position
result) requires an alternative approach method, so thereis
an inconvenience cost plus some minimal risk. A false
alarm should have the same cost as a “bad” position result
except that the true availability of the GPS system is
wasted. Thus the false alarm cost is equal to the “bad” cost
plus a small non-availability (NA) inconvenience cost.
Although many different cost cases have been tested, the

one used for the results shown here is given in Table 2
below. Note the variable cost of the MD event means that
in addition to the base cost of any MD, an additional cost is
paid for each bin (10 m) beyond the RPE limit that the
missed position error islocated.

RAIM Result Base Cost Variable Cost
good position 0 0
detected bad pos. 1 0
missed detect. 200 10
false alarm 1.01 0
non-available 0.01 0

Table2: RAIM Cost Parameters

The NA cost for GPS is perhaps the most important to
specify. Hereit is assumed that this cost is only 1/100th of
the “bad” position cost. However, in some cases a NA
result has virtually the same effect as a detected “bad”
position: the approach must be aborted (and conducted by
other means) at about the same position in the approach. In
this case, the NA cost is as much as half of the FA cost;
thus relatively few geometries should be screened out.

6.0 COST-BASED THRESHOLD OPTIMIZATION

Since each combination of n_view and HDOP for the
non-precision approach represents an independent decision
case, an optimal residual threshold can be chosen separately
for each one. Recall that the simulation described above
stores or as a function of &x for each case. Once al trials
are completed, threshold optimization is conducted simply
by computing the cost of al possible discrete thresholds T
= dr|jmit using the following equation:

‘](T) = I:)FA CFA + I:)MD(Je) CMD(Je) + I:)bad Cbad (9)

where ¢ is the amount by which RPE is exceeded. The
threshold that gives the lowest J(T) is the optimal choice.

At this point, the expected cost of the optimal threshold
is compared to the GPS non-availability cost. If the
optimal threshold gives a lower cost, then GPS is available
for that case and the optimal RAIM threshold is set.
Otherwise, that case of n_view and HDOP is designated as
non-available for integrity, and GPS is assumed to be
unusable. Note that the NA cost is thus a critical number,
as it measures the user’s risk aversion regarding the
reliability of RAIM decisions (see Section 5.0).

Finally, the optimal thresholds (or zero if NA) are output
in a 2-D lookup table of n_view vs. HDOP. Overall results
for al of the cases, weighted by the likelihood of each case,
are also computed to measure the general utility of this
RAIM methodology as well as the marginal probabilities of
FA, MD, and NA outcomes.



7.0 OPTIMAL THRESHOLD RESULTS

All the results shown in this section use the parameters
given in Tables 1 and 2 and a sample size of Nmax = 10
million trials. However, simulations have been run with
many variations of the PPM and cost parameters; thus we
can draw some conclusions regarding solution sensitivity to
parameter changes while we study the nominal results.

The simulation outputs contain important marginal
output probabilities that deserve study so asto illustrate the
effects of the prior probability model. Table 3 shows the
observed probability of spacecraft and receiver failures:

Observed Event Probability
no SV failure 0.98237
SV hard failure 0.01492
SV soft failure-unflagged 0.00173
SV soft failure-flagged 0.00098
RCR failure (separate) 0.00191

Table 3: Observed Failure Probabilities

These results contain few surprises. Most spacecraft
failures are "hard"; they only degrade GPS geometry. The
issue of flagged soft failures could use further study.
Although receiver (soft) failures are not too uncommon,
their effects are usually not very significant (see Table 1).
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Figure 1: Marginal Densities of dr and dx

Figure 1 shows the marginal probabilities of &r and dx
over all geometry cases. The "theoretical" probability
curves generated from an "ideal" simulation (with no soft
failures) are included for comparison. Agreement is good
for the low error, high probability cases, but above 150
meters, the ideal plots dive well below what is observed

using the PPM. Oscillations in the lower right-hand corner
are due to limited sample size for the lowest probabilities.

Figure 2 shows the relative likelihoods of the possible
n_view and HDOP geometries. This 3-D line plot
illustrates the high likelihood of having 6 or more usable
satellites in view (despite flagged failures) with low
HDOP's. Many cases with only 5 satellites usable (the
minimum for RAIM) and high HDOP's have sample sizes
that are too small for reliable threshold optimization; thus
they are declared to be non-available.
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Figure2: GPS Geometry Joint Probabilities

Figure 3 is a 3-D plot of the optimal thresholds as
functions of GPS geometry. All "zero" regions of this plot
are non-available either due to an optimal decision of NA
for that case, insufficient sample size (see Fig. 2), or non-
redundancy (for n_view < 5). These thresholds tend to
increase with n_view and fall with HDOP as expected,
although there are many exceptions and embedded NA
results (T = 0) which most likely are dueto limited sample
size. For actual use, many more simulation trials would be
conducted to gain further statistical significance.

Figure 4 follows the same 3-D format but shows the
optimal costs per case. Here NA results have afixed cost of
0.01 from Table 2. The valley features in the plot show the
relative improvement gained by using RAIM with the
optimal thresholds from Figure 3. Cost reductions of 80%
aretypical for the highest-likelihood geometry cases.

Table 4 summarizes the overall results for the PPM and
cost model used for these tests. Note that results from
setting RPE = 275 meters (half of the non-precision
specification) are included for comparison purposes. The
results for the 550 m case seem quite good except for the
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Figure4: Optimal Costsfor GPS Geometries

high observed Pppp. Since the probability of exceeding

550 meters error is so small (5 x 10‘6), MD results are very
rare; thus the optimization routine can "afford” to miss
some of those which do occur. Availability is 95%, but the
optimal cost is only 17% below the NA cost due to these
MD's. As NA increases (i.e. as risk aversion decreases),
this ratio will generally improve.

We see significant differences for the 275 meter case
precisely because only RPE was changed. Bad position
fixes are more probable, so the thresholds must "tighten up”
to reduce P D at the cost of increasing PEa by almost

Sim. Output RPE =550 m RPE=275m
Total Cost 0.00832 0.00708
FA prob. 0.000165 0.003921
bad pos. prob 0.000005 0.000166
MD | bad prob. 0.484 0.060
availability prob. 0.951 0.651

Table4: Simulation Output Summary

24 times. Availability also suffers as a result. But it is
interesting that the cost is dlightly below the 550 meter
case. Thisindicatesinconsistency between the requirements
and the cost model - a recurrent problem. For a tighter
RPE, the NA cost should be increased (since greater risk is
inevitable) which will improve availability but increase the
resulting absolute cost above that for the 550 meter case.

But it is significant to note that the observed PEa, PMD.
and PN A do not agree with the resultsin [4]. While one of
the three specifications can be achieved, at least one of the
other two must be sacrificed. This is partially due to an
inconsistent cost model, but it aso indicates that under "real
world" conditions, the RTCA specifications will be difficult
to meet given arealistic PPM and cost model.

8.0 COMPARISON WITH TRADITIONAL RAIM

It is difficult to compare directly the performance of this
PPM-based cost optimization method with that of
traditional RAIM methods in [4,5] because their thresholds
were set to meet arbitrary specifications. In order for afair
comparison to be made, the same cost model must be used
to set thresholds for both methods. Thisis very difficult for
the case of traditional RAIM (athough it might be possible
using global optimization methods).

Lacking a fair bottom-line performance comparison,
another approach is to determine the accuracy of the chi-
square model (6,7) used in traditional RAIM given the PPM
used in our simulations. The RAIM method outlined here
chooses optimal thresholds based on the simulation outputs
instead of relying on (6,7). It is also possible to compute
the observed PEa as a function of the detection threshold
for each n_view and HDOP.

Using (6), we can compute the expected PEa given T and
n_view (it is independent of HDOP) and then use a chi-
square statistical test to determine the significance (%) of the
chi-square assumption; that is, the likelihood that the
simulation output PEa was produced by the theoretical
distribution (6). For comparison, a "control" simulation
was run in which all soft failure models were removed. In
this case, (6) should hold almost exactly, although bin
discretization error and limited sample size prevent 90-100%
confidence from being achieved in practice.



The random pattern of these results is important, as it
suggests that the errors mentioned above are significant;
thus high significances are unlikely even for the ideal case.
It can also be observed from the test data itself that, as
expected, agreement is better for lower thresholds (where
many FA's will result) than for the thresholds likely to be
selected as optimal. A summation of these results weighted
by the number of position fixes in each bin is given in
Table 5 below:

Simulation Model Overall Significance ST

PPM case 0.032

Idedl case 0.555

Table5: Chi-Square Test Significance

The moderate significance for the control simulation
suggests a strong likelihood that the outputs follow the chi-
square distribution (6). In sharp contrast, the low PPM-
based significance means that we can reject the hypothesis
that the PPM simulation outputs are chi-square with 96.8%
confidence. We must conclude that using what we believe
to be areasonable PPM, the chi-square distributions used in
RAIM are likely to give incorrect results. A fair bottom-
line cost comparison is needed before we can be more
specific about the relative penalty incurred by traditional
RAIM methods.

9.0 BAYESIAN UPDATING AND GIC POTENTIAL

While the method used to compute the optimal thresholds
shown in Figure 3 can be used as part of a "snapshot"
RAIM algorithm (which uses only the current sample of
pseudorange data), even more benefit may be gained by
applying the PPM and the cost model to a multi-step
updating algorithm. A Kaman filter algorithm for thisrole
isderivedin [11]. Itrelieson "censoring” out the estimated
bias from a single source. This idea utilizes past sensor
information and requires fewer assumptions than does
traditional RAIM, but failures are still assumed to come one
at atime, and random effects are presumed to be perfectly
white and gaussian once the bias estimate is removed.
Another approach is implied by current plans for GIC,
which uses WADGPS to broadcast precise PR corrections
[12]. WADGPS requires observing past PR data; so it
indirectly conducts multi-step updating.

We can avoid the white noise limitation built into
Kaman filters by conducting Bayesian probability updates
at each time step. This type of algorithm is presented in
[13] using ahybrid version of Bayes rule:

f(el6)h(6)

> f(el6)h(6)

h(ele) = (10)

where €t is the residual vector, 6j is a fault hypothesis,
h(Bjlet) is the posterior probability of 6j given e, f(e|6j) is
the likelihood of the observed residual vector given an
assumed fault state, and h(6j) is the prior probability
distribution given by:

1-ma

a
Here, a is the assumed prior probability of a single
spacecraft soft failure and m is the number of visible
satellites. This model thus has only m+1 independent
failure modes (either no failure or one of m single-satellite
bias failures). In [13], f(et]0j) is computed based on the

least-squares fit model in Section 2.0 after applying a
correction for the most likely bias estimate.

fori=0

. 11
forl1<i<m ()

This formulation is very promising, and it can be
modified to incorporate a PPM and more general fault
assumptions. In [13], a is not set from prior information;
it is chosen to give a desired PEa just as in traditional
RAIM. Introducing the PPM from Section 3.0 does
complicate the problem greatly, but it can be simplified by
adding just one additional fault mode to (10): a "grab bag"
of receiver and multiple satellite faults. The overall prior
likelihood of these miscellaneous cases can be estimated
from our PPM simulations, and f(et|6j) could be obtained
by storing residuals conditioned on failure causes 6j. If the
simulation does not provide enough samples of Om+1, we
can arbitrarily represent our uncertainty here by:

(& 1601 = 2]/ el

This is simply a ramp-shaped probability density which
suggests that the likelihood of aresidua vector et given the
occurrence of this "unexplained" fault class increases
linearly as the magnitude of et increases. The higher the
expected "maximum" residual emax is chosen, the more
uncertainty exists (because the probability band is spread
over more possible results). Of course, an attempt to
isolate a single satellite failure can give more information
about this likelihood (see [2,3]). Finally, a "loss function”
decision cost model (which does not need to set thresholds
per se) is proposed in [13] and could be augmented to model
risk aversion using the concepts in Section 5.0.

lene| > 2. (12)

An interesting system design problem results from the
introduction of GIC: how should system-wide algorithms
and parameters be designed to optimally utilize al available
information and transform it for use by independent
receivers with simple RAIM test capability? A GIC station
should be able to carry out the complex filtering or
probability updating algorithms outlined here and then
transform its posterior results to test thresholds which users
can vary based on their distance from the station and their



own specifications and risk aversion. The optimization of
the overall shared RAIM algorithm is a system design
problem suitable for global search optimization agorithms
such as simulated annealing and genetic algorithms. Top-
down optimization of this type is one way to avoid relying
upon simplifying assumptions.

10.0 SUMMARY AND RECOMMENDATIONS

In this study, a prior probability model of the GPS
system was constructed and applied to RAIM agorithm
threshold optimization. Monte Carlo simulations of the
PPM and the GPS non-precision approach application
produced output probability distributions from which
optimal decision thresholds were computed to minimize a
risk-based cost model. The outputs were also used to show
that the chi-square assumption of traditional RAIM is
guestionable in real GPS operating conditions. The PPM-
based thresholds represent a more general solution to the
RAIM problem, and with more design-stage simulation and
cost modeling effort could be turned into a high-fidelity
snapshot RAIM algorithm.

In addition to modeling precision approaches using DGPS
and carrier-phase ambiguity resolution, the future potential
of this methodology is illustrated by multi-step RAIM
algorithms based on generalized failure and/or bias
probability updatesin real time. While complex algorithms
of this type may not be practical for all GPS users, the
planned introduction of GIC and the resulting centralization
of RAIM should allow these updates to be computed at GIC
stations and used to optimize the failure status information
to be disseminated to users.
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