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ABSTRACT 

Over the next decade, civilian users will have access to 
multiple GNSS signal frequencies and constellations. This 
drastic increase in signals and their frequencies creates 
substantial opportunities and requirements for analysis 
and validation. Such analysis and validation is of 
significant importance from an aviation integrity 
perspective. The ultimate goal of our research efforts is to 
develop a standalone reconfigurable platform capable of 
tracking and monitoring multiple constellations and 
frequencies as and when they commence transmission. 
This platform will also be utilized to test and verify new 
receiver processing algorithms currently under 
development. It must be capable of running in real-time to 
ensure signals can be monitored on a 24x7 basis. As a 
first step in this direction, we designed and validated a 
standalone L1 C/A receiver which runs in real-time on a 
Xilinx University Program Virtex-II Pro Development 
Board. This board features a Virtex-II Pro FPGA with two 
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on-chip PowerPC 405 32-bit RISC hardcore processors. 
This feature of the FPGA fabric facilitates the 
development of reconfigurable embedded GNSS receivers 
which do not require the resources of a Host PC or a 
dedicated DSP processor. The entire system was designed 
using the Xilinx System Generator for DSP, a modeling 
and implementation tool for high-performance DSP 
systems. Such a model-based design approach facilitates 
rapid system development and prototyping thereby 
enabling system modifications and upgrades to be 
implemented in a short time span. 
 
INTRODUCTION 
 
Present day GNSS civilian users have unrestricted access 
to only the GPS L1 C/A and Glonass Standard Precision 
(SP) ranging signals. Over the course of the next decade, 
users will be able to access multiple frequencies and 
constellations. In addition to new signals on GPS, GNSS 
constellations such as the European Union’s Galileo and 
China’s Compass along with a modernized Russian 
Glonass system will provide multiple ranging sources to 
GNSS users. Some of the proposed frequencies and 
constellations are shown in Figure 1.  

 
Figure 1: Future Global Navigation Satellite System 
Signals 
 
Most of these systems will be interoperable since they 
will be modulated by a common set of carrier frequencies. 
The possibility of obtaining dual-frequency measurements 
will help improve accuracy for civilian users while 
enhancing system integrity, availability, and continuity 
for aviation users. A few of the proposed new GNSS 
frequencies and constellations currently transmit test 
signals which may not necessarily be their final signal 
specifications [1, 2, 3]. 
 
SRAM-based Field Programmable Gate Arrays (FPGA) 
based receivers can be easily reprogrammed making them 
an ideal choice to acquire, track, and validate new signals 
whose specifications may not have been finalized. Ease of 
reprogramming the device makes it an ideal choice for 
rapid prototyping. FPGAs help overcome the limitations 

of Application Specific Integrated Circuits (ASICs) and 
pure software defined radios. While ASICs are optimized 
for computational efficiency, they cannot be reconfigured 
to incorporate changes in the Signal in Space (SIS) 
specifications of the signals for which they are 
specifically designed for. Software defined radios provide 
flexibility in incorporating system changes but are 
computationally expensive. 
 
A FPGA device is an integrated circuit with a central 
array of logic blocks that can be connected through a user 
configurable interconnect routing matrix. The periphery 
of logic-array is comprised of a ring of I/O blocks that can 
be configured to support different interface standards. 
This flexible architecture can be exploited to implement a 
wide range of synchronous and combinational digital 
logic functions. A simplified representation of a FPGA 
block diagram is shown in Figure 2. 

 
Figure 2: Simplified FPGA Block Diagram (Courtesy 
Xilinx, Inc) 
 
A digital design can utilize one or more of three basic 
types of devices: Logic, Memory and Processors. Several 
of the current high-end FPGA families incorporate all 
three of these devices within a single integrated circuit 
(IC). The ability to implement hardcore or softcore 
processors within the FPGA makes them well suited for 
developing reconfigurable embedded systems. Further 
details about hardcore and softcore embedded processors 
are provided in a subsequent section of this paper. These 
FPGA families feature millions of equivalent gates of 
functionality and high-speed interfaces capable of 
supporting a broad range of engineering solutions 
including nontraditional applications. Today, FPGAs are 
capable of implementing complex functionality such as 
the correlation process in a GNSS receiver which 
traditionally is performed on a dedicated ASIC. 
 
Apart from the basic three digital components mentioned 
in the previous paragraph, many newer generation FPGA 
families also feature dedicated components specifically 
designed to perform DSP functions. These components 
accelerate algorithms and enable higher levels of DSP 
integration and lower power consumption within the 
device. These dedicated DSP components support over 40 
dynamically controlled operating modes including: 
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multiplier, multiplier-accumulator, multiplier-
adder/subtractor, three input adder, barrel shifter, wide 
bus multiplexers, wide counters, and comparators. They 
also incorporate efficient adder-chain architectures for 
implementing high-performance filters and complex 
mathematical operations efficiently. Some FPGA 
manufacturers also provide users with Intellectual 
Property (IP) blocks which help implementation of 
popular DSP algorithms and functions in an optimal 
manner. Of particular importance for software GNSS 
receiver development include Math Functions such as the 
COordinated Rotation DIgital Computer (CORDIC) 
algorithm used to compute trigonometric functions and 
specialized DSP algorithms/designs such as the Fast 
Fourier Transform (FFT) and Finite Impulse Response 
(FIR) filter design. [4, 5] 
 
In this paper, we present some preliminary results of our 
current efforts in developing a reconfigurable embedded 
GNSS receiver platform capable of tracking multiple 
frequencies and constellations. This platform will be used 
for a variety of applications which are discussed in a 
subsequent section of this paper. As a first step, we 
designed a real-time reconfigurable embedded GPS L1 
receiver and analyzed its performance. We now describe 
the details of the receiver design and implementation 
process and compare its performance to that of a pure 
software defined receiver executed on a Host PC.  
 
MOTIVATION & BACKGROUND 
 
GNSS software radio receivers have evolved notably over 
the past few years. It was originally developed in 1997 as 
a tool for post processing of collected GPS data. Its 
implementation in Matlab made it computationally 
expensive [8]. In order to reduce computational expense, 
pure software receivers were implemented in a high level 
language such as C/C++ running on a programmable 
microprocessor. Over the years, through the use of novel 
processing techniques combined with technology 
improvements in microprocessor capabilities have 
enabled implementation of multi-channel real-time GPS 
L1 C/A software receiver [9, 10]. Such receivers utilize 
the processing resources of the microprocessor of a host 
PC and their performance is directly related to the 
resources available on the host PC. 
 
To overcome the computational limitations placed by 
resource availability on a host PC, various 
implementations have been proposed which utilize the 
signal processing capabilities of a dedicated Digital 
Signal Processing Chip (DSP) and/or the reconfigurable 
parallel processing capabilities of a FPGA [11, 12, 13] to 
develop real-time GNSS software receivers. These 
implementations were designed using hardware 
descriptive languages (HDL) such as Verilog or Very-
High-Speed Integrated Circuits HDL (VHDL) and were 

executed on hardware platforms custom designed by the 
authors.  
 
Our desire to use a ubiquitous commercial off the shelf 
FPGA development board influenced the choice of the 
hardware platform selected for our current work. After 
comparing the cost and processing capabilities of several 
development boards, we decided to adopt the Xilinx 
University Program Virtex-II Pro Development System. 
In fact, this board is used by over 2000 universities the 
world over for digital design courses. We are of the 
opinion that this board can also be utilized as an attractive 
educational tool for GNSS software receiver design 
courses. The development board is distributed by Xilinx 
Inc., through its Xilinx University Program (XUP) to 
universities affiliated with the program. It features a 
Virtex II-Pro FPGA chip along with onboard external 
memory modules, I/O ports and other peripherals. By 
using this particular development board, we could avoid 
the time and costs associated with designing a custom 
hardware board. A picture of the board along with the 
external peripherals it supports is shown in Figure 3. 
 

 
Figure 3: Xilinx University Program Development 
System 
 
The Virtex series of FPGAs feature built-in hardcore 32-
bit IBM processors known as PowerPCs which can be 
utilized as microprocessors within the same FPGA chip. 
We intended to exploit this feature while designing our 
standalone embedded GNSS software receivers. Thereby 
we could also avoid the necessity to use either a host PC 
or a dedicated DSP chip to perform the complex baseband 
receiver signal processing. Further, rather than designing 
the system using Hardware Descriptive Languages, we 
decided to implement the design using Model-based 
design tools available from Xilinx Inc. The System 
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Generator for DSP is an optimized modeling and 
implementation tool which can be used to design high-
performance DSP systems. We believe such an approach 
is the most suitable since it provides us with the flexibility 
to utilize a single FPGA platform to design and 
implement multiple applications within a short time span. 
Such a design methodology does not require tedious 
manual coding and hence design teams need not worry 
about coding and commenting styles which vary amongst 
programmers. Such a design approach makes it easy for 
multiple individuals to work on small modules which can 
be integrated together to obtain the required larger design.  
 
RECONFIGURABLE EMBEDDED GNSS 
SOFTWARE RECEIVER DESIGN 
 
FPGA manufacturers use two different implementations 
to include an embedded CPU core within a FPGA chip. 
The first known as a “Softcore” is a processor written by 
the user as a parameterisable function along with code for 
the FPGA’s logic. Such implementations include the 
MicroBlaze and the Nios-II from Xilinx and Altera 
respectively. Certain FPGAs from Xilinx and a few other 
manufactures also include dedicated CPU known as a 
“Hardcore” processor. A hardcore processor is 
implemented directly in IC transistors achieving maximal 
performances, while a softcore processor is an IP core 
which is implemented on the FPGA’s logic cells. As a 
result, dedicated hardware processors do not use any of 
the FPGA’s programmable resources. In contrast, using a 
dedicated processor external to the FPGA fabric requires 
hundreds of additional interface pins, which degrades 
system performance and significantly increases FPGA I/O 
requirements and overall board costs. Though typically 
the cost of including a softcore processor is lower than a 
hardcore processor, it exhibits significantly lower 
performance measured in terms of clock speed and MIPS 
(million instructions per second) count [14].  
 
The Xilinx Virtex series of devices have up to 4 built-in 
IBM PowerPC microprocessors within the FPGA chip. 
These processors provide 32-bit fixed-point embedded 
applications with high performance at low power 
consumption. Also, PowerPC processors can provide 
floating-point support either in hardware or software. 
While the legacy Virtex-II Pro and Virtex-4 series of 
FPGAs featured the PowerPC 405 CPU which could 
clock a maximum speed of 450 MHz and execute over 
700 DMIPS, the latest Virtex-5 FXT series of FPGAs 
feature a PowerPC 440 CPU which can clock a maximum 
speed of 550 MHz and execute over 2000 DMIPS.  
 
The XUP development board previously described 
features a Virtex-II Pro FPGA (XC2VP30) with two 
dedicated PowerPC 405 processor blocks. This provides 
us with the means to design GNSS receivers based on the 
time-tested architecture of commercial GNSS receivers. 

In commercial receivers, ASICs are used to carry out 
massively parallel correlation operations while 
microprocessors such as an ARM processor are utilized 
for baseband signal processing. In our reconfigurable 
embedded GNSS receiver implementation, we leverage 
the parallel processing capabilities of the FPGA logic 
cells to perform simple but high frequency receiver 
processing functions such as the correlation processing 
during acquisition and code, carrier wipeoff in the 
tracking loops. The hardcore PowerPC is used to perform 
complex but low frequency functions such as the 
baseband signal processing in the tracking loops and 
navigation solution computation. The proposed use of the 
FPGA’s logic cells and an embedded hardcore processor 
results in an optimized hardware/software partitioning 
that maximizes FPGA utilization while minimizing 
hardware costs. This implementation strategy does not 
require the processing resources of a Host PC or 
additional DSP chips. Thereby, our proposed software 
receiver implementation strategy results in a system 
design whose performance is not limited by the 
capabilities of a host PC nor does it involve the additional 
costs of a DSP chip. 
 
SYSTEM DESIGN USING MODEL-BASED DESIGN 
TOOLS 
 
Traditionally, pure software receivers running on a PC are 
coded in higher level language such as Matlab or C/C++. 
Design of customizable logic hardware requires coding 
the necessary logic using dedicated hardware description 
languages such as Verilog or VHDL. A GNSS software 
receiver utilizing a DSP processor would require the 
designer to program the processor using proprietary 
programming tools provided by the DSP manufacturer. 
 
A typical software receiver implemented in a FPGA 
would require the user to be familiar with vendor 
provided simulation and synthesis tools such as the 
Integrated Simulation Environment (ISE) toolkit from 
Xilinx Inc. or third party tools such as ModelSim for 
simulation and Simplicity for design synthesis. In order to 
popularize greater use of their FPGAs manufacturers have 
started to offer Model-based design toolkits. Such toolkits 
do not require the designer to be familiar with Hardware 
Description Languages thereby resulting in faster system 
development time. Predefined IP blocks are made 
available to users for a variety of applications. One such 
toolkit of particular interest to us has been the Xilinx 
System Generator for DSP. 
 
This toolkit runs within Simulink and is accessible as an 
additional blockset along with the Simulink blocksets 
provided by Mathworks. System Generator communicates 
with both synthesis tools such as the Xilinx ISE and also 
embedded system design tools such as the Xilinx 
Embedded Development Kit (EDK) in the background 
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while abstracting the designer from such processes. It also 
facilities hardware in the loop co-simulation of the design 
thus ensuring the design works flawlessly in hardware. 
Each individual module of a larger design can be 

separately verified in hardware and then combined to 
obtain the required design. Figure 4 below shows the 
functionality of System Generator as a Model-based 
design toolkit. 

 
Figure 4: System Generator and its Functionality (Courtesy Xilinx Inc.) 

Figure 5 below shows a block diagram of the parallel 
code phase search algorithm used for acquisition of 
signals in a software receiver.  In order to obtain a 
functional software receiver such block diagrams will 
have to be coded and debugged using the appropriate 
design tools. Model-based design tools such as the Xilinx 
System Generator for DSP facilitate implementation of 
the block diagrams in an easy and intuitive manner. Once 
the necessary functional blocks required to perform the 

desired logic are included in the Simulink design window, 
the design can be implemented at the “push of a button”. 
Figure 6 below shows the equivalent representation of the 
block diagram using predefined IP blocks. Such an 
implementation eliminates the tedious task debugging 
coding errors that appear at runtime. A visual description 
of the design also helps facilitate easy modifications and 
upgrades at a later stage. 

 
Figure 5: Block Diagram of Parallel Code Phase Search Acquisition
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Figure 6: Implementation of Parallel Code Phase Search Acquisition using Model-Based Design Tools
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RECEIVER IMPLEMENTATION 
 
To validate the feasibility of designing reconfigurable 
embedded GNSS receivers, we designed and 
implemented a multi-channel GPS L1 C/A receiver. Since 
the larger objective of developing this reconfigurable 
platform is to monitor new signals and to implement new 
algorithms, we only implemented the acquisition and 
tracking modules of the receiver. Herein we present the 
implementation techniques for the acquisition and 
tracking loops of the receiver followed by its performance 
and amount of resources utilization on the FPGA. 
 

I. ACQUISITION 
 
Acquisition is the process by which a receiver determines 
coarse values of carrier Doppler frequency/residual IF and 
code phase of the signals transmitted by satellites visible. 
Acquisition is performed when a receiver is first turned 
on. Signals need to be reacquired when a receiver loses 
lock of signals it was tracking. These coarse estimates 
must be sufficiently accurate for convergence of the 
subsequent tracking loops. Signals transmitted by GNSS 
satellites are differentiated based on the PRN sequence 
assigned to each satellite. Code phase, is the time 
alignment of the PRN code in the current block of data. It 
is necessary to know the code phase in order to generate a 
local PRN code that is perfectly aligned with the 
incoming code. Only then can the incoming code can be 
removed from the signal. Carrier frequency is the center 
frequency of the RF signal used to modulate the PRN 
sequence and navigation data transmitted by GNSS 
satellites. In case of down-conversion at the receiver front 
end, the carrier frequency corresponds to the local IF. 
This value is obtained based on the carrier frequency and 
from the mixers used in the down-converter. However, 
this frequency can deviate from the expected value. The 
line-of-sight velocity of the satellite causes a Doppler 
effect resulting in a higher or lower frequency. In the 
worst case, this frequency deviation can be as large as 
±10 kHz.  
 
If the receiver performs a cold start (i.e. no a priori 
information is available), a serial search for the 
correlation power of all possible combinations of code 
phase and Doppler frequency bins must be performed. 
This results in an extremely large search space based on 
the resolution requirements for the code phase and 
Doppler frequency bins. However it is easy to realize that 
correlation in time-domain corresponds to a convolution 
process and that convolution in the time domain 
corresponds to multiplication in the frequency domain. 
Hence an acquisition algorithm based on Fourier 
Transforms of the incoming signals and locally generated 
replica greatly reduces the acquisition search space either 
in the Doppler frequency or code phase dimension. 
 

We decided to adopt the parallel code phase search 
algorithm in our receiver implementation. Since the code 
phase dimension is significantly larger than the Doppler 
frequency dimension, parallelism in the code phase 
dimension can greatly reduce the size of the acquisition 
search space. The block diagram for this algorithm was 
shown in figure 5. 
 
The down-converter used in our receiver down-converted 
the carrier frequency to an IF frequency of 4.1304 MHz 
with an A/D sampling frequency of 16.3676 MHz. The 
FFT IP block used in the implementation shown in figure 
6 was implemented using a Radix-4 FFT configured as a 
Burst I/O operation. The incoming sampled data was 
padded with additional zeros to obtain the necessary data 
size of 47 required to perform FFT on the data. A 1 ms 
integration time was used in the implementation with a 
code phase size of 1 chip. This corresponds to a Doppler 
frequency bin of 500 Hz spread over a ± 5 KHz frequency 
deviation range. It is important to note that the entire FFT 
operation was performed in hardware unlike a pure 
software receiver wherein the FFT algorithm is 
implemented in software. 
 

II.   TRACKING 
 

The principle function of the tracking module in a GNSS 
receiver is to refine the code phase and carrier 
frequency/IF residual frequency obtained through 
acquisition, to keep track and to demodulate the 
navigation data of the satellite being tracked. 
 
Each tracking loop available in a receiver is referred to as 
a receiver channel and is capable of tracking a particular 
satellite at any given time. Signal processing within a 
tracking loop can be divided into Signal Demodulation 
also referred to as Code and Carrier Wipe off followed by 
baseband signal processing to dynamically update the 
code and carrier tracking loops [6, 7].  
 
Code Tracking Loop:   
 
The purpose of a code tracking loop is to keep track of the 
code phase of a specific code in the signal. The output of 
such a code tracking loop is a perfectly aligned replica of 
the incoming code. The code tracking loop used in GPS 
receivers is a delay lock loop (DLL) called an Early-Late 
(E-L read Early minus Late) tracking loop. The DLL 
discriminator provides the necessary feedback required to 
ensure the replica signal is always aligned with the 
incoming signal. In our implementation, we used a 
normalized coherent dot product discriminator with a 1-
chip E-L correlator spacing. This discriminator requires 
that the carrier loop remains in phase lock. However such 
a discriminator requires low computational resources. The 
normalized coherent dot product discriminator is 
computed as: 
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where: IE, IL and IP are the Early, Prompt and Late 
versions of the in-phase sampled data 

 
Carrier Tracking Loop: 
 
Successful demodulation of the navigation data requires 
an exact replica of the carrier wave to be generated at the 
receiver. The incoming carrier wave is tracking using 
either Phase Lock Loops (PLL) or Frequency Lock Loops 
or a combination of the two. While the use of PLLs is 
referred to as coherent tracking, FLL based tracking is 
also referred to as Non-coherent tracking. PLL or FLL 
discriminators blocks are used to find the phase or 
frequency error between the incoming signal and the local 
carrier wave replica. This output phase or frequency error 
is then filtered and used as a feedback to the Numerically 
Controlled Oscillator (NCO) which adjusts the frequency 
of the local carrier wave generated. This feedback process 
in the carrier tracking loop ensure that the local carrier 
wave could be an almost precise replica of the input 
signal carrier wave. 
 
Since a pure PLL is sensitive to bit transitions in the 
navigation data, a Costas PLL is preferred. Costas PLL 
are inherently insensitive to the presence of data 
modulation in the incoming signal. Our implementation 
uses just the Two-Quadrant arctangent Costas loop 
discriminator. This discriminator is optimal at both high 
and low SNR and provides the actual phase error and not 
a function of the phase error. The discriminator algorithm 
is given by: 

)/IATAN(Q PP                              (2) 
where IP and QP are the prompt versions of the in-phase 
and quadraphase sampled data. 
 
The tracking loop integration time used in our receiver is 
dependent upon its mode of operation. The receiver 
implemented had three distinct tracking modes 
determined based on how long the receiver had been 
tracking the signal post acquisition. The three modes and 
the corresponding integration times used were: 

1. Pull-In Mode: 1ms Integration Time 
2. Transition Mode: 5ms Integration Time 
3. Fine Tracking Mode: 20 ms Integration Time 

 
RESULTS 
 

I. RECEIVER PERFORMANCE 
 
The GPS L1 receiver described in the previous section 
was streamed with sampled IF data. The data was 
processed using the reconfigurable hardware setup 
previously described. To validate the results obtained, the 

same data was processed using a pure software receiver 
executed in Matlab. Results for both the acquisition 
search and tracking operations were compared to ensure 
integrity of the data was maintained while being 
processing on the hardware platform. 
 
A total of seven satellites were acquired using the FFT 
based acquisition algorithm. Figure 7 shows the 2-D 
correlation plot for PRN 14. This satellite had the lowest 
CPPR value of 2.87 amongst all the satellites acquired. A 
CPPR threshold of 2.5 was used in the logic circuitry to 
determine if a PRN was indeed acquired. The complete 3-
D output for this PRN is shown in figure 8. The results of 
the acquisition and tracking modules were written to the 
Matlab workspace to generate the necessary plots. The 
code phase and carrier frequency computed using the 
Hardware platform was in close agreement to those 
obtained using a pure software receiver. 
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Figure 7: Two-Dimensional Correlation Plot for PRN 14 

 

 
Figure 8: Output from parallel code phase search 
acquisition 
 
What is of importance is the time required to acquire the 
signals. For test purposes, we first used the test platform 
to only acquire signals during a cold start operation. A 
single FFT based correlator was used for this purpose. 
The performance can be summarized as follows: 
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- FPGA Clock Speed: 100 MHz 
- # of PRNs checked: 32 
- # of PRNs acquired: 7 
- Total Clock Cycles: 62938944 
- Time to Acquire: ~ 0.63 seconds 
 

The same data was also acquired using a pure software 
receiver implemented in Matlab running on a 2.2 GHz 
Intel Core 2 Duo Processor based PC with 2 Gb of RAM. 
The time to acquire was about 47 seconds. This clearly 
illustrates the significant improvement in processing time 
required to acquire signals. The ability to perform parallel 
processing on a FPGA enables implementation of 
multiple correlators which can run in parallel during each 
clock cycle. The use of 4 correlators would reduce the 
acquisition time to a little over 0.15 seconds.  

 
For test purposes, the receiver was initially implemented 
as a single channel receiver to track PRN 14. The tracking 
results for the first 2000 ms of tracking post acquisition of 
PRN 14 are shown in figure 9. The PLL discriminator 
clears shows the convergence in the carrier phase offset as 
the tracking loop progressed from the Pull-in mode to the 
Fine-tracking mode. No loss of lock was detected in the 
PLL operation as can be verified from the continuous 

Doppler frequency plot. Since the carrier loop was always 
in lock, the normalized coherent dot product based DLL 
discriminator was continuous able to determine the code 
phase difference between the incoming code phase and 
the locally generated replica of the incoming signal. 
Further, the incoming satellite signal for PRN 14 had a 
healthy C/N0 of approximately 45 dB-Hz during the entire 
2000 ms for which it was tracked. Such a high C/N0 
enables the two-quadrant Arctangent Costas PLL to 
function in an optimal manner.  
 
The FPGA required a total of 75398 clock cycles to track 
each millisecond of incoming data. The GPS L1 C/A code 
exhibits a chipping rate of 1.023 MHz with a 
corresponding code period of 1ms. The receiver will be 
able to operate in real-time if the execution time required 
to process a single code period is below 1ms. Since our 
FPGA runs at a clock frequency of 100 MHz, we could 
clearly meet the goal of designing a real-time 
reconfigurable embedded GPS L1 receiver. The stated 
clock cycles also take into account the time required to 
perform baseband signal processing using the embedded 
hardcore PowerPC 405 processor which runs at a clock 
speed of 300 MHz.
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Figure 9: Tracking loop performance of receiver while tracking PRN 14 

 
 

II. FPGA RESOURCE UTILIZATION 
 
A FFT-based acquisition requires relatively large 
resources. However, FPGAs have sufficient resources 
available to enable multiple correlators and channels to be 
implemented. Figures 10 and 11 show the resources 
utilized to acquire signals using a single correlator. As the 
graph clearly shows, despite the FFT operation being 

computationally demanding, only about 10 % of the 
FPGA’s resources were utilized. The use of 19 BRAMs, 
each with a capacity of 18 Kb, can be traced to the 
implementation strategy used to perform the FFT 
operation as shown in figure 6. The FFT was 
implemented as a Radix-4 FFT configured as a Burst I/O 
operation. This necessitated the need to buffer data 
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samples before being transferred into the FFT IP block for 
performing the FFT operation.  
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Figure 10: FPGA Resources Utilized to Implement a 
Single FFT-Based Correlator 
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Figure 11: FPGA Resources Utilized to Implement a 
Single FFT-Based Correlator 

The resources utilized to implement a single tracking 
channel are substantially lower compared to those utilized 
by a FFT-based correlator. This clearly justifies the 
reason for using ASICs for performing massively parallel 
serial search based acquisition in commercial receivers. 
Figure 12 and 13 illustrate the resources utilized to 
implement a single tracking channel. 
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Figure 12: Resources utilized to implement a single 
tracking channel 
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Figure 13: Resources utilized to implement a single 
tracking channel 
 
Based on the resources utilized to implement a single 
FFT-based correlator and a single tracking channel, we 
decided to extend the design to implement a multi-
channel receiver. Since synthesis tools are designed to 
optimize implementation of designs, the resources used to 
implement a multi-channel receiver with multiple 
correlators cannot be directly computed based on the 
resources utilized to implement a single correlator or 
tracking channel. This can only be determined through 
trail and error based on the total resources available on the 
FPGA under consideration and the extent of optimization 
the synthesis tool is able to perform. 
 
Using the Virtex-II Pro FPGA, we were able to 
implement a 12 channel receiver comprising of 6 FFT-
based correlators. This receiver could track the incoming 
signals in real-time thereby meeting our goal of 
implementing a reconfigurable embedded multi-channel 
GPS L1 receiver capable of running in real-time.  
 
Several of the proposed new signals have a much larger 
chipping rate compared to the 1.023 MHz chipping rate 
used in the GPS L1 C/A signal. As a result, the IF and 
sampling rate required to process such signals would be 
higher resulting in increased data sizes. Preliminary 
analysis indicates that upto 3 FFT-based correlators can 
be implemented to acquire a GPS L5 signal. This signal 
has a chipping rate of 10.23 MHz. The present top of the 
line FPGAs such as the Virtex-5 series consists of over 6 
– 7 times greater logic resources compared to those in the 
Virtex-II Pro. Hence, such FPGAs can be used to 
implement embedded reconfigurable multi-channel, 
multi-frequency GNSS receivers. Futher, designs can be 
easily transferred from one FPGA platform to the other. 
This is possible because the type of FPGA being used 
only influences the synthesis stages of translate, mapping 
and place and route. All other design stages involved in 
developing an embedded GNSS receiver are independent 
of the choice of the actual FPGA hardware.  
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APPLICATIONS 
 
As previously stated, the purpose of our current research 
efforts it to develop a reconfigurable platform which can 
be used for a variety of applications. Most of our 
applications will be from an aviation signal integrity 
analysis perspective. Some of the research applications 
we intend to use this platform include: 
 

1. DME/ TACAN Interference and Mitigation 
 
The GPS L5 and Galileo E5 signals lie within the 
Aeronautical Radio Navigation Services band. Hence they 
are subject to signal interference from existing nav-aids 
such as the Distance Measuring Equipment (DME) and 
the Tactical Air Navigation (TACAN). Figures 12 and 13 
show the frequency and time-domain plots for the GPS 
L5 signal collected at Stanford University subject to 
interference from six different DME/TACAN locations 
around the vicinity of Stanford University. Of particular 
importance is the sharp inference peak visible at a 
frequency of 1173 MHz resulting from the DME 
transmitter located at Woodside, CA.  
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Figure 14: Frequency Spectrum of GPS L5 signal subject 
to DME/TACAN interference 
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Figure 15: Time-Domain plot of GPS L5 baseband signal 
subject to DME/TACAN interference 
 
Such interference results in repeated receiver lock of loss. 
Extensive research is being carried out by Stanford 
University researchers to identify optimal interference 

mitigation techniques [15]. The proposed reconfigurable 
platform can be used to test the performance of such new 
mitigation techniques. 
 

2. Ionospheric Scintillation Analysis 
 
Ionospheric scintillation is the phenomenon of deep signal 
fadings observed in GNSS signals. Such scintillation is 
usually not observed in the mid-latitude region, but it is 
frequently observed in the equatorial region during solar 
maximum. Signal to noise ratio or more precisely carrier 
to noise density ratio (C/No) of a certain satellite channel 
remains almost constant when no scintillation is observed. 
However, strong scintillation causes the signal C/No to 
fluctuate rapidly. The fluctuation can be more than 25 dB. 
Figure 16 compared the impact of scintillation on signal 
C/No [16, 17, 18]. 
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Figure 16: Impact of Ionosphere Scintillation on Signal 
C/No Ratio (Courtesy Dr. Tsung Yu Chiou, Stanford 
University) 
 
Such deep signal fads result in repeated GNSS receiver 
loss of lock and are of extreme concern to aviation users. 
Since no past scintillated data is available for the GPS L5/ 
Galileo E5 signals, its effect on such signals cannot be 
empirically established. We intend to use the proposed 
reconfigurable platform to collect and analyze the effects 
of ionospheric scintillation on the L5 band of GNSS 
signals during the upcoming Solar maximum in the year 
2011. 

2302
ION GNSS 21st. International Technical Meeting of the
Satellite Division, 16-19, September 2008, Savannah, GA.



SUMMARY 
 
As a first step in developing a Reconfigurable Platform 
capable of tracking multiple frequencies and 
constellations, we proposed and validated the feasibility 
of designing a reconfigurable embedded software receiver 
which can function in Real-Time. The complete receiver 
was designed using Model-Based Design Tools optimized 
for DSP functions. The small form factor of the hardware 
combined with the fact that no external DSP or a Host PC 
is required makes it an ideal test platform. We presented a 
few of the applications this reconfigurable platform can 
be utilized for. These applications can be developed in 
quick time using the appropriate Model-based design 
tools. Lastly, the fact that this particular hardware board is 
accessible to students at over 2000 universities makes it a 
perfect educational tool for teaching and learning GNSS 
receiver design.  
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