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ABSTRACT  
 
There is tremendous market potential for location-based 
services (LBS), enabled by the rapid growth in the 
numbers of personal navigation devices and GPS-enabled 
mobile handsets.  One of the major difficulties for LBS 
applications is accurate and reliable indoor positioning 
caused by the difficulty of acquiring and tracking GPS 
satellite signals in the absence of a clear unobstructed 
path between the satellite and the user.  An alternative 
approach is to use terrestrial signal sources, such as 
cellular transmitters, TV or FM broadcast, or Wi-Fi 

access points.  However, it is difficult to achieve 
accuracies comparable to outdoor GPS, since either the 
time resolution is inferior (for time-of-arrival methods) or 
the signal propagation characteristics are unknown or 
poorly modeled (for received signal strength methods). 
 
Multiple RF signals can be used together to compute a 
location tag, which is a form of physical pseudo random 
function.  There is no need to synchronize the different 
systems either on the transmitter or the receiver ends.  
The usable parameters for location tag generation include 
signal strength, time-of-arrival, and RF signal phase 
information.  Increased parameter diversity, greater RF 
signal variety, and more transmitter numbers all increase 
the information entropy in the derived tags and improve 
position estimation robustness.  The tradeoff of using 
many location parameters is the reduction in tag 
reproducibility as RF signals are contaminated by noises 
and biases. 
 
The analytical results then are applied to real data sets.  
The use of location tags and a fuzzy extractor is 
investigated in an office building, a parking structure, and 
a soccer field on the campus of Stanford University.  We 
show that under ideal conditions, the position tag based 
approached can achieve an accuracy of 3~6 meters in an 
indoor environment.  Furthermore, the usage of location 
tags is not restricted to positioning; many other 
applications include equipment tracking, object 
identification, and data access control for security 
services, etc. 
 
 
INTRODUCTION  
 
In this paper we introduce a tag-based approach for 
location-based security services.  The location dependent 
parameters extracted from radio frequency (RF) signals 
are used to derive a location tag, called “geotag” [1, 2].  
Unlike other location tracking methods, the technique 
does not provide accurate estimation of location 
coordinates, such as latitude, longitude and altitude, from 
location measurements.  We show that there is no need to 
map location measurements into an accurate global 
position for a number of location-based services.  We use 
Loran and Wi-Fi as case studies to evaluate and analyze 



the performance of location-based system.  Loran, which 
operates at most of the northern hemisphere, has many 
advantages over satellite-based navigation systems for 
secure location-based service.  To complement Loran for 
indoor environments, Wi-Fi is chosen as a second case 
study.  Although Wi-Fi was initially designed for 
communications between electronic devices, the 
proliferation of Wi-Fi has a growing interest in indoor 
location-based applications [3].   Accurate tag-approached 
positioning technology helps support a range of 
applications, such as people tracking, health care, patient 
monitoring, emergencies, advertisement, marketing, and 
security services, etc.  In this paper we use security 
application as example to analyze the performance of 
geotag. 

 
• Block-listing of security application: An example of 

block-listing application is digital manners policy 
(DMP).  Technologies for DMP [4] attempt to 
enforce manners at public locations.  A DMP-enabled 
cell phone can be programmed by the phone provider 
to turn off the camera while inside a hospital, a locker 
room, or a classified installation.  Or the phone can 
be programmed to switch to vibrate mode while 
inside a movie theater.  Even though these ideas are 
highly controversial [5], we only focus on the 
technical aspect of the application in this paper.  The 
device downloads an updated list periodically.   
When the device encounters a location tag on this 
blocklist, it turns the camera off.   When the device 
leaves the blocked location the camera is turned back 
on.  Hence, digital manners are enforced without ever 
telling the device its precise location. 
 

• White-listing of security application: location-based 
access control is a white-listing example.  Consider a 
location-aware disk drive: the drive can be 
programmed to work only while safely in the data 
center.  An attacker who steals the device will not be 
able to interact with it.  Location-based access control 
using encryption was studied by Scott and Denning 
[6] under the name Geoencryption.   

 

 
Figure 1. Loran Wi-Fi integration 

 

Loran has many properties that are beneficial to the 
implementation of the above applications.  It is a high 
power terrestrial signal and easily penetrates buildings 
and cities, where line-of-sight signals are not available.  
In addition, enhanced Loran (eLoran) has a data channel, 
which can carry data and authentication messages.  The 
authentication feature of signals allows receivers to verify 
the source of the incoming signals and protects against 
spoofing.  The signal attenuation at indoor environments 
degrades the accuracy and repeatability of geotag.  To 
complement Loran, Wi-Fi is used to improve the spatial 
discrimination and precision of derived geotag.  Figure 1 
illustrates the integration of Loran and Wi-Fi geotag 
system.  Loran signal gives coarse resolution, time 
message provides additional dimension in geotag 
generation, and authentication message ensures the 
integrity of Loran signals and protects against spoofing.  
Thus the generated geotag is four-dimensional.  The 
resolution of Wi-Fi tags is finer in comparison with Loran 
tags.   
 
The structure of the paper is organized as follows.    We 
first describe system models of geotag for location-based 
security service and prove that a geotag is a physical 
pseudo random function.  The paper then evaluates the 
system performance using Loran and Wi-Fi as case 
studies.  An error tolerant algorithm, named fuzzy 
extractor, which improves the reproducibility of geotag in 
the presence of noise and biases, is discussed in the 
following section.  Next we show the integration of Loran 
and Wi-Fi provides more precise location tags.  This 
paper then summarizes and concludes with future 
directions of the research. 
 
 
SYSTEM MODELS  
 
Tag Approached Positioning 
 
Secure location-based system works in two steps: 
calibration and verification, illustrated in Figure 2.  The 
tag approached positioning technique highly depends on 
the initial calibration phase.  This involves one should 
drive or walk around in the service areas with a location 
sensor such as Loran receiver or Wi-Fi enabled device.  
Geotag associated with the calibrated areas are computed 
based on the recorded location information and stored on 
a database for future use.  The second phase is named 
positioning or verification phase.  A user derives a geotag 
using received location parameters and matches it with 
the pre-computed ones on the database.  Let T be the 
geotag derived at calibration phase and T’ be the geotag at 
verification phase.    
 
In this paper we introduce different methods for the 
geotag generation and the corresponding matching 
algorithms.  The methods differ in the geotag 



representation, efficiency in computation and 
implementation in practice.   
 

 
Figure 2. Secure location-based system 

 
The first tag generation algorithm consists of three steps: 
extracting location-based parameters from the received 
RF signals, quantizing the parameters with adequate step 
sizes, and mapping the quantized parameters into a binary 
string.  The binary mapping process can be done using a 
hash function, which is one-way and collision resistant.  
Let x = {x1, x2, …, xn}T be the location parameter vector, 
Δ is the quantization step size vector and the quantized 

parameter vector is ⎥⎦
⎥

⎢⎣
⎢
Δ

=
xqx .  All these vectors have the 

size n, which is the total number of available location 
parameters.  The matching process only involves the 
correlation of the new geotag and the previously stored 
ones.   
 
While the first tag generation algorithm outputs a binary 
geotag, the second method only takes the extracted 
location parameters as a geotag T = x.  This technique is 
similar to the location fingerprinting except we also use 
various location dependent parameters other than received 
signal strength [7]. There are two different approaches for 
the matching process: deterministic approach and 
probabilistic approach. 
 
• Deterministic approach: the first deterministic 

approach is named nearest neighbor method (NMM) 
[8], which is common technique used for indoor 
location estimation and pattern matching.  The 
algorithm measures the distance between location 
vector from verification phase T’ and the previously 
stored vectors on the database.  The generalized 
distance measure D is defined in Equation (1), where 
w is a weighting factor and p is the norm parameter.  
For instance, w = 1 and p = 2 are for the Euclidean 
distance.  Based on the calculated distances between 
T’ and the previously computed Ts, the location tag 
that gives the minimum distance is picked.  It is 
necessary to set a threshold to guarantee the location 
is registered at calibration phase.  A modification to 
NNM [9] that uses standard deviation σ of the 
location parameters is named weighted nearest 
neighbor method (WNNM).  The new distance 
measure is shown in Equation (2), where C is a 
covariance matrix. 
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• Probabilistic approach: the approach models location 

tags with conditional probability and uses Bayesian 
concept to estimate location [8].  At calibration 
phase, not only the location parameters but also the 
corresponding standard deviations should be 
estimated and saved for verifications.  Assuming the 
location parameters have Gaussian distributions, we 
use the probability density function shown in 
Equation (3) to compare the calculated likelihoods.   
The location tag that gives the maximum probability 
is picked.  
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Performance Metrics 
 
The problem of deciding whether the computed geotag is 
authentic or not, can be seen as a hypothesis testing 
problem.  The task is to decide which of the two 
hypotheses H0 (accepting as an authorized user) or H1 
(rejecting as an unauthorized user) is true for an observed 
location measurement.  The system can make two types of 
errors: 1) mistaking the measurements from the same 
location to be from two different locations and accepting 
hypothesis H1 when H0 is true, called false reject; and 2) 
mistaking the measurements from two different locations 
to be from the same location and accepting H0 when H1 is 
true, called false accept.  Both false reject rate (FRR) and 
false accept rate (FAR) depend on the variations of the 
location parameters, quality of the location sensor and the 
step sizes chosen to quantize the parameters.  These two 
types of errors can be traded off against each other by 
varying the quantization steps.  A more secure system 
aims for low FARs at the expense of high FRRs, while a 
more convenient system aims for low FRRs at the 
expense of high FARs. 
 
Physical Pseudo Random Function (PPRF) 
 
By definition [10], a pseudo random function (PRF) is a 
deterministic function f: X → Y which is efficient and 
computable.  It takes two inputs x, k ∈ X.  Consider x to 
be a variable, k be a random seed, f(x, k) = y and y ∈ Y.   
 
In this section we show that the interaction between RF 
signals and a receiver is a PPRF.  We define the inputs are 
the RF signals from multiple transmitters and the signals 
are a form of representation of a particular location.  The 



deterministic function is a physical process to capture and 
condition the incoming signals, extract the location 
parameters, and map them into a geotag, which is the 
output of the PPRF.  The random seed can be any 
randomness in the hardware devices such as antenna and 
receiver used to complete the physical process.   
 
Some important properties of the derived PRF are 
efficiency, distinguishability and unpredictability.  The 
physical process that converts RF signals to a geotag is 
efficiently computable.  The second desired feature of 
location-based PPRF is the distinguishability.  The 
algorithm must be able to generate distinguishable 
location tags given different input signals.  In addition, 
the derived PPRF is unpredictable at a distance: someone 
who is twenty meters away from a target location cannot 
predict the tag at the target.  The experimental evidence 
for this claim was discussed previously in [11].   
 
There are some requirements on the physical system used 
to generate a geotag.  First, the system should be easy to 
fabricate.  This is important because we anticipate a mass 
production of the system to be deployed in the real world.  
In addition, the system should be structurally stable.  We 
expect that derived geotag is reproducible and this 
requires not only the RF signals but also the physical 
system must remain stable over time. 
 
 
LORAN AS CASE STUDY 
 
Loran has many characteristics that can be used to 
generate a robust geotag.  First, Loran is a high power, 
low frequency signal.  This means that it is hard to spoof 
or jam.  The signal can reach places such as urban 
canyons and indoor environments.  In addition, it is being 
modernized to a next generation system known as 
enhanced Loran (eLoran), which will have a data channel 
that can carry authentication message and benefit its use 
for location-based security services [12].  The 
modernization will also reduce the amount of temporal 

variation in some of the location-based parameters. 
Furthermore, Loran uses static transmitters and, as a 
result, there are many parameters that are location-
dependent.  Each parameter offers different certain 
amount of information or potential information density.  
Parameters with higher density result in higher security 
levels.  The possible useable Loran parameters are time of 
arrival or time difference (TOA/TD), envelope to cycle 
difference (ECD), signal strength (SS), and absolute or 
relative signal to noise ratio (SNR/ΔSNR).   
 
Loran Geotag Evaluation 
 
In this section we use real Loran data to evaluate the 
precision and spatial decorrelation of Loran geotag.  
Precision is defined as the ability of a location parameter 
to be consistently reproduced.  Spatial decorrelation 
measures how a location parameter varies from one 
location to another.  It is desired to have high precision 
and high spatial decorrelation for the location parameters.   
 
We selected three different environments to perform the 
test: parking structure, soccer field and office building.  
At each location we used multiple test points and 
collected data for 5 minutes at each test point.  An H-field 
antenna and Locus SatMate receiver were used for the 
data collection.  Locus SatMate receiver averages and 
outputs LORAN location parameters every minute. 
 
• Site 1. The first data set was collected at 21 different 

test points on the top floor of a parking structure at 
Stanford University.  This place has open sky view 
and no obstruction from the environments but there 
are some metal structures nearby.  The altitude is 
relatively high compared with the other two sites.  
The dimension of the parking structure is 
approximately 70 x 50 meters. 

• Site 2.  The second data set selected 16 test points in 
a soccer field.   This environment has some 
obstructions from trees and buildings.  The field has a 
dimension of 176 x 70 meters so the distribution of 

Figure 3. Loran tag: parking structure (left); soccer field (center); office building (right) 



the test locations are less dense compared to the other 
two sites.      

• Site 3.  The third data set, which has 21 test points, 
was collected on the top floor both inside and outside 
a four story office building.  The concrete building 
with metal frames attenuates signal strength more but 
introduces more randomness in the location 
parameters, which can be beneficial to the 
computation of location tags. 

We used the triple (TD, ECD, SNR) from four stations in 
the west coast chain (GRI 9940).  Quantization steps are 
chosen based on the measured SNR.  Low SNR signals 
are often attenuated more and pick up more noises.  Thus, 
features from low SNR stations are less consistent and 
larger quantization steps should be applied.  We then 
create cells and map the tags into the cells accordingly.  
The color map is superimposed on the Google map.  A 
color bar is used to label the hexadecimals of the first 16-
bit of tag.  Each black dot together with the numbered 
label at the center of the cells represents a test location.  
The visualization of geotag is shown in Figure 3.  The 
averaged cell sizes for the parking structure, soccer field 
and office buildings are 20 meters, 40 meters and 12 
meters, respectively.   The estimated cell size is limited to 
the separations between the test points. 
 
In the case of office building, Satmate receiver was not 
able to track two low SNR stations: George and 
Searchlight due to the signal attenuations from walls and 
other obstructions.   Thus the amount of information to 
form a geotag is reduced.  To complement Loran in the 
indoor environments, we choose Wi-Fi as the second case 
study. 
 
WI-FI AS CASE STUDY 
 
The increasing deployment of Wi-Fi devices by 
individuals and organizations in homes, offices, and 
campuses opens an opportunity for Wi-Fi indoor 

positioning.  Most mobile devices, such as laptops, PDAs, 
and cellular phones, are equipped with Wi-Fi devices.  
The infrastructure can be used to provide indoor location-
base applications without deploying additional equipment.  
One drawback of Wi-Fi positioning system is the limited 
coverage due to the transmitting range of access point 
(AP).  Thus, an integration of LORAN and Wi-Fi 
produces more robust location tags. 
 
Wi-Fi Signal Characteristics 
 
Many Wi-Fi positioning systems use received signal 
strength (RSS) and/or medium access control (MAC) 
address from nearby access points to derive symbolic 
locations.  A symbolic location refers to proximity of 
known objects or abstract ideas of location [3] instead of 
physical coordinates such as latitude and longitude.  Thus 
MAC address and RSS can be used location parameters to 
generate a Wi-Fi geotag.   
 
The data collection equipments consist of a Wi-Fi enabled 
laptop and a Garmin GPS receiver.  A software named 
WirelessMon is used to periodically scan the environment 
and record the tracked AP MAC addresses and RSSs to a 
log file.  The software appends the records of latitude and 
longitude to the log file when the GPS receiver is attached 
to the Wi-Fi device. 
 
Our first test is to examine the spatial decorrelation and 
coverage of Wi-Fi APs.  Downtown Menlo Park shown in 
Figure 4 was chosen to perform this test and we drove 
around in the neighborhood with the Wi-Fi enable laptop 
and Garmin GPS receiver.  The driving paths are plotted 
in green on the Google map.  The AP density in the area 
is approximately 1155/km2.  To examine the spatial 
decorrelation of Wi-Fi APs, the center point shown as red 
marker was picked as a master location.  Based on the 
recorded latitudes and longitudes, we calculated the 
separations between other point and the center point, and 
the percentage of APs that are shared with the referent 
location.  As the distance is 200m away from the center 

Figure 4. Downtown Menlo Park (left); Spatial decorrelation (middle); AP spatial distribution (right) 



point, two locations have no overlap in the tracked APs.  
Even with 10m separation, the overlap is approximately 
86%.  Most of the test points tracked above 4 APs 
according to the histogram shown on the right of Figure 4.  
The available APs +provide more parameters in the 
geotag computer and high spatial discrimination. 
 
Residential Area 
 
Next we study the Wi-Fi signal properties using 
measurements collected in residential area for 8 hours 
shown in Figure 5.  The AP with the strongest RSS 
represents the connected node.  The RSS measurements 
have a temporal variation in the range of 10 dBm or less.  
Generally speaking, stronger APs have less temporal 
variations in RSS.  Both thermal noise and multipath 
contribute to the temporal variations of the measured 
RSS.  The multipath fading effect is the result of 
destructive or constructive combination of multiple 
signals at a receiver, and causes the signals fluctuate 
around a mean value.  Multipath is a common error in 
indoor environments due to signal refraction, reflection 
and diffraction from the environments. 
 

 
Figure 5. Wi-Fi RSS measurements in residential area   

 
Signal strength is a common metric to determine 
propagation distance from a radio source in many RF 
based systems.  A propagation model is needed to convert 
the RSS into distance.  To characterize this, we collected 
RSS readings for 3 minutes at varying distance from an 
AP.  The left plot in Figure 6 illustrates the Wi-Fi RSS as 
a function of distance between the observed AP and the 
receiver.  Each dot represents the mean of the collected 
RSS measurements at the particular test point.  We 
observe a correlation between RSS and the distance.  In 
practice, it is difficult to come up a model that suits for all 
the environments, especially indoors.  The propagation is 
not necessarily linear.  The signal attenuation can be 
based on path propagation, reflection, diffraction, 
diffusion and transmission through various materials [13].  

The sum of all the components is taken to get the RSS.  
Moving objects like people can cause not only attenuation 
but also fluctuation.  The conversion from RSS to 
propagation distance works only when the signal strength 
attenuation is predictable and there is no extra attenuation 
from the composites of walls, structure of buildings, 
moving objects and multipath effects, etc.  For instance, 
the attenuation factor is different for brick walls, wood 
and glass.  A structure with different materials or 
composites complicates the modeling of the attenuation 
factor.   
 

 
Figure 6. Residential: RSS as a function of distance between 

AP and receiver (left); AP availability as a function of 
measured RSS (right) 

 
The availability or response rate of an AP is defined as 
the percentage of time that a receiver is able to track it.  A 
set of Wi-Fi scans from an AP are collected and the 
availability can be computed based on the fraction of 
times that the AP is observed and the total number of 
scans.  The right plot in Figure 6 illustrates a strong 
correlation between the AP availability and RSS.  The AP 
availability can be location dependent if there is no extra 
attenuation.  As the receiver is close to the AP, it is 
expected the availability is high.  As the receiver moves 
away from the AP, there are more attenuations and the 
availability becomes low.  However, the accuracy of 
availability measure depends on the total number of scans 
and the quality of the Wi-Fi enabled device.  More scans 
will provide better estimation and the quality of Wi-Fi 
enabled device also plays an important role.   
 

 
Figure 7. Residential: availability histogram (left); 

availability of number of APs tracked (right) 
 
The left plot in Figure 7 illustrates the availability of all 
the APs tracked during the 8 hours.  The first four 
strongest APs have relatively high availability.  If more 
than 4 APs are used to compute a geotag, there is no 



guarantee that the geotag is reproducible at a latter time.  
The right plot shows the AP density distribution, which is 
equivalent to the geotag FRR with the corresponding 
number of APs. 
 
The FRR and cell size of the quantized space can be 
traded off against each other by varying the number of 
APs used to generate a geotag, illustrated in Figure 8.  
More number of APs provides high spatial decorrelation 
or discriminations, thus a small quantized space can be 
achieved.  However, increasing the number of APs also 
increases the likelihood to use low availability AP and 
lowers the reliability of the system.  For instance, with 8 
APs, we can achieve a cell size of 3.5 m but the very poor 
reproducibility in the derived geotag.  In this scenario, an 
optimal number of APs for geotag generation should be 4.  
With 4 APs, we can achieve reasonably low FRR and 
small cells size. 
 

 
Figure 8. Residential: Tradeoff between FRR and cell size 

 
Office Building 
 
A second data set was collected in an office building for 4 
hours.  This is the same office building where we 
collected Loran signals.  The RSS measurements fluctuate 
more in this environment in comparison with the 
residential area as there are more attenuations and signal 
blockage due to moving people in the office.  Human 
body is composed of large percentage of water, which has 
a resonance frequency at 2.4 GHz and greatly attenuates 
the Wi-Fi signals [3].   
 
The visualization of the quantized cells is shown in Figure 
9.  The location tags are computed using 4 APs and the 
averaged cell size is approximately 6m.  The availability 
of observed APs is shown in the middle of Figure 9.  
Although the total number of APs tracked in the office is 
more than that in the residential area, the availability of 
tracked APs is poor.  Same tradeoff analysis is conducted 
to examine the optimal number of APs used to generate a 
geotag.  The FRR is high in comparison with the 

residential FRR.  To achieve a reproducible tag, only the 
AP with the strongest RSS can be used.  Even with 2 APs, 
the FRR is high, 0.15.  The average cell size is reduced 
from 11m to 6m as the number of APs increase from 1 to 
8.   
 

 
 

 

 
Figure 9. Performance analysis in the office building 

 
Fuzzy Extractors 
 
To achieve high geotag reproducibility, error-tolerant 
algorithm, named fuzzy extractor, can be applied to 
location data.  By definition, it is an error tolerant 
algorithm to extract desired information from noisy input 
[14].  We developed both Euclidean metric and Hamming 
metric fuzzy extractors based on the error patterns of 



location data.  Euclidean metric fuzzy extractor can be 
used for the errors introduced by random noise, seasonal 
bias and quantization error while the Hamming metric 
fuzzy extractor is for the case of offline transmitter or 
missing parameters.  The details of fuzzy extractor 
constructions are discussed in [15].  We show the 
improvement in Wi-Fi geotag FRR using secret sharing 
based Hamming metric fuzzy extractor.  The key idea of 
this fuzzy extractor construction is to use a subset of 
registered APs at calibration phase to reproduce the 
geotag.   The number of APs in the subset is a design 
parameter and can be chosen by a user at the calibration 
phase. 
 

 
Figure 10. Performance with fuzzy extractor 

 
The performance comparison with and without using a 
fuzzy extractor is shown in Figure 10.  The performance 
in the residential area is shown on the left while the right 
plot indicates the estimated FRR in the office building.  
The reproducibility of Wi-Fi geotag without and with 
using fuzzy extractor is illustrated as blue and red colors 
respectively.  We note a dramatic improvement in the 
geotag FRR with the Hamming metric fuzzy extractor.  
For instance, with 4 APs, FRR is reduced by 83% for the 
residential area and 85% for the office building.   
 
Loran and Wi-Fi Integration 
 
The integration of LORAN and Wi-Fi produces better 
precision in the location tags as more parameters 
contribute high spatial discriminations.  In addition, 
increased parameter diversity, greater RF signal variety, 
and more transmitter numbers all increase the information 
entropy in the derived tags and improve position 
estimation robustness.  There is no need to synchronize 
the different systems either on the transmitter or the 
receiver ends.  The performance of LORAN and Wi-Fi 
integration is illustrated in Figure 11.  The MAC address 
and RSS from 4 Wi-Fi APs are used in generating the 
tags.  The Loran location parameters are TD, SS and ECD 
from four west coast stations.  The resulted quantized 
cells have a minimum size of 2.7m and average size of 
6m.  The average cell size is reduced by 32% with the 
addition of Wi-Fi signals. 
 
 
CONCLUSION 
 

We proposed Loran and Wi-Fi integration for location-
based security services: in which location is used as a 
validation to allow or restrict certain action in security 
applications.  Verification tags are computed from 
location based parameters extracted from RF signals.  
This location-based service can be applied to many 
applications, such as DMP, inventory control and data 
access control. 
 
The properties of Loran signal can benefit the design of 
location-based security services and tag-approached 
positioning.  Wi-Fi signal provide a more spatial 
variations to Loran in the indoor environments.  We show 
that the improvement in the quantized cell size is 
approximately 32%.  Fuzzy extractors should be applied 
to achieve a reproducible tag on both Loran and Wi-Fi 
signals. 
 

 
Figure 11. Loran and Wi-Fi integration 
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