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 ABSTRACT

The Wide Area Augmentation System (WAAS) uses an
array of monitor stations that combine to compute GPS
user corrections over the Continental U.S.  Preliminary
experiments have concluded that ionospheric spatial
decorrelation is the most significant of the WAAS error
sources.  Recent data on ionospheric errors has been
combined into a probability model that describes the
likelihood of rare-event ionospheric decorrelations over a
range of conditions.  Using this model and simpler models
for troposphere and other errors, computer simulations of
WAAS performance for randomly located users, using the
MITRE ionospheric grid algorithm, have been conducted.

These simulation studies focused on performance
sensitivity to various algorithm parameters and the
potential of user-based RAIM algorithms to meet the
WAAS availability and integrity requirements.  It was
found that both standard residual statistics and a new
method of projecting spatial decorrelations from the
gridpoint estimates show promise in improving overall
WAAS performance.  Remaining ionospheric uncertainty
prevents us from meeting all the requirements, but more
detailed experiments will allow us to improve our models
and offer better performance.

1.0  Introduction

The Wide Area Augmentation System (or WAAS) has
in the past few years grown from a theoretical study into
an FAA proposal to build a network of about 20 monitor
stations (or WRS's) coordinated by a master station
(WMS) which computes DGPS corrections and transmits
them to users from the ground or through geosynchronous
satellites, which also serve as GPS ranging sources [1].
The components of this system could be in place by
1997.  WAAS development is being supported by
experiments at MITRE and Stanford University which use
smaller test networks of 3 or 4 monitors to gather
accuracy data [2,4,13].  These preliminary tests have
provided data that allows us to better model wide-area
DGPS performance for the full-scale system.

Since current data suggests that ionospheric spatial
decorrelation is the most serious threat to WAAS accuracy
and integrity, we have constructed a probability model
based on the latest experimental data to model our
uncertainty regarding the magnitude of "worst-case"
ionospheric errors as well as the error magnitudes to be
expected under more normal conditions.  This model
forms the basis for a series of WAAS performance
simulations in which accuracy and integrity for users
randomly located in the Continental U.S. is measured.
Our goal at this stage of WAAS program development is
to use computer simulation to project WAAS performance
given what is now known.  Due to the limited error data
and uncertain error models we have now, it is very
difficult to meet the performance requirements issued by
the RTCA for Category I aircraft precision landing [1,9],
but our results under these limitations suggest that it will
be feasible to meet the requirements once data from
WAAS full-system tests is available in a couple of years.

2.0  Breakdown of WAAS Error Sources

 WAAS employs GPS corrections computed by a
network of reference stations to remove most of the
satellite-based errors that exist without differential
corrections.  Small errors due to spacecraft clock and
ephemeris remain, however, and depending on the latency
(time to reception) and age (time to last usage) of DGPS
corrections, Selective Availability (SA) will contribute a
ranging error estimated by the simple kinematic relation:
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SA error (m) ≅ 1
2

a t2 ; a ≅ 0.004 m sec (1)

where t represents latency plus age, and the "acceleration
factor" a has been estimated by studies of SA over time
[8].  Using t = 12 seconds as a conservative number for
WAAS, this time-decorrelation error is very small.

Errors that are spatially decorrelated depend on the
geographic separation between the user and the site for
which the corrections were computed.  Local conditions
within the ionosphere (about 350 km above the Earth) and
the troposphere (the band of the atmosphere from the
surface to about 7 miles up) cause variable delays in the
GPS ranging signals which distort the true range to the
user.  These are described in detail in Section 3.0.

Other user-specific errors are due to conditions at or near
the user itself, such as multipath (due to reflected ranging
signals) and receiver noise.  The user should be aware of
these local error conditions in order to make good
integrity decisions; this is one reason why RAIM is
traditionally handled by the user.  A summary of the user
error model (excluding spatial decorrelation errors) is
given in Table 1 [8,13].  The rms of the variances in
Table 1 is about one meter.  In our WAAS simulations,
the effects of these errors are modeled by gaussian noise
with a standard deviation of 1 m.

However, for WAAS, the quality of the DGPS
corrections is another key integrity factor.  The network
of remote monitor stations each has backup hardware that
computes the corrections independently and looks for any
significant discrepancies which might indicate a WAAS
hardware or software fault [5].  Flagged faults may lead to
non-availability; WAAS applications would not be
possible during that time.  Unflagged faults could lead to
integrity breaches and are thus very serious, as they would
affect many users.  As a result, WAAS integrity is a dual
responsibility of the network and of each individual user.

Error Source Std. Deviation Notes
receiver noise 0.5 m user-dependent

multipath 0.5 m user-dependent
SV ephemeris 0.4 m after WAAS

SV clock (w/ SA) 0.3 m 12 sec. lat.+age
ref. survey errors 0.5 m misc.

Table 1:  WAAS Error Source Summary

3.0  Spatial Decorrelation Error Models

The ionosphere layer of the upper atmosphere is awash
in charged particles that can affect the timing of messages
sent through it.  Ionospheric conditions in general are
dependent on seasonal and daily variations as well as solar
effects, which include an 11-year cycle of waxing and
waning solar emissions of charged particles ("solar wind")
and the occasional solar flare or other temporary event that

creates higher charge levels in the ionosphere.  At a
smaller scale, charged-particle conditions in the ionosphere
will vary from site to site on the globe.  GPS ranging
signals received by a user are assumed to penetrate the
ionosphere at an altitude of 350 km (this penetration point
is called a pierce point, or PP) and suffer a variable
propagation delay in doing so.  Note that signals from
satellites at lower elevation angles will pass through this
layer at a more oblique angle, suffering relatively more
time delay.  This delay appears as an error to the measured
pseudorange for that satellite.

The unaided GPS user relies on the Klobuchar Model
to adjust for ionospheric conditions based on almanac data
contained in the GPS ranging message [4].  This model is
accurate to perhaps 15 meters one-sigma, so the remaining
error is significant.  Differential stations can greatly
improve this accuracy because they use high-quality dual-
frequency GPS receivers to measure the local ionospheric
delay to around 0.5 m one sigma (the remainder is
primarily Tgd error).  Local-area DGPS systems assume
that the user is close enough to the site that is
broadcasting DGPS corrections that the variance in the
local ionosphere between the user's satellite pierce points
and those of the reference station are manageably small.
For WAAS, however, the relatively low density of
monitor stations across the U.S. means that these
distances, or baselines, are much larger [6].  Thus,
algorithms to model ionospheric delays across a wide area
are critical to the overall accuracy of WAAS corrections.

MITRE has proposed the "grid algorithm" to handle
ionospheric corrections for WAAS [4].  Basically, the
remote monitor stations report their measured ionospheric
delays for their satellite pierce points to the master
station, which computes vertical (i.e. from a hypothetical
satellite directly overhead) ionospheric corrections for each
point in a lattice that is superimposed over the U.S.  Grid
points could be separated by either 5 or 10 degrees of
latitude and longitude,  although 5 degrees is difficult from
a communications standpoint due to the greater number of
gridpoint estimates that must be uplinked to the user, who
receives the corrections for each grid point as part of the
WAAS message.  For each of his satellite pierce points,
he determines the four grid points that surround it, and
then he interpolates the vertical correction at that pierce
point using the following equation [4]:

Vert. Corr. = Iest , i
i=1

4

∑
1 di

1 dkk =1
4∑

(2)

This vertical correction must be adjusted for the obliquity
of that satellite, which can be calculated from its local
elevation angle θ and pierce-point elevation θ' using:

SF = 1 sin θ'( ) ≈ 1 + 2
96 − θ deg.( )

90
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Multiplying this factor by the interpolated vertical delay
gives the final pseudorange correction for that satellite.

3.1  Ionosphere sampling model

Various researchers have attempted to measure the
accuracy of ionospheric corrections of this type using two
to four reference stations.  In [3], daytime differences
between slant ionospheric error predictions at reference
stations from 300 to 1800 km apart were measured in
1992-93, when ionospheric conditions were normal apart
from a few "stormy" days.  In [4,13], grid algorithm
corrections were computed based on a network of three
reference stations in the Mid-Atlantic area, and the
interpolated slant error prediction was compared to the
error measured at a fourth station at the assumed user site.
This data was taken from Nov. 1992 - July 1993, and
again short periods of peak activity were observed.

Using the data in [3,4,13], we have developed a model
of ionospheric delay likelihoods that is suitable for
WAAS performance simulation.  This model gives a
distribution for the relative slant ionosphere error between
two locations as a function of the following factors:

(a)  Solar Cycle:  Most of the experimental data obtained
to date is from the early 1990's, which are between the
high and low peaks of the current 11-year solar cycle.
Delays in peak years would be approximately double
those measured in these experiments [3].  Similarly, the
bottom of the cycle would give delays about half those
observed.  This is modeled by the following correction
factor for solar cycles, CF, which ranges from 0.5 to 2.0:

CF = 1 + sin 2 π ty 11( ) when sin •( ) ≥ 0

CF = 1 − 0.5 sin 2 π ty 11( ) when sin •( ) < 0
(4)

In our WAAS simulations, the current date within the
solar cycle, ty, is sampled in the outermost loop by a
uniform distribution over an 11-year time span.

(b)  Seasonal:  Slant error results are provided in [3] over
three seasonal conditions: winter, summer, and equinox.
In addition, the presence of ionospheric storms on a
handful of days in 1992-93 is a fourth possible condition.
Data for various station separations was collated by
seasonal condition to calculate base ionospheric standard
deviations for a baseline of 348 km.  These two-sigma
results and the seasonal probabilities are given in Table 2.

Condition 2σ Deviation Probability
summer 0.68 m 0.45
winter 1.05 m 0.45

near equinox 1.18 m 0.09
iono. storm 1.85 m 0.01

Table 2:  Ionosphere Deviations by Season

Note that local conditions also vary according to the time
of day, with the peak deviation occurring at about 2 PM
local time, and errors are generally lower at night [3].
This effect is not modeled in our simulations, but given a
breakdown of usage times, it could be easily added.

(c)  Baseline:  Data was taken in [3] at various station
separations, allowing us to fit a line of ionospheric
standard deviation to same-season data over varying-length
baselines and then normalizing by a standard 348 km
separation.  The following linear fit was obtained:

RM = 0.416 + 0.542 ± 0.06( )[ ] range (km)
348

(5)

where the (±) factor represents the one-sigma deviation in
the slope of the linear fit.  Note that the constant factor of
0.416 in this equation, which would exist at a separation
of zero, partially represents Tgd error, which is due to
errors in time bias calibration (relative to GPS master
time) at the ground monitor sites.

(d)  Tail Distributions:  Data provided in [3] represents
90-99% values of slant ionospheric errors.  It is clear from
this data that the 99%/90% error ratio is greater than 1.42
as predicted by a Normal distribution.  The amount of
excess varies between individual data points, but it can be
approximated using the standard Normal(0,1) as follows:

1.645 ≤ zsamp ≤ 2.33 ⇒ TM = 1.13 ± 0.11 (6a)

zsamp ≥ 2.33 ⇒ TM = 1.40 ± 0.25 (6b)

else TM = 1.0

No breakdowns are given for less than 90% confidence;
thus it will be assumed that the distribution of slant delay
is Normally distributed between the 5th and 95th
percentiles.  Between the 1st and 99th percentiles, we
continue to use the Normal distribution framework but
expand the base variance by multiplying by the (uncertain)
TM factor given in equation (6a).  In the worst 2% of
cases, we multiply by the larger factor given in equation
(6b).  This is not the most convenient analytical model
for ionospheric tail distributions, but it is well suited for
Monte Carlo simulations using standard Normal random
numbers.  Computer simulations of this type allow us the
most flexibility in expressing our model's uncertainty.

3.2 WAAS ionospheric sampling procedure

Monte Carlo sampling of this WAAS ionospheric
model is conducted in C.  The outermost of three loops
randomly places an airborne WAAS user within the
Continental U.S. by uniformly sampling his latitude and
longitude (note that each 2-D point has an approximately
equal chance of being chosen).  This position is compared
to the positions of the 20 proposed ARTCC WAAS
remote monitors to measure the relevant separation
distances.  In the second loop, for each user position,
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about one day's worth of GPS satellite geometries is
simulated in approximately 15-minute intervals.  The
Volpe data for the Primary-21 constellation is used, along
with four geosynchronous satellites stationed over the
equator at longitudes of 180 W, 18.5 W, 55 W, and 63 E.
Two of these extra GPS ranging sources are normally
visible within the Continental U.S.  "Hard failures",
which render satellites temporarily unusable, are also
simulated for the standard 24 GPS satellites based on the
probabilities and procedure given in [7] (also see [10]).

For each GPS geometry, the observation matrix G and
the vertical dilution-of-precision (VDOP) are computed
along with elevation angles for each satellite in view of
the user (see [10]).  In the innermost loop, 100-200
individual samples of the slant ionospheric error are
generated for each satellite in view.  Not only does this
allow us to tabulate the overall distribution of ionospheric
errors, but it allows separate position error computations
for each of these inner-loop trials.

For each inner-loop iteration, the current state of the 11-
year solar cycle is sampled from a uniform distribution,
and CF is computed from equation (4).  The seasonal
condition is sampled using the distribution in Table 2 to
obtain the base sigma, σb.   Given a baseline distance, we
compute the separation modifier RM from equation (5),
sampling the uncertain slope parameter when necessary.
The ionospheric error variable z is sampled from a standard
Normal(0,1) distribution, and outcomes outside the 5-95%
"normal" range result in the tail modifier TM from
equation (6).  Finally, since the base data in Table 2 is
slant error (not vertical), it already includes an implicit
obliquity factor.  From the data in [3], a "mean obliquity
factor" MO = 1.765 was estimated.  This is a necessary
approximation which represents the normalized obliquity
for the data in [3] based on previous GPS simulations
which gave distributions of satellite elevation.  The final
slant ionospheric error SE is computed as:

SE = RM CF
SF

1.765
TM σb zsamp (7)

Note that SE represents an error, reported by the nearest
"monitor", relative to the "true" ionosphere error of zero
that would be obtained with zero spatial decorrelation.

3.3  Troposphere sampling model

Local atmospheric conditions in the troposphere also
create transmission delays.  Simple models exist for the
troposphere, and the WAAS user must rely on them to
help correct for this delay [8].  Because the troposphere is
closer to the Earth than the ionosphere, the delay error is
even more sensitive to satellite elevation than for the
ionosphere.  Data relating 95% tropospheric errors
observed by a WAAS user as a function of satellite
elevation  is given in Fig. B-1 of [13].  Using two cubic
polynomial fits to this data, we can compute the standard
deviation for any satellite elevation angle θ (in radians):

σ tr = − 61.23θ3 + 55.9θ2 − 19.7θ + 3.045 (low el. ) (8a)

σ tr = − 0.495θ3 + 1.73θ2 − 1.99θ + 0.98 (high el. ) (8b)

where the boundary for low/high elevation is 18.75 deg.
Because tropospheric errors are generally a lesser problem
than are ionospheric errors, we do not add tail-probability
inflation to this standard deviation.  Instead, tropospheric
errors are sampled from Normal(0, σtr) distributions for
each satellite pierce point in view.  This error is added to
the sampled slant ionospheric error from Section 3.3.

3.4  Simulation of DGPS corrections

The spatial decorrelation sampling algorithms can be
packaged in various ways to model differing DGPS
correction algorithms.  The simplest application is local-
area, or LADGPS, corrections which are broadcast from
the nearest monitor site that can see the satellite in
question.  The user is thus dependent on a single monitor.
Using the ARTCC locations proposed for WAAS, long
baselines are possible [6].  For each SV in view of the
user, an independent slant ionospheric error is generated
using (7) based on the distance to the nearest qualified
monitor.  Tropospheric errors are also sampled, and a
sample of the other errors from Table 1 is added.  Using
the standard GPS observation equations [7], the 3-D and
vertical position error can be computed and stored for each
trial.  Note that for DGPS, the vertical position error is
much worse than the two horizontal error components.

Simulating the grid algorithm is much more complex.
Without a complete simulation of all WAAS ground
operations, an exact model is not possible.  Our grid
model is designed to represent the essence of interpolation
in correcting for spatial decorrelations given the layout of
monitor stations on which the gridpoint estimates are
based.  The grid is composed of 5 or 10-degree cells that
cover the geographic area from 10-70 degrees N latitude
and 50-160 degrees W longitude.  The pierce point of each
satellite in view of the user is within one of these grid
cells.  First, an ideal normalized slant ionosphere error is
derived for each grid point by sampling, using (7), given
the distance from that grid point to the user.  Equation (2)
interpolates for the effects of already-sampled grid points
(this is a necessary abstraction since no multiple-baseline
dependent ionosphere data exists).  Another error sampled
from (7) is added to each grid point based on the distance
from that grid point to the nearest monitor station.
Finally, the user's slant ionospheric error is computed by
a final interpolation from the four gridpoints using
equation (2) and applying the obliquity correction SF/MO.
Troposphere and other errors are handled as before, as is
the GPS position fix calculation and storage of results.

4.0  Ionospheric Delay:  Simulation Results

Although the spatial decorrelation models presented in
Section 3.0 are inexact and contain substantial parameter
uncertainty, they represent the best knowledge available to
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us with the current set of experimental data.  The plots
that follow show the results of simulations using these
models, allowing us to compare and contrast differing
DGPS ionospheric correction methods.  All the results in
this paper contained 2000-5000 user position samples,
then 100 GPS geometry samples (over approximately 24
hours) for each user position, then 100-200 spatial
decorrelation samples for each spacecraft in view.  In other
words, 100-200 separate error samples were taken for each
user-GPS geometry combination, and each error sample
led to a position fix error computation.  Overall, 20 to 80
million error samples were conducted, and the entire
process took 12-18 hours of CPU time on a Sparc-20.
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Figure 1:  LADGPS Ranging Errors

Figure 1 is a semi-log plot of the density function of
slant ionospheric delay for LADGPS, in which only the
nearest reference monitor is used for ionospheric
corrections.  The outer solid line on this "volcano-shaped"
plot represents samples of summed ionospheric and
tropospheric errors for a given spacecraft.  The dashed line
inside that represents samples of ionospheric errors only.
Note that the ionospheric errors have much larger
magnitudes.  For comparison purposes, the 'oooo' line
represents samples of the non-spatial pseudorange errors
from Table 1.  Since this is a Normal 1-meter-sigma
error, the much more rapid falloff of its tail probabilities
illustrates the extent to which the tail distributions of
ionospheric errors have been lengthened by our model.

Figure 2 is a similar semi-log plot for the WAAS case
in which the MITRE grid algorithm is simulated with 10-
degree (solid line) and 5-degree (dashed line) cells.  The 10-
degree case result is generally 2-10 times better than the
LADGPS result in Figure 1, as expected, although the
tail-distribution expansion pattern is not much improved.
Substantial further improvement in both error magnitude
and rare-event spread is gained by using a 5-degree grid.
However, a 5-degree grid multiplies the number of needed
ionosphere correction points by 4; thus it may overstress
the current WAAS communications signal format [8].
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Figure 2:  WAAS Slant Ionospheric Error

5.0  DGPS Simulations:  Position Error Results

The same simulations that generated the above spatial-
decorrelation distributions were used to compute 3-D and
vertical DGPS position errors.  Vertical position errors
dominate this picture and are the most troubling errors for
precision aircraft landings.  Figure 3 shows the observed
cumulative distribution of VDOP from the Inmarsat-
augmented and unaugmented GPS geometries sampled.
For the basic GPS constellation, VDOP is below 3.2
about 99% of the time.  With the extra geosynchronous
ranging sources, VDOP ≤ 3.2 occurs 99.87% of the time,
and 6 or more satellites are visible 99.9% of the time
(using a 7.5-degree user mask angle).  These results
suggest that very high system availability for precision
landings, approaching the desired figure of 99.9% set by
RTCA, may be possible [1,10].  In our simulations, an
availability limit of VDOP = 3.2 was set; i.e. all GPS
geometries with higher VDOP were counted as non-
available for the precision landing application.
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Figure 4 plots the density of vertical position errors for
the three cases discussed above: LADGPS ('o'), 10-degree
WAAS (solid), and 5-degree WAAS (dashed line).  The
LADGPS plot uses the VDOP = 3.2 limit, which helps
limit the position-error effects of rare-event ionospheric
errors.  However, the two WAAS plots, which are
generally superior to those for LADGPS for errors under
25 m, do not use this limit for this illustrative simulation
run.  Without that availability limit, the probabilities of
vertical errors stop decreasing past 20 m.  From this, it
seems that this VDOP limit is the key to limiting the
propagations of rare-event spatial decorrelations into
unacceptable position errors.  Substantial improvements
are gained with availability and other RAIM checks, and
these will be demonstrated in the following two sections.
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Figure 4:  Vertical Position Error Results

The overall results for WAAS are superior to those
obtained experimentally by MITRE and Stanford from
their 3-station systems [2,13], demonstrating the potential
of this 20-station monitor configuration.  Furthermore,
WAAS is not limited to the configuration under study, as
further improvements could be obtained from denser
monitor networks and/or more geosynchronous satellites.
The effects of these hardware augmentations are now being
studied using the simulation procedure developed here.

6.0  WAAS Integrity Methods and Results

6.1  Residuals threshold test algorithm

Given the basic WAAS configuration represented by
these simulations, it is possible to apply various integrity
algorithms to the simulations in an attempt to further
improve the system's accuracy and to warn users of
conditions where accuracy risks are unacceptable.  This
includes availability problems (produced by poor DOP,
which is known a priori) and continuity and integrity
concerns, which result from detected and undetected system
faults that occur during a precision approach.

As noted in [7], the standard RAIM algorithm that has
been applied to both uncorrected GPS and DGPS consists
of a DOP availability check and a residuals threshold
test.  While computing a position fix vector x from a
vector of pseudorange measurements z, a residuals statistic
Dn (normalized by the number of spacecraft in view) is
computed from the observation matrix G as follows [11]:

x = G*z = GTG( )−1
GT z (9)

Dn = zT IM − GG*[ ] z n − 4 (10)

The user compares Dn at each position fix step to a preset
threshold T, and an integrity alarm is issued if Dn > T.
Various analytical methods for calculating desirable
thresholds exist [11], but our research uses the more
general user cost optimization developed in [7].  In this
approach, a full set of WAAS simulations is conducted,
and each resulting set (x,Dn) is stored as a function of
VDOP.   Afterward, a simple optimal threshold search is
conducted for each VDOP cell to find the threshold that
minimizes the expected user cost.

A basis for both the RTCA specifications and a cost-
based model can be found in the RNP Tunnel Concept for
precision aircraft approaches and landings [9].  For a
precision approach, integrity decisions must be made close
to the ground.   The maximum allowable vertical position
error for Cat. I precision approach is set at RPE = 15 m.
The user costs listed in Table 3 below for false alarms
(D>T but error < RPE), detected errors (D > T and error
> RPE), and missed detections (D < T but error > RPE)
are derived from the allowed risks of an aircraft accident.

RAIM Result Base Cost Variable Cost
good position 0 0
detected error 1 0
missed detect. 300 10

false alarm 1.025 0
non-available 0.025 0

Table 3:   User RAIM Cost Parameters

Note that the variable cost of a missed detection means
that in addition to the base cost of any MD, an additional
cost is paid for each "bin" (of width 0.5 m) beyond the
RPE limit that the missed position error is located.

In each threshold search, the weighted user cost of the
best threshold is compared to the cost of non-availability.
If the best threshold cost is lower, then RAIM-supported
user position fixes are available for that VDOP.  If not,
then that VDOP cell is declared to be non-available,
meaning that the 0.025 cost of non-availability to the user
is better than the best result for any threshold for which
position fixes could be conducted.  Thus, this cost
minimization will determine what VDOP should be
chosen as the availability limit.
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Running this threshold search on the WAAS simulation
results in Section 6.0 gives the set of optimal thresholds
shown in Figure 5.  The discontinuities in the optimal
thresholds for adjacent VDOP cells indicate the limited
statistical significance of the WAAS Monte Carlo
simulation.  We expect the best thresholds to uniformly
decrease for increasing VDOP, since higher VDOP gives a
greater probability of position errors exceeding RPE and
thus should lead to more integrity alerts.  This result
would be realized from an infinite number of simulation
trials.  Instead of this, simply fitting a line to the optimal
thresholds in Figure 5 should be adequate, and the
resulting thresholds could then be tested on a longer set of
simulation trials.  In any case, VDOP greater than 3.0
results in non-availability for this approach, which is
close to the limit of 3.2 used in our other algorithms.

Table 4 shows the overall results for this RAIM
method.  The overall user cost for the optimized RAIM
parameters is very low, and we see that the probability of
an undetected penetration of the outer precision-landing
tunnel is simply Pr(vert. error > 15 m) Pr(MD | vert. error
> 15 m) = 2.7 x 10-7.  This result is very close to the
desired probability of 1 x 10-7 as specified in the RNP
tunnel concept [9], although it does not necessarily
include the effects of all possible ranging errors.  For a
VDOP limit of 3.0, availability is still very high, and
false alarms are infrequent.   Overall, these results are very
promising and suggest that further improvements to
RAIM software can be achieved.

Pr(WAAS available) 0.9958
Pr(false alarm) 0.0005

Pr(vert. error > 15 m) 1.0 x 10-6

Pr(missed detect. | err. > 15 m) 0.2691
Overall User Cost 2.0 x 10-6

Table 4:  Residual RAIM Results Summary

6.2  WAAS correction warning algorithms

Another RAIM approach that may be especially suitable
for WAAS is based on the very probability models we
have built to describe spatial decorrelation errors.  Since
an airborne WAAS user could possess a similar model, he
or she could use it to determine the "believability" of the
ionospheric grid corrections received from WAAS.
Knowing the positions of visible satellite pierce points
within grid cells, the user could potentially flag a satellite
whose ionospheric correction looks highly uncertain.
Satellites whose corrections have a sufficient uncertainty
could be isolated, or dropped, from the observation matrix
used to compute a position fix.  A preliminary version of
this idea has been tested and is outlined in this section.

Recall that the user will interpolate an ionospheric
correction (call it Ij) for each satellite pierce point from
the broadcast grid corrections using equation (2) and then
multiplying by the obliquity factor SF from equation (3).
From this, an "uncertainty variance" σuv2 is computed
from the four grid point estimates Ijk as follows:

σuv, j
2 = SFk

I j
2 − I jk

2( )
RMk

2
k =1

4

∑ d1 + d2 + d3 + d4

dk

+ σ tr
2 (11)

where SF, RM, and σtr are defined in equations (3,5,8).
Note that the interpolation function (2) has been used to
combine the likelihoods of the estimates between the PP
and each grid point.  A limiting threshold could be set on
this statistic, but instead we have tried to project this
spatial decorrelation variance from the psuedorange into
the vertical position error domain by using this equation:

σ zs, j = G3 j
* σuv, j = GTG( )−1

GT



3 j

σuv, j (12)

where the (3,j) entry of matrix G* is the scalar projection
of ranging error into vertical position error.  Once we have
this statistic for each satellite in view, we perform the
following process of checks:

Spatial Decorrelation Isolation Algorithm (SDIA)
(1)  non-available if VDOP > 3.2
(2)  for i = 1,...,n, compute σvs,i and compare to T
(3)  if σvs,i > T for any i and n > 6, remove row i from

observation matrix G to get Gr
(4)  use Gr to compute position fix unless:

a)  VDOP for Gr > 3.2, or
b)  σvs,i > 0.75 T for any other i = 1,...,n

(5)  if a) or b) holds, situation is non-available

Unlike the residuals RAIM algorithm, it is difficult to
choose an optimal threshold T from cost-based search
because T is internal to the position-fix computation and
must be set before WAAS simulations are run.  The
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results shown in Figures 6 and 7 below are for T = 4.5 m,
which is 30% of the vertical RPE of 15 m.

Figure 6 shows the ionospheric slant delay distributions
for a 10-degree WAAS grid.  The solid line includes all
samples, while the dashed line excludes slant ionospheric
errors for satellites that are isolated by the SDIA trial
algorithm.  Note that the only visible difference is at the
rare-event tails of the distribution (beyond errors of ±8 m),
where the isolated case probabilities decrease by a factor of
2-10 from the non-isolation distribution.  Figure 7 shows
the resulting vertical position error distributions.
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Figure 6:  Ranging Errors with Isolations
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Figure 7:  Position Errors with Isolations

Table 5 summarizes the results of WAAS simulations
with SDIA.  It appears from these results that the
improvements gained by using SDIA are noticeable but
not decisive.  Both excessive position error probability
and overall user cost decrease by about 40-50%, and note
that SDIA does not hurt availability much at all despite

isolating out uncertain-looking satellites 0.5% of the
time.  This suggests that further reducing the isolation
threshold could give better results.

Attribute With SDIA Without SDIA
Pr(SV isolation) 0.0051 0

Pr(available) 0.9975 0.9983
Pr(pos err. > 15 m) 1.3 x 10-6 2.5 x 10-6

Overall User Cost 0.00046 0.00078

Table 5:  SDIA Results Summary

SDIA is but one concept of how this type of isolation
could be attempted.  It is really only a starting point for
the development of more sophisticated algorithms based
on the idea of checking observed errors against their prior-
probability likelihoods.  The WAAS master station will
have the role of checking the consistency of the current
WAAS corrections and possibly broadcasting an estimate
of the variance in the ranging correction for each satellite
[5].  This factor could be combined into the user's
uncertainty estimates, and it follows that uncertainty
models form an important basis for ground-user
cooperation in future RAIM procedures for WAAS.
Further, it could operate in conjunction with a residuals
threshold check on the post-isolation result, since SDIA
can be seen as a form of "satellite selection" algorithm to
pick and choose from among the visible ranging sources.

While the isolation procedure discussed above is
only partially effective to this point, an alternative would
be to use the uncertainty model (11,12) in a weighted-
least-squares position fix computation.  This would
modify equation (9) in this manner:

xw = GTWG( )−1
GTW z (13)

where W is an (n x n) matrix of "weights" that express
the relative certainty of each measurement source (in this
case the satellite pseudoranges) [12].  W  could be a
diagonal matrix of the elements of 1/σuv,j2 for j=1,..., n,
or it could include ground covariances, etc.  Work on this
concept (in addition to SDIA) is continuing and being
expanded in follow-on research.

7.0  Conclusions and Further Work

This research began with the goal of extrapolating
experimental measurements of 95%-bounded ionospheric
errors to model uncertain rare-event probabilities for
DGPS ionospheric decorrelation errors.  The method of
estimating the uncertain degree to which tail-probability
errors are worse than predicted by a Normal distribution
has allowed reasonably efficient Monte Carlo computer
sampling of rare-event ionospheric errors, and combining
these with samples of other ranging errors has resulted in
simulations of vertical position error and other key
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performance measures for the proposed WAAS network.
These simulations take into account the uncertainty of
these extrapolations of experimental data; thus they
provide the best possible model of WAAS performance.

Our results show that the proposed 20-station WAAS
network and geosynchronous satellite-augmented GPS
constellation provide substantially better correction of
spatial decorrelation errors for users scattered throughout
the Continental U.S. than do local-area corrections.
Along with the improved availability of the augmented
constellation, user position fix error distributions are
much improved, making possible the use of WAAS for
Category I aircraft precision landing.  The combination of
ground integrity information and user RAIM further
reduces integrity and continuity errors that could lead to
penetrations of the outer tunnel proposed by the RNP [9].

Given the prevailing uncertainty in our error model, a
definitive word regarding WAAS integrity, continuity, and
availability performance is not yet possible.  Spatial
decorrelation experiments using more reference stations
will provide better and more useful experimental bases for
our predictions in the future.  Simulations and flight tests
which consider communications, software, and other non-
physical ranging errors need to be conducted as well.  The
simulation model developed in this research is now being
expanded to consider these other error sources that are
unavoidably built into the WAAS architecture.

The most important question remaining in the practical
design of an operational WAAS is the marginal utility of
(1) improved ground and/or user RAIM software, (2)
additional remote monitors, and (3) additional satellites to
augment ranging and/or communication.  A combination
of these should be sufficient to meet all requirements for
Category I aircraft precision approach.  Our simulations
will be used to examine all of these factors.  Currently,
improved RAIM algorithms (based on those proposed in
Section 6.0) are being formulated along with new ideas for
ground/user RAIM cooperation.  Improved RAIM
capability may allow the currently proposed 20-station
WAAS network to meet precision landing requirements
without further hardware augmentation.
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