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Abstract – In cryptography, a verification tag is a piece 

of information used to authenticate a message.  In 
geoencryption, location-based information is defined as the 
amount of information that can be used to construct a 
verification tag or “geotag” to identify one’s location.  The 
term “geoencryption” or “location-based encryption” 
refers to a security algorithm that limits the access or 
decryption of information content to specified locations 
and/or times.  Loran is chosen as a case study to 
implement geoencryption due to its many properties that 
are beneficial to this protocol.  The security of a 
geoencryption system resides in the geotag.  In order to 
evaluate the security level of geoencryption system, we 
develop a mathematical framework to measure the 
information content of Loran location-based parameters.  

I. INTRODUCTION 

Traditional encryption is used to provide assurance that 
only authorized users can use the secure content.  However, 
there are circumstances where the security provided by 
traditional encryption is not adequate.  In many instances, it 
would still be useful to have an additional layer of security 
that provides assurance that the secure content can only be 
used at authorized location and/or time [1].  The concept of 
location based encryption or geoencryption is being developed 
for such a purpose.  The capability has tremendous potential 
benefits to applications such as managing classified/secure 
data and digital movie distribution where controlling access is 
the predominate concern. 

Geoencryption is the use of position navigation and time 
(PNT) as means to enhance the security of a traditional 
cryptographic system.  The location-based parameters are used 
to generate an additional verification tag, a “geotag”, that is a 
piece of information that allows authentic users to validate 
their physical locations and proceed to the decryption process.  
Geotag is derived from specific user location (and time) 
information by quantizing these parameters into grid spaces.  
The idea of geoencryption and its use in digital film 
distribution was proposed and developed by Logan Scott, Dr. 
Dorothy Denning, and their colleagues at Geocodex [2].  
Traditional encryption is an integral part of the system and 
geoencryption provides an additional layer of security but 
doesn’t replace any conventional cryptographic algorithm.  
The detailed description of geoencryption is discussed 
previously in [3]. 

The security of a cryptographic system depends on not only 
the protocol design but also the implementation.  In principle, 

to implement geoencryption a device performing the 
decryption integrates a location sensor and cryptographic 
algorithms.  A practical concern for implementing this device 
is whether it can be made resistant to unauthorized use and 
“tampering”.  By tampering, we mean both physical attacks on 
the hardware and attacks on the implementation such as 
spoofing.  If the device is vulnerable to tampering, it may be 
possible to for an adversary to modify location information 
and bypass the location check [2].  To protect against spoofing, 
a signal authentication protocol, Timed Efficient Stream Loss-
tolerant Authentication (TESLA) is proposed.  We proposed a 
mean of implementing TESLA on Loran for authentication.  
The analysis and experimental results of authentication 
performance were discussed in our previous paper [4]. 

Additionally, the geoencryption system security resides in 
the amount of information in Location features.  This paper 
further investigates the security of geoencryption protocol by 
developing an approach to measure the information content of 
Loran location-based parameters.  We consider the measures 
of location feature strength from an information theoretic 
point of view.   

The structure of the paper is organized as follows.    Section 
II defines a geoencryption system security model.  Section III 
first gives a short tutorial or review on information theory and 
then elaborates an approach to quantify security based on the 
concepts in information theory.  We evaluate this information 
theoretic approach using two data sets in section IV.  One set 
of data is from Stanford Seasonal Monitor station; the other 
set of data uses portable data collection.  This paper then 
provides a quantitative result of the information measures and 
concludes with future directions of the research. 

II. SYSTEM SECURITY 

The security analysis of a protocol is complicated as there 
are no standard metrics to precisely quantify the subject of 
security.  To judge the performance and security of the 
geoencryption protocol, we first investigate a threat model that 
provides the possible attacks that might threaten or weaken the 
system.  A cryptographic attack is a method for circumventing 
the security of a system by finding a weakness in cipher, 
cryptographic protocol or key management.  In previous study, 
we focus on the weaknesses in the design and implementation 
of the protocol: 1) authenticating Loran signals to protect 
against spoofing; 2) tamper resistant device that doesn’t allow 
attackers to modify location information.   Signal 
authentication allows users to verify the source of the 
incoming signals.  The authenticated message, carried in the 



Loran data channel (LDC), includes data message, verification 
message of the data and a key to generate the verification 
message.  Attackers cannot simulate Loran signals or use any 
mean to spoof the certified Loran receiver because they don’t 
have the key used to generate authenticated messages.  The 
tamper resistant device integrates the Loran receiver and 
cryptographic algorithms.  Both authentic user and attacker 
only have the access of the output and neither can spoof the 
device by modifying Loran location information.  If there is an 
unauthorized tamper access, for instance, one of the screws on 
the cover is partially removed, the system assumes a 
tampering is being attempted and the circuit is designed to 
destroy all the sensitive information contained in this device.  
With signal authentication and tamper resistant device, one 
has to use this device and collect real Loran signals to bypass 
location validation, then proceeds to the decryption process.  
The detailed analysis of the attacks is discussed previously in 
[4].  If the cryptographic protocol has been proved secure, the 
security metric is the geotag length.  In the paper we assume 
there is no structural weakness and focus on the location 
dependent information measure and estimate an upper bound 
on the geotag length. 

A. System Model 

A simple mathematical model is developed to explain 
geotag generation process, shown in Fig. 1.  The true location-
based parameter is represented as X while the received one is 
Y, which is contaminated by noise and bias.  To allow certain 
degree of variation of the received parameter Y, we first 
quantize or cluster Y using a grid of a particular size.  The grid 
size is chosen based on the variation of Y, and the detailed 
calculation of the grid size will be discussed in the later 
section.  The possible outputs of clustering are Y1, Y2 … YN.  
We model the channels, P(Yi|i), as the probability to map X 
into Yi, where i = 1, 2… N.  Then a hash function or mapping 
function is applied to the quantized parameter Yi to computer 
Ki, which is the derived binary geotag.  A hash function is a 
cryptographic function that has the properties of one-way-ness 
and collision resistance.  It is easy to compute a hash function 
but relatively hard to invert the hash output or digest.  One 
cannot recover the input of hash function from its output. 

 
Fig. 1. Geotag Generation Model 

B. Performance Metrics 

The problem of deciding whether the received parameter is 
authentic or not, can be seen as a hypothesis testing problem.  
The task is to decide which of the two hypotheses H0 
(accepting as an authorized user) or H1 (rejecting as an 
attacker) is true for an observed location measurement.  
Geoencryption system makes two types of errors: 1) mistaking 
the measurements from the same location to be from two 
different locations and accepting hypothesis H1 when H0 is 
true, called false reject; and 2) mistaking the measurements 
from two different locations to be from the same location and 
accepting H0 when H1 is true, called false accept.  Both false 
reject rate (FRR) and false accept rate (FAR) depend on the 
accuracy of the Loran receiver and the grid size chosen to 
quantize the continuous location features.  These two types of 
errors can be traded off against each other by varying the grid 
size.  If Yi is the recipient’s desired quantized location 
dependent parameter, FRR is 1-P(Yi|Yi) and FAR is the 
P(Yi|Yj), where j ≠ i.  A more secure system aims for low 
FARs at the expense of high FRRs, while a more convenient 
system aims for low FRRs at the expense of high FARs. 

C. Location-based Parameter Requirement 

The most important required feature of a navigation signal 
is its ability to generate a strong geotag.  If there are no 
analytic attacks or ‘structural weaknesses’ in the algorithm or 
protocol designed, the security of the geoencryption system 
depends on navigation signal properties and amount of 
information contained in them.     

The strength of the geotag is determined by the quantity and 
quality of location dependent features.  By quantity, we mean 
the number of different location dependent parameters that can 
be generated.   Equivalently, the more numbers of X in Fig. 1, 
the longer the geotag we can derive.  The quantity of the 
features is also determined by the number of available Loran 
stations.   

By quality, we mean that amount of unique location 
dependent information provided by each parameter.  The 
information content is related to the spatial variation of the 
parameter.  Greater spatial variation results in more unique 
information.  The larger the spatial variation, the lower 
P(Yi|Yj), the probability of false accept rate or attacker  
successful rate, can be.  By having many parameters each 
providing its unique information content, we can generate a 
strong geotag.    

At the same time, it is desirable to have the parameters be 
relatively insensitivity to temporal changes which weakens the 
uniqueness of the information.  Temporal variations 
essentially reduce the uniqueness of the location dependent 
information.  Small temporal variation implies P(Yi|Yi) is high 
with an adequate grid size chosen.  As a result, repeatability 
and repeatable accuracy are desirable qualities.  It allows a 
recipient/user to receive his location-dependent parameters at 
one time—and still have those parameters valid at a later time.  
In other words, the signal characteristics should be consistent 
enough so that when the recipient is ready to decrypt, 



measurements at the same location will yield the same 
previously generated geotag.  

Additionally, there are several characteristics that are highly 
desirable.  First and foremost, the signal should have anti-
spoofing capabilities.  If the signal is vulnerable to spoofing, it 
may be possible for an adversary to bypass the location check 
and decrypt correctly.  Furthermore, it is desirable that the 
signal is available indoors.  This is because many of the 
anticipated applications of geoencryption will likely occur 
indoors.  This includes applications such as the management 
and distribution of secure digital data.   

Loran has many characteristics that can be used to generate 
a robust geotag.  First, it is being modernized to a next 
generation system known as enhanced Loran (eLoran), which 
will have a data channel that can carry authentication message 
and benefit its use for geoencryption [5].  The modernization 
will also reduce the amount of variation in some of the 
location-based parameters. Loran uses static transmitters and, 
as a result, there are many parameters that are location-
dependent.  Each parameter offers different certain amount of 
information or potential information density.  Parameters with 
higher density result in higher security levels.  The possible 
useable Loran parameters are time of arrival or time difference 
(TOA/TD), envelope to cycle difference (ECD), absolute or 
relative signal to noise ratio (SNR/ΔSNR), signal strength, 
and shape of the envelope.  In addition, Loran is a high power, 
low frequency signal.  This means that it is hard to spoof or 
jam.  The signal can reach places such as urban canyons and 
indoor environments. 

III. INFORMATION MEASURE 

In this paper we develop an approach to measure 
consistency and uniqueness of location-based information 
based on information theory.  We define “location-based 
information” as the amount of information can be used to 
generate a geotag to identify one’s location due to a set of 
measurements. 

A. Information Theory Review 

This section presents some fundamental concepts of 
information theory.  Information entropy, introduced by 
Claude Shannon more than half a century ago [6], is a measure 
of information density within a set of values with known 
occurrence probabilities.  The information entropy of a 
discrete random variable X is defined by 
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The entropy of a finite measurement depends on the 
probability distribution of the random variable.  The units for 
entropy are “nats” when natural logarithm is used and “bits” 
for base-2 logarithm [6].  We use base-2 logarithm instead of 
natural logarithm in this paper since base-2 logarithm provides 
more intuitive descriptions.  If the probability distribution is 
uniform, the entropy can be represented as 

 NXH log)( =   (2) 

The uniform distribution provides the maximum 
information entropy for discrete random variables.  The total 
number of occurrences is N while the probability of each 
occurrence is 1/N.  It is worth to mention that the normal 
distribution gives the maximum entropy for continuous 
random variables. 

Another important definition in information theory is 
relative entropy or Kullback-Leibler divergence.  Relative 
entropy D(PX||PY) measures the difference between two 
probability distributions PX and PY. 
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Relative entropy is also a measure of inefficiency of 
assuming that the distribution is PY when the true distribution 
is PX.  Since it is not symmetric, it is more a divergence 
measure than a distance measure, even though it has often 
been used as a distance metric [7].  

The numerical estimation of entropy for a finite data is fully 
discussed in [8].  Finite size data introduces systematic errors 
that should be considered.  What we observe is that entropy 
not only fluctuates around its true value, but gets 
underestimated.  The followings are the corrected estimation 
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Here Hobserved denotes the observed entropy using a finite 
number of N data samples to estimate the probability of M 
discrete states. 

B. Location-based Information Measure 

Information measure plays important roles in connection 
with secure cryptographic systems.  Entropy-based arguments 
can provide a way to quantify consistency and uniqueness as 
well as upper bound on the geotag length in the geoencryption 
system.  

i.  Temporal Entropy 

One important fundamental requirement of location-based 
information is consistency.  We define temporal entropy as a 
metric to measure the time stability of location-based 
parameters.  Feature variation reflects instability or degree of 
scatter within a particular parameter at a given location.  For 
geoencryption, feature stability or low temporal entropy is a 
fundamental requirement.  For a given grid size, the larger 
temporal variation, the higher the likelihood that an authorized 
user will not generate the correct geotag.  Many factors can 
result in high temporal entropy.  Some are related to the 
receiver or algorithms employed.  Proper design can eliminate 
these variations.  Others are related to propagation and 
changes in the environment.   

The temporal entropy, HT, can be computed using Eqn. (4) 
for given probability distribution of any quantized received 
location-based parameter, Yi.  The temporal entropy is 
inversely proportional to the parameter grid size.  To ensure 
the user is able to generate a correct geotag and decrypt 



successfully, a reasonable grid size should be chosen in order 
to overbound the variation of the parameters.  However, the 
grid size cannot be too excessively large as it will increase an 
attacker’s false accept rate and reduce the total information 
entropy.  We assume Gaussian noise in the presence of 
received location-based parameters and develop a model to 
estimate a proper grid size for each parameter.  The tails of a 
Gaussian distribution with a known standard deviation can be 
computed using Q function, thus the grid size can be 
determined by inversing of the Q function.  For instance, with 
a user successful decryption rate 99.9% or FRR of 0.001, grid 
size is approximately equal to 6.58σ.  The standard deviation 
σ can be estimated from the measurements or calculated from 
the parameter variance model.  If users’ measurements are not 
long enough to estimate true σ, a σ model that gives an upper 
bound can be applied.  Loran TOA and ECD models, 
developed by Dr. Ben Peterson, are shown as follows 
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These models are intuitively understandable.  The variance 
of location-based parameters is inversely proportional to the 
SNR of the received Loran signal as well as the number of 
pulses to average, N.  The SNR depends on the transmitter 
radiating power, the distance between the transmitter and 
receiver, and the local noise floor.  The σTOA has a unit of 
meter while σECD is in μsec. 

ii.  Spatial Entropy 

Uniqueness of a feature for geoencryption is quantified 
using spatial entropy, HS.  Spatial entropy is a measure of 
decorrelation of location-based parameters over different 
locations.  For parameters with low spatial entropy, it can be 
expected that users in different locations will measure similar 
or identical values.  Higher spatial entropy helps provide more 
uniqueness to the geotag for users at different locations.  
Therefore, larger spatial entropy results in stronger geotag and 
a higher security level of the system.   

As mentioned earlier, we model the problem as a hypothesis 
testing.  Let the two hypotheses, H0 and H1, have the 
probability distributions PQ0 and PQ1.  The two possible errors 
that can be made in a decision are α = FRR for accepting 
hypothesis H1 when H0 is true and β = FAR for accepting H0 
when H1 is true.  The relative entropy D(PQ0||PQ1) is used to 
estimate spatial entropy that is the information to distinguish 
the two probability distributions by hypothesis testing.  Let 
d(α, β) be 
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If a proper grid size is chosen, we can achieve α <<0, and 
obtain  
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Therefore, spatial entropy can be computed using attacker’s 
FAR from Eqn. (10), which gives a theoretical lower bound of 
the uniqueness measure. 

iii. System Information Entropy 

Information entropy or information density is an indicator 
for quantitative information capacity of each location feature.  
High information entropy indicates a large potential value 
space of geotag.  The potential information density mostly 
depends on the coverage of Loran transmitters as well as the 
grid size of the parameter.  Technically speaking, the 
information used to compute a geotag can be estimated based 
on the potential information capacity of location features.  
However practically, if an attacker knows an authorized user’s 
location, an attack can be performed and the effective 
information is reduced. 

We assume the location-based parameters uniformly and 
independently distributed.  Applying Eqn. (2), the total 
information entropy or geotag size in geoencryption system 
can be interpreted as follows 
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NP is the total number of location-based parameters while ni is 
the possible occurrences of each individual parameter after 
quantizing the parameter with a particular grid size.  Temporal 
entropy, HT, increases FRR, degrades the reliability of the 
system, and reduces the total system information entropy.  
However, if the grid size chosen is large enough to overbound 
random noise and seasonal variations of the location 
parameters, temporal entropy can be reduced to zero. 

IV. EXPERIMENTAL RESULTS & ANALYSIS 

In this section, we validate and evaluate the mathematical 
framework of information measure using real Loran signals.  
Two data sets are collected to measure temporal entropy and 
spatial entropy.  Actual Loran data is helpful for the evaluation 
of the information theoretic approach because there are many 
practical concerns that are hard to predict and model 
mathematically. 

A. Temporal Entropy Measure 

One of the error sources of Loran signals is additional 
secondary factor (ASF) that is the extra delay in propagation 
time due to the signals travel over a mixed path; partially over 
land with various conductivities and partially over seawater 
path.  This delay is a significant and can introduce a position 
error of hundreds of meters [10].  ASF represents one of the 
largest error sources in Loran and many researchers have been 
observing and studying its characteristics in order to model its 



seasonal variation and provide an overbound error for Loran 
users.  In order to observe this seasonal variation, the data set 
to estimate the temporal entropy should be long enough. 

A seasonal monitor station, equipments of that provided by 
Alion Science & Technology shown in Fig. 2, has been set up 
at Stanford University to study the ASF characteristics in the 
west coast.  A Locus E-field antenna and Locus SatMate 1030 
receiver are used to continuously log Loran location-based 
parameters.  A GPS receiver is used to train the Loran receiver 
clock.  The surveyed GPS antenna position is used as a 
reference for ASF corrections.   The Loran receiver averages 
the parameters every minute. 

 
Fig. 2. Stanford Seasonal Monitor Station 

We use 90-day data to investigate the temporal entropy.  
The raw data of TOA with zeros mean, ECD and SNR from 
Loran west coast chain is plotted in Fig. 3.  Loran west coast 
chain, Group Repetition Interval (GRI) 9940, includes four 
stations: Fallon, George, Middletown and Searchlight.  
Middletown is the closest station to Stanford University.  The 
ASF seasonal variation is observed in the TOA plot on the left. 

We use TOA measurements from Middletown as an 
example to conduct the evaluation of consistency.  Due to the 
seasonal change of ASF, the standard deviation of the 
measurements increases with time and doesn’t follow 

Gaussian distribution.  The histogram of the TOA 
measurements with zero mean is plotted in Fig. 4.  The 
standard deviation for 90-day measurements is approximately 
12.19 meters.  The red curve is Gaussian distribution 
constructed using the measured standard deviation. 

To measure temporal entropy accurately, it is necessary to 
remove this seasonal varying bias first.  Many factors affect 
ASF, including conductivity of soil, temperature, humidity, 
local weather, etc.  Therefore, ASF varies both temporally and 
spatially, and this raises the difficulty modeling ASF over 
CONUS.  The temporal component comes from all time 
varying aspects; while the spatial component takes into 
account the non-uniform ground conductivity and topography 
[11].  From previous study and observation of seasonal 
monitor data, winter has the worst variations.  East coast has 
significantly greater variation than the west coast.  

 
Fig. 3. Histogram of TOA from Middletown 

Many methodologies have been developed to mitigate ASF.  
Here we just demonstrate two simple ideas: time difference 
and “previous day is today’s correction”.   Time difference 
(TD) is to the difference in TOAs between secondary stations 
and the master station; thus master station is used as a 
reference to remove the ASF bias.  The tradeoff using TD is 
that the total information entropy to compute the geotag is 

Fig. 4. Stanford Seasonal Monitor Data 



reduced since we lose the TOA information from the master 
station.  In another words, using TD can achieve high 
reliability or better user performance but results in less 
information entropy or shorter geotag.  The second method is 
to use the previous day’s ASF measurements as today’s 
correction.  This requires either the user receiver constantly 
monitors Loran data or a reference station that is nearby the 
users broadcasts previous day’s ASF as a correction via a data 
channel.  The histograms of corrected Middletown TOA using 
the above methods are plotted in Fig. 5. 

The standard deviation of TD is 3.83 meters while the other 
correction method results in a standard deviation of 8.55 
meters.  Both methods don’t remove ASF completely.  TD 
method has spatial decorrelation due to the different 
propagation paths of master and secondary stations.  Previous 
day’s correction suffers from the temporal decorrelation of 
ASF because previous day’s ASF is different from today’s 
ASF.  If the ASF corrections from Loran reference stations 
can be updated more frequently or broadcasted in real time, 
the temporal decorrelation can be reduced. 

 
Fig. 5. Histograms of Corrected Middletown TOA.                                        

TD (Left); “Previous day is today’s correction” (Right). 

 
Fig. 6. FRR v.s. Temporal Entropy 

Fig. 6 illustrates how FRR varies with temporal entropy of 
three scenarios: TOA without ASF variation, TOA corrected 
using previous day’s ASF correction and TD of Middletown.  
Each maker represents a different grid size, which decreases 
from left to right, ranging from 100 to 10 meters.  For the 
same grid size, TD has smaller temporal entropy than the ASF 
corrected TOA. 

B. Spatial Entropy Measure 

Key length, which is derived from secrecy of information, is 
sometimes used as a metric to judge the security of a 
cryptographic system if the protocol has been proved no 
analytic attacks.  In geoencryption system, information 
entropy provides an upper limit of geotag only if the attackers 
have no a priori information about the user’s location 
information.  We consider the worst scenario here that the 
attackers not only know where the user is located but also 
have hardware device to receive the Loran signals and 
compute a geotag.  Since there is no physical boundary to 
distinguish authorized user and attacker, there is a probability 
that the attackers achieve a right geotag by staying as close as 
possible to the user.  This approach replies on a probabilistic 
mapping from the attackers’ locations to that of the user, 
called “parking lot” attack.  In this case, the information 
entropy is not a valid metric for the system security but spatial 
entropy.   

As mentioned earlier, spatial entropy quantifies the 
uniqueness of location-based parameters as the parameters de-
correlate as a function of physical distance.  It also measures 
the difficulty in parking lot attack.  It is necessary to examine 
the decorrelation distance, which is defined as the minimum 
distance to distinguish one location from another. 

Another set of Loran data was collected using Locus H-field 
antenna and SatMate 1030 at 21 different locations in a 
parking structure at Stanford University.  We collected data 
for 5 minutes at each location.  A diagram with the numbered 
test locations, represented as red pushpin markers, is 
illustrated in Fig. 7.   

 
Fig. 7. Roof of Mitchell Building in Stanford University 

We consider the center point, location 12, as the master 
location or authorized user’s location and observe how the 
location-based parameters de-correlate as the antenna moves 
away from the master location.  Applying Eqn. (13) discussed 
in previous section, we can compute the spatial entropy of all 



the location features.  Fig. 8 illustrates the spatial entropy of 
TD of Middletown.  As the closest station to Stanford campus, 
high SNR of Middletown makes the location features de-
correlate quickly.  To take into account seasonal variations, 
overbounded standard deviations and grids intervals are 
applied to quantize the location parameters.  Since we have 
authenticated Loran signals and tamper resistant device, the 
attackers cannot project or interpolate their locations to the 
users’.  All they can do is to rely on the mapping probability 
and perform trials and errors.  The dark blue region has spatial 
entropy zero bit, and this implies that the attackers can easily 
achieve a correct geotag anywhere in this region.  The upper 
left area has spatial entropy somewhere from 0 to 12 bits.  The 
attackers need to try a number of attempts in order to receive a 
correct geotag.    Three locations seem to be secure with 
spatial entropies above 40 bits.  Each attempt requires at least 
20 seconds considering the authentication time, discussed 
previously in [3].  For instance, if the spatial entropy of a 
location is 12 bits, attackers need to spend 22.75 hours to 
finish the trials of 212 different attempts.  

 
Fig. 8. Estimated Spatial Entropy of TD from Middletown 

High SNR parameters provide high spatial decorrelation.  
From the measurements, we also validate the uniqueness of 
different location features: TD has the highest spatial 
decorrelation; ECD has the least; SNR is very sensitive to the 
environmental change. 
C. Location Information Measure 

Information entropy is an indicator for quantitative 
information capacity of each location feature.  High 
information entropy can potentially result in a longer geotag as 
well as a higher security level of the system.  In this section, 
we use information theoretic approach to provide an upper 
bound on the geotag over CONUS. 

From Eqn. (11), it is easy to tell high information content 
requires large number of occurrences ni but low temporal 
entropy HTi, where i represents each location feature.  
Intuitively, if the temporal entropy is equal to the information 

entropy, the parameter cannot be used to compute a geotag.  
As a feature becomes more accurate, location information 
content increases. 

Overbounded grid sizes of location features can be obtained 
using the standard deviation models discussed previously.  We 
use the signal strength model of 26 Loran stations, developed 
by Dr. Ben Peterson, and assume constant noise floor for each 
GRI [12].  The grid size, which is limited by the expected user 
performance, FRR, can be computed using the estimated 
standard deviation of location feature and desired FRR. With 
overbounded grid intervals, the temporal entropy is low thus 
the total information content only depends on location 
information density.  With uniform and independent 
distribution of location-based parameters, we can analyze the 
availability of information entropy over CONUS.  The 
availability contour plot is shown in Fig. 9.  The FRR of 
0.0001 for each location parameter is chosen to compute the 
grid size.  The location parameters used are TD, ECD and 
SNR.  More parameters result in higher total system entropy 
but degrade the user performance as overall FRR goes higher.  
The information entropy varies spatially because the station 
coverage and availability are different for each location.  In 
this analysis, we only use the stations with SNR higher than 3 
dB, which is a lower limit for receivers to demodulate Loran 
messages properly and authenticate successfully, discussed 
previously in [4].  For instance, a user at Stanford University 
can achieve a 66-bit theoretical system entropy with overall 
FRR approximately 0.001.  

 
Fig. 9. Available Location Information Entropy 

V. CONCLUSION 

In this paper, we have presented an information theoretic 
approach to measure location information content.  We have 
demonstrated the information measure using two different data 
sets with the developed mathematical framework: temporal 
entropy for consistency, spatial entropy for uniqueness and 
information entropy that limits geotag size.   

Two basic methods are introduced to mitigate the seasonal 
ASF effects: time differencing correction and “previous day is 



today’ correction”.  In addition, we validate the temporal 
entropy can be traded off between spatial entropy and 
information entropy by varying the grid sizes.  The standard 
deviation models of location features are used to estimate an 
upper bound of grid interval sizes to achieve zero temporal 
entropy if ASF seasonal variations have been corrected.  
Furthermore, the preliminary result shows spatial entropy of 
12 to 60 bits can be achieved when the decorrelation distance 
is 40 meters.  One typical measure of cryptographic attack 
difficulty is time.  Converting the spatial entropy to time, 12-
bit and 60-bit are equivalent to 22.75 hours and 2.5x1011 years, 
respectively.   

In this study, we also examine and compare the consistency 
and uniqueness of different location-based parameters using 
collected Loran data.  Different location parameters provide 
different strength and information content.  Future work 
includes studying the correlation between different location 
based parameters as high correlation coefficient reduces the 
total information entropy, investigating more usable location-
based parameters to generate a more robust geotag and 
developing algorithms to improve the system performance. 
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