
Design and Analysis of Reconfigurable
Embedded GNSS Receivers Using Model-Based

Design Tools

Shankararaman Ramakrishnan, Grace Xingxin Gao, David De Lorenzo, Todd Walter and Per Enge
Stanford University

Dennis Akos
University of Colorado - Boulder

BIOGRAPHY

Shankararaman Ramakrishnan received the B.E.
(Hons.) degree in Electrical and Electronics Engineering
from the Birla Institute of Technology and Science –
Pilani, India in 2006. He is currently a Ph.D. student in
the Department of Aeronautics and Astronautics at
Stanford University where he is a member of the Global
Positioning System Group. His research interests include
signal integrity analysis and dual frequency software
receiver design.

Grace Xingxin Gao is a Research Associate at Stanford
University. She received her B.S. in Mechanical
Engineering in 2001 and her M.S. in Electrical
Engineering in 2003 both from Tsinghua University,
Beijing, China. She received her Ph.D. in Electrical
Engineering from Stanford University in 2008. Her
current research interests include Galileo signal and code
structures, GNSS receiver architectures, and GPS
modernization.

David De Lorenzo is a member of the Stanford
University GPS Laboratory, where he is a Research
Associate. He received his Ph.D. in Aeronautics and
Astronautics from Stanford University in 2007. His
research interests include studying space-time adaptive
antenna array processing and GNSS software receivers.
David has previously worked for Lockheed Martin and
for the Intel Corporation.

Dennis Akos is currently an Assistant Professor of
Aerospace Engineering at the University of Colorado –
Boulder. He completed the Ph.D. degree in Electrical
Engineering at Ohio University conducting his graduate
research within the Avionics Engineering Center. His
research interests include GPS/CDMA receiver
architectures, RF design, and software radios.

Todd Walter is a Senior Research Engineer in the
Department of Aeronautics and Astronautics at Stanford
University. Dr. Walter received his Ph.D. from Stanford
University in 1993. His current research interests are
developing WAAS integrity algorithms and analyzing the
availability of the WAAS signal. He is a Fellow of the
ION.

Per Enge is a Professor of Aeronautics and Astronautics
at Stanford University, where he is the Kleiner-Perkins,
Mayfield, Sequoia Capital Professor in the School of
Engineering. He is also the Director of the GPS Research
Laboratory, which works with the Federal Aviation
Administration, U.S. Navy and U.S. Air Force to pioneer
systems that augment the Global Positioning System
(GPS). Prof. Enge has received the Kepler, Thurlow and
Burka Awards from the Institute of Navigation for his
work. He is a Member of the National Academy of
Engineers (NAE), a Fellow of the ION, and a Fellow of
the IEEE.

ABSTRACT

Over the next decade, civilian users will have access to
multiple GNSS signal frequencies and constellations. This
drastic increase in signals and their frequencies creates
substantial opportunities and requirements for analysis
and validation. Such analysis and validation is of
significant importance from an aviation integrity
perspective. The ultimate goal of our research efforts is to
develop a standalone reconfigurable platform capable of
tracking and monitoring multiple constellations and
frequencies as and when they commence transmission.
This platform will also be utilized to test and verify new
receiver processing algorithms currently under
development. It must be capable of running in real-time to
ensure signals can be monitored on a 24x7 basis. As a
first step in this direction, we designed and validated a
standalone L1 C/A receiver which runs in real-time on a
Xilinx University Program Virtex-II Pro Development
Board. This board features a Virtex-II Pro FPGA with two

2293
ION GNSS 21st. International Technical Meeting of the
Satellite Division, 16-19, September 2008, Savannah, GA.

on-chip PowerPC 405 32-bit RISC hardcore processors.
This feature of the FPGA fabric facilitates the
development of reconfigurable embedded GNSS receivers
which do not require the resources of a Host PC or a
dedicated DSP processor. The entire system was designed
using the Xilinx System Generator for DSP, a modeling
and implementation tool for high-performance DSP
systems. Such a model-based design approach facilitates
rapid system development and prototyping thereby
enabling system modifications and upgrades to be
implemented in a short time span.

INTRODUCTION

Present day GNSS civilian users have unrestricted access
to only the GPS L1 C/A and Glonass Standard Precision
(SP) ranging signals. Over the course of the next decade,
users will be able to access multiple frequencies and
constellations. In addition to new signals on GPS, GNSS
constellations such as the European Union’s Galileo and
China’s Compass along with a modernized Russian
Glonass system will provide multiple ranging sources to
GNSS users. Some of the proposed frequencies and
constellations are shown in Figure 1.

Figure 1: Future Global Navigation Satellite System
Signals

Most of these systems will be interoperable since they
will be modulated by a common set of carrier frequencies.
The possibility of obtaining dual-frequency measurements
will help improve accuracy for civilian users while
enhancing system integrity, availability, and continuity
for aviation users. A few of the proposed new GNSS
frequencies and constellations currently transmit test
signals which may not necessarily be their final signal
specifications [1, 2, 3].

SRAM-based Field Programmable Gate Arrays (FPGA)
based receivers can be easily reprogrammed making them
an ideal choice to acquire, track, and validate new signals
whose specifications may not have been finalized. Ease of
reprogramming the device makes it an ideal choice for
rapid prototyping. FPGAs help overcome the limitations

of Application Specific Integrated Circuits (ASICs) and
pure software defined radios. While ASICs are optimized
for computational efficiency, they cannot be reconfigured
to incorporate changes in the Signal in Space (SIS)
specifications of the signals for which they are
specifically designed for. Software defined radios provide
flexibility in incorporating system changes but are
computationally expensive.

A FPGA device is an integrated circuit with a central
array of logic blocks that can be connected through a user
configurable interconnect routing matrix. The periphery
of logic-array is comprised of a ring of I/O blocks that can
be configured to support different interface standards.
This flexible architecture can be exploited to implement a
wide range of synchronous and combinational digital
logic functions. A simplified representation of a FPGA
block diagram is shown in Figure 2.

Figure 2: Simplified FPGA Block Diagram (Courtesy
Xilinx, Inc)

A digital design can utilize one or more of three basic
types of devices: Logic, Memory and Processors. Several
of the current high-end FPGA families incorporate all
three of these devices within a single integrated circuit
(IC). The ability to implement hardcore or softcore
processors within the FPGA makes them well suited for
developing reconfigurable embedded systems. Further
details about hardcore and softcore embedded processors
are provided in a subsequent section of this paper. These
FPGA families feature millions of equivalent gates of
functionality and high-speed interfaces capable of
supporting a broad range of engineering solutions
including nontraditional applications. Today, FPGAs are
capable of implementing complex functionality such as
the correlation process in a GNSS receiver which
traditionally is performed on a dedicated ASIC.

Apart from the basic three digital components mentioned
in the previous paragraph, many newer generation FPGA
families also feature dedicated components specifically
designed to perform DSP functions. These components
accelerate algorithms and enable higher levels of DSP
integration and lower power consumption within the
device. These dedicated DSP components support over 40
dynamically controlled operating modes including:

2294
ION GNSS 21st. International Technical Meeting of the
Satellite Division, 16-19, September 2008, Savannah, GA.

multiplier, multiplier-accumulator, multiplier-
adder/subtractor, three input adder, barrel shifter, wide
bus multiplexers, wide counters, and comparators. They
also incorporate efficient adder-chain architectures for
implementing high-performance filters and complex
mathematical operations efficiently. Some FPGA
manufacturers also provide users with Intellectual
Property (IP) blocks which help implementation of
popular DSP algorithms and functions in an optimal
manner. Of particular importance for software GNSS
receiver development include Math Functions such as the
COordinated Rotation DIgital Computer (CORDIC)
algorithm used to compute trigonometric functions and
specialized DSP algorithms/designs such as the Fast
Fourier Transform (FFT) and Finite Impulse Response
(FIR) filter design. [4, 5]

In this paper, we present some preliminary results of our
current efforts in developing a reconfigurable embedded
GNSS receiver platform capable of tracking multiple
frequencies and constellations. This platform will be used
for a variety of applications which are discussed in a
subsequent section of this paper. As a first step, we
designed a real-time reconfigurable embedded GPS L1
receiver and analyzed its performance. We now describe
the details of the receiver design and implementation
process and compare its performance to that of a pure
software defined receiver executed on a Host PC.

MOTIVATION & BACKGROUND

GNSS software radio receivers have evolved notably over
the past few years. It was originally developed in 1997 as
a tool for post processing of collected GPS data. Its
implementation in Matlab made it computationally
expensive [8]. In order to reduce computational expense,
pure software receivers were implemented in a high level
language such as C/C++ running on a programmable
microprocessor. Over the years, through the use of novel
processing techniques combined with technology
improvements in microprocessor capabilities have
enabled implementation of multi-channel real-time GPS
L1 C/A software receiver [9, 10]. Such receivers utilize
the processing resources of the microprocessor of a host
PC and their performance is directly related to the
resources available on the host PC.

To overcome the computational limitations placed by
resource availability on a host PC, various
implementations have been proposed which utilize the
signal processing capabilities of a dedicated Digital
Signal Processing Chip (DSP) and/or the reconfigurable
parallel processing capabilities of a FPGA [11, 12, 13] to
develop real-time GNSS software receivers. These
implementations were designed using hardware
descriptive languages (HDL) such as Verilog or Very-
High-Speed Integrated Circuits HDL (VHDL) and were

executed on hardware platforms custom designed by the
authors.

Our desire to use a ubiquitous commercial off the shelf
FPGA development board influenced the choice of the
hardware platform selected for our current work. After
comparing the cost and processing capabilities of several
development boards, we decided to adopt the Xilinx
University Program Virtex-II Pro Development System.
In fact, this board is used by over 2000 universities the
world over for digital design courses. We are of the
opinion that this board can also be utilized as an attractive
educational tool for GNSS software receiver design
courses. The development board is distributed by Xilinx
Inc., through its Xilinx University Program (XUP) to
universities affiliated with the program. It features a
Virtex II-Pro FPGA chip along with onboard external
memory modules, I/O ports and other peripherals. By
using this particular development board, we could avoid
the time and costs associated with designing a custom
hardware board. A picture of the board along with the
external peripherals it supports is shown in Figure 3.

Figure 3: Xilinx University Program Development
System

The Virtex series of FPGAs feature built-in hardcore 32-
bit IBM processors known as PowerPCs which can be
utilized as microprocessors within the same FPGA chip.
We intended to exploit this feature while designing our
standalone embedded GNSS software receivers. Thereby
we could also avoid the necessity to use either a host PC
or a dedicated DSP chip to perform the complex baseband
receiver signal processing. Further, rather than designing
the system using Hardware Descriptive Languages, we
decided to implement the design using Model-based
design tools available from Xilinx Inc. The System

2295
ION GNSS 21st. International Technical Meeting of the
Satellite Division, 16-19, September 2008, Savannah, GA.

Generator for DSP is an optimized modeling and
implementation tool which can be used to design high-
performance DSP systems. We believe such an approach
is the most suitable since it provides us with the flexibility
to utilize a single FPGA platform to design and
implement multiple applications within a short time span.
Such a design methodology does not require tedious
manual coding and hence design teams need not worry
about coding and commenting styles which vary amongst
programmers. Such a design approach makes it easy for
multiple individuals to work on small modules which can
be integrated together to obtain the required larger design.

RECONFIGURABLE EMBEDDED GNSS
SOFTWARE RECEIVER DESIGN

FPGA manufacturers use two different implementations
to include an embedded CPU core within a FPGA chip.
The first known as a “Softcore” is a processor written by
the user as a parameterisable function along with code for
the FPGA’s logic. Such implementations include the
MicroBlaze and the Nios-II from Xilinx and Altera
respectively. Certain FPGAs from Xilinx and a few other
manufactures also include dedicated CPU known as a
“Hardcore” processor. A hardcore processor is
implemented directly in IC transistors achieving maximal
performances, while a softcore processor is an IP core
which is implemented on the FPGA’s logic cells. As a
result, dedicated hardware processors do not use any of
the FPGA’s programmable resources. In contrast, using a
dedicated processor external to the FPGA fabric requires
hundreds of additional interface pins, which degrades
system performance and significantly increases FPGA I/O
requirements and overall board costs. Though typically
the cost of including a softcore processor is lower than a
hardcore processor, it exhibits significantly lower
performance measured in terms of clock speed and MIPS
(million instructions per second) count [14].

The Xilinx Virtex series of devices have up to 4 built-in
IBM PowerPC microprocessors within the FPGA chip.
These processors provide 32-bit fixed-point embedded
applications with high performance at low power
consumption. Also, PowerPC processors can provide
floating-point support either in hardware or software.
While the legacy Virtex-II Pro and Virtex-4 series of
FPGAs featured the PowerPC 405 CPU which could
clock a maximum speed of 450 MHz and execute over
700 DMIPS, the latest Virtex-5 FXT series of FPGAs
feature a PowerPC 440 CPU which can clock a maximum
speed of 550 MHz and execute over 2000 DMIPS.

The XUP development board previously described
features a Virtex-II Pro FPGA (XC2VP30) with two
dedicated PowerPC 405 processor blocks. This provides
us with the means to design GNSS receivers based on the
time-tested architecture of commercial GNSS receivers.

In commercial receivers, ASICs are used to carry out
massively parallel correlation operations while
microprocessors such as an ARM processor are utilized
for baseband signal processing. In our reconfigurable
embedded GNSS receiver implementation, we leverage
the parallel processing capabilities of the FPGA logic
cells to perform simple but high frequency receiver
processing functions such as the correlation processing
during acquisition and code, carrier wipeoff in the
tracking loops. The hardcore PowerPC is used to perform
complex but low frequency functions such as the
baseband signal processing in the tracking loops and
navigation solution computation. The proposed use of the
FPGA’s logic cells and an embedded hardcore processor
results in an optimized hardware/software partitioning
that maximizes FPGA utilization while minimizing
hardware costs. This implementation strategy does not
require the processing resources of a Host PC or
additional DSP chips. Thereby, our proposed software
receiver implementation strategy results in a system
design whose performance is not limited by the
capabilities of a host PC nor does it involve the additional
costs of a DSP chip.

SYSTEM DESIGN USING MODEL-BASED DESIGN
TOOLS

Traditionally, pure software receivers running on a PC are
coded in higher level language such as Matlab or C/C++.
Design of customizable logic hardware requires coding
the necessary logic using dedicated hardware description
languages such as Verilog or VHDL. A GNSS software
receiver utilizing a DSP processor would require the
designer to program the processor using proprietary
programming tools provided by the DSP manufacturer.

A typical software receiver implemented in a FPGA
would require the user to be familiar with vendor
provided simulation and synthesis tools such as the
Integrated Simulation Environment (ISE) toolkit from
Xilinx Inc. or third party tools such as ModelSim for
simulation and Simplicity for design synthesis. In order to
popularize greater use of their FPGAs manufacturers have
started to offer Model-based design toolkits. Such toolkits
do not require the designer to be familiar with Hardware
Description Languages thereby resulting in faster system
development time. Predefined IP blocks are made
available to users for a variety of applications. One such
toolkit of particular interest to us has been the Xilinx
System Generator for DSP.

This toolkit runs within Simulink and is accessible as an
additional blockset along with the Simulink blocksets
provided by Mathworks. System Generator communicates
with both synthesis tools such as the Xilinx ISE and also
embedded system design tools such as the Xilinx
Embedded Development Kit (EDK) in the background

2296
ION GNSS 21st. International Technical Meeting of the
Satellite Division, 16-19, September 2008, Savannah, GA.

while abstracting the designer from such processes. It also
facilities hardware in the loop co-simulation of the design
thus ensuring the design works flawlessly in hardware.
Each individual module of a larger design can be

separately verified in hardware and then combined to
obtain the required design. Figure 4 below shows the
functionality of System Generator as a Model-based
design toolkit.

Figure 4: System Generator and its Functionality (Courtesy Xilinx Inc.)

Figure 5 below shows a block diagram of the parallel
code phase search algorithm used for acquisition of
signals in a software receiver. In order to obtain a
functional software receiver such block diagrams will
have to be coded and debugged using the appropriate
design tools. Model-based design tools such as the Xilinx
System Generator for DSP facilitate implementation of
the block diagrams in an easy and intuitive manner. Once
the necessary functional blocks required to perform the

desired logic are included in the Simulink design window,
the design can be implemented at the “push of a button”.
Figure 6 below shows the equivalent representation of the
block diagram using predefined IP blocks. Such an
implementation eliminates the tedious task debugging
coding errors that appear at runtime. A visual description
of the design also helps facilitate easy modifications and
upgrades at a later stage.

Figure 5: Block Diagram of Parallel Code Phase Search Acquisition

Shared Memory
Write

Shared Memory
Read

Shared Memory
Write

Shared Memory
Read

1
Output

Terminator

d depth: 0
width: 0

<< 'I_Channel' >>

ddepth: 0
width: 0

<< 'I_Channel' >>

ddepth: 0
width: 0

<< 'I_Channel' >>

ddepth: 0
width: 0

<< 'I_Channel' >>

a

b
(ab)z-0

Q_Channel

PRN_Select

Reset

Master Enable

CAout

PRN Generator

a

b
(ab)z-0

Mult5

a

b
(ab)z-0

Mult3

a

b
(ab)z-0

Mult2

a

b
(ab)z-0

Mult1

I

Q
Mag

Magnitude

data

we

sin

cos

Local Oscil lator

re
dout

%full
empty

Input FIFO
<< 'Input_Data_FIFO' >>

a

b
(ab)z-0

I_Channel

xn_re

xn_im

start

fwd_inv

fwd_inv_we

unload

xk_re
xk_im

xn_index
xk_index

rfd
busy
vout

edone
done

IFFT

1

Enable_NCO

1

Enable_FFT2

1

Enable_FFT1

1

Enable_FFT

EDK Processor

PRN_Select

Master_Enable

Reset

Control Logic

0

Constant xn_re

xn_im

start

fwd_inv

fwd_inv_we

unload

xk_re
xk_im

xn_index
xk_index

rfd
busy
vout

edone
done

Code FFT

xn_re

xn_im

start

fwd_inv

fwd_inv_we

unload

xk_re
xk_im

xn_index
xk_index

rfd
busy
vout

edone
done

Carrier FFT

a

b
a - b

Add2

a

b
a + b

Add1

Sy stem
Generator

2

From
Controller1

1

From Input
 FIFO

Figure 6: Implementation of Parallel Code Phase Search Acquisition using Model-Based Design Tools

2297
ION GNSS 21st. International Technical Meeting of the
Satellite Division, 16-19, September 2008, Savannah, GA.

RECEIVER IMPLEMENTATION

To validate the feasibility of designing reconfigurable
embedded GNSS receivers, we designed and
implemented a multi-channel GPS L1 C/A receiver. Since
the larger objective of developing this reconfigurable
platform is to monitor new signals and to implement new
algorithms, we only implemented the acquisition and
tracking modules of the receiver. Herein we present the
implementation techniques for the acquisition and
tracking loops of the receiver followed by its performance
and amount of resources utilization on the FPGA.

I. ACQUISITION

Acquisition is the process by which a receiver determines
coarse values of carrier Doppler frequency/residual IF and
code phase of the signals transmitted by satellites visible.
Acquisition is performed when a receiver is first turned
on. Signals need to be reacquired when a receiver loses
lock of signals it was tracking. These coarse estimates
must be sufficiently accurate for convergence of the
subsequent tracking loops. Signals transmitted by GNSS
satellites are differentiated based on the PRN sequence
assigned to each satellite. Code phase, is the time
alignment of the PRN code in the current block of data. It
is necessary to know the code phase in order to generate a
local PRN code that is perfectly aligned with the
incoming code. Only then can the incoming code can be
removed from the signal. Carrier frequency is the center
frequency of the RF signal used to modulate the PRN
sequence and navigation data transmitted by GNSS
satellites. In case of down-conversion at the receiver front
end, the carrier frequency corresponds to the local IF.
This value is obtained based on the carrier frequency and
from the mixers used in the down-converter. However,
this frequency can deviate from the expected value. The
line-of-sight velocity of the satellite causes a Doppler
effect resulting in a higher or lower frequency. In the
worst case, this frequency deviation can be as large as
±10 kHz.

If the receiver performs a cold start (i.e. no a priori
information is available), a serial search for the
correlation power of all possible combinations of code
phase and Doppler frequency bins must be performed.
This results in an extremely large search space based on
the resolution requirements for the code phase and
Doppler frequency bins. However it is easy to realize that
correlation in time-domain corresponds to a convolution
process and that convolution in the time domain
corresponds to multiplication in the frequency domain.
Hence an acquisition algorithm based on Fourier
Transforms of the incoming signals and locally generated
replica greatly reduces the acquisition search space either
in the Doppler frequency or code phase dimension.

We decided to adopt the parallel code phase search
algorithm in our receiver implementation. Since the code
phase dimension is significantly larger than the Doppler
frequency dimension, parallelism in the code phase
dimension can greatly reduce the size of the acquisition
search space. The block diagram for this algorithm was
shown in figure 5.

The down-converter used in our receiver down-converted
the carrier frequency to an IF frequency of 4.1304 MHz
with an A/D sampling frequency of 16.3676 MHz. The
FFT IP block used in the implementation shown in figure
6 was implemented using a Radix-4 FFT configured as a
Burst I/O operation. The incoming sampled data was
padded with additional zeros to obtain the necessary data
size of 47 required to perform FFT on the data. A 1 ms
integration time was used in the implementation with a
code phase size of 1 chip. This corresponds to a Doppler
frequency bin of 500 Hz spread over a ± 5 KHz frequency
deviation range. It is important to note that the entire FFT
operation was performed in hardware unlike a pure
software receiver wherein the FFT algorithm is
implemented in software.

II. TRACKING

The principle function of the tracking module in a GNSS
receiver is to refine the code phase and carrier
frequency/IF residual frequency obtained through
acquisition, to keep track and to demodulate the
navigation data of the satellite being tracked.

Each tracking loop available in a receiver is referred to as
a receiver channel and is capable of tracking a particular
satellite at any given time. Signal processing within a
tracking loop can be divided into Signal Demodulation
also referred to as Code and Carrier Wipe off followed by
baseband signal processing to dynamically update the
code and carrier tracking loops [6, 7].

Code Tracking Loop:

The purpose of a code tracking loop is to keep track of the
code phase of a specific code in the signal. The output of
such a code tracking loop is a perfectly aligned replica of
the incoming code. The code tracking loop used in GPS
receivers is a delay lock loop (DLL) called an Early-Late
(E-L read Early minus Late) tracking loop. The DLL
discriminator provides the necessary feedback required to
ensure the replica signal is always aligned with the
incoming signal. In our implementation, we used a
normalized coherent dot product discriminator with a 1-
chip E-L correlator spacing. This discriminator requires
that the carrier loop remains in phase lock. However such
a discriminator requires low computational resources. The
normalized coherent dot product discriminator is
computed as:

2298
ION GNSS 21st. International Technical Meeting of the
Satellite Division, 16-19, September 2008, Savannah, GA.

P

LE

I
II)(

4
1 − (1)

where: IE, IL and IP are the Early, Prompt and Late
versions of the in-phase sampled data

Carrier Tracking Loop:

Successful demodulation of the navigation data requires
an exact replica of the carrier wave to be generated at the
receiver. The incoming carrier wave is tracking using
either Phase Lock Loops (PLL) or Frequency Lock Loops
or a combination of the two. While the use of PLLs is
referred to as coherent tracking, FLL based tracking is
also referred to as Non-coherent tracking. PLL or FLL
discriminators blocks are used to find the phase or
frequency error between the incoming signal and the local
carrier wave replica. This output phase or frequency error
is then filtered and used as a feedback to the Numerically
Controlled Oscillator (NCO) which adjusts the frequency
of the local carrier wave generated. This feedback process
in the carrier tracking loop ensure that the local carrier
wave could be an almost precise replica of the input
signal carrier wave.

Since a pure PLL is sensitive to bit transitions in the
navigation data, a Costas PLL is preferred. Costas PLL
are inherently insensitive to the presence of data
modulation in the incoming signal. Our implementation
uses just the Two-Quadrant arctangent Costas loop
discriminator. This discriminator is optimal at both high
and low SNR and provides the actual phase error and not
a function of the phase error. The discriminator algorithm
is given by:

)/IATAN(Q PP (2)
where IP and QP are the prompt versions of the in-phase
and quadraphase sampled data.

The tracking loop integration time used in our receiver is
dependent upon its mode of operation. The receiver
implemented had three distinct tracking modes
determined based on how long the receiver had been
tracking the signal post acquisition. The three modes and
the corresponding integration times used were:

1. Pull-In Mode: 1ms Integration Time
2. Transition Mode: 5ms Integration Time
3. Fine Tracking Mode: 20 ms Integration Time

RESULTS

I. RECEIVER PERFORMANCE

The GPS L1 receiver described in the previous section
was streamed with sampled IF data. The data was
processed using the reconfigurable hardware setup
previously described. To validate the results obtained, the

same data was processed using a pure software receiver
executed in Matlab. Results for both the acquisition
search and tracking operations were compared to ensure
integrity of the data was maintained while being
processing on the hardware platform.

A total of seven satellites were acquired using the FFT
based acquisition algorithm. Figure 7 shows the 2-D
correlation plot for PRN 14. This satellite had the lowest
CPPR value of 2.87 amongst all the satellites acquired. A
CPPR threshold of 2.5 was used in the logic circuitry to
determine if a PRN was indeed acquired. The complete 3-
D output for this PRN is shown in figure 8. The results of
the acquisition and tracking modules were written to the
Matlab workspace to generate the necessary plots. The
code phase and carrier frequency computed using the
Hardware platform was in close agreement to those
obtained using a pure software receiver.

200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

C/A Code Correlation - PRN #14

Code-Phase (chips)

C
or

re
la

tio
n

Fu
nc

tio
n

(n
or

m
al

iz
ed

)

C/A Code Correlation
PRN #14
Doppler = 4000 Hz
Code Ph. = 530.8 chips
CPPR = 2.87
CPPM = 9.323

Figure 7: Two-Dimensional Correlation Plot for PRN 14

Figure 8: Output from parallel code phase search
acquisition

What is of importance is the time required to acquire the
signals. For test purposes, we first used the test platform
to only acquire signals during a cold start operation. A
single FFT based correlator was used for this purpose.
The performance can be summarized as follows:

2299
ION GNSS 21st. International Technical Meeting of the
Satellite Division, 16-19, September 2008, Savannah, GA.

- FPGA Clock Speed: 100 MHz
- # of PRNs checked: 32
- # of PRNs acquired: 7
- Total Clock Cycles: 62938944
- Time to Acquire: ~ 0.63 seconds

The same data was also acquired using a pure software
receiver implemented in Matlab running on a 2.2 GHz
Intel Core 2 Duo Processor based PC with 2 Gb of RAM.
The time to acquire was about 47 seconds. This clearly
illustrates the significant improvement in processing time
required to acquire signals. The ability to perform parallel
processing on a FPGA enables implementation of
multiple correlators which can run in parallel during each
clock cycle. The use of 4 correlators would reduce the
acquisition time to a little over 0.15 seconds.

For test purposes, the receiver was initially implemented
as a single channel receiver to track PRN 14. The tracking
results for the first 2000 ms of tracking post acquisition of
PRN 14 are shown in figure 9. The PLL discriminator
clears shows the convergence in the carrier phase offset as
the tracking loop progressed from the Pull-in mode to the
Fine-tracking mode. No loss of lock was detected in the
PLL operation as can be verified from the continuous

Doppler frequency plot. Since the carrier loop was always
in lock, the normalized coherent dot product based DLL
discriminator was continuous able to determine the code
phase difference between the incoming code phase and
the locally generated replica of the incoming signal.
Further, the incoming satellite signal for PRN 14 had a
healthy C/N0 of approximately 45 dB-Hz during the entire
2000 ms for which it was tracked. Such a high C/N0
enables the two-quadrant Arctangent Costas PLL to
function in an optimal manner.

The FPGA required a total of 75398 clock cycles to track
each millisecond of incoming data. The GPS L1 C/A code
exhibits a chipping rate of 1.023 MHz with a
corresponding code period of 1ms. The receiver will be
able to operate in real-time if the execution time required
to process a single code period is below 1ms. Since our
FPGA runs at a clock frequency of 100 MHz, we could
clearly meet the goal of designing a real-time
reconfigurable embedded GPS L1 receiver. The stated
clock cycles also take into account the time required to
perform baseband signal processing using the embedded
hardcore PowerPC 405 processor which runs at a clock
speed of 300 MHz.

0 500 1000 1500 2000
-90

-45

0

45

90
PLL Discriminator

Time (ms)

P
ha

se
 o

ffs
et

 (d
eg

re
es

)

0 500 1000 1500 2000
-50

0

50
DLL Discriminator

Time (ms)

C
od

e
of

fs
et

 (m
)

0 500 1000 1500 2000
0

500

1000

1500

2000
Correlator Output Power

Time (ms)

Early Prompt Late

0 500 1000 1500 2000

3950

4000

4050

Doppler Frequency

Time (ms)

D
op

pl
er

 fr
eq

ue
nc

y
(H

z)

0 500 1000 1500 2000
525

530

535
Position of the C/A Code Start

Time (ms)

C
/A

 c
od

e
st

ar
t (

ch
ip

s)

0 500 1000 1500 2000
30

35

40

45

50

55

60
Filtered C/No

Time (ms)

C
/N

o
(d

B
-H

z)

Figure 9: Tracking loop performance of receiver while tracking PRN 14

II. FPGA RESOURCE UTILIZATION

A FFT-based acquisition requires relatively large
resources. However, FPGAs have sufficient resources
available to enable multiple correlators and channels to be
implemented. Figures 10 and 11 show the resources
utilized to acquire signals using a single correlator. As the
graph clearly shows, despite the FFT operation being

computationally demanding, only about 10 % of the
FPGA’s resources were utilized. The use of 19 BRAMs,
each with a capacity of 18 Kb, can be traced to the
implementation strategy used to perform the FFT
operation as shown in figure 6. The FFT was
implemented as a Radix-4 FFT configured as a Burst I/O
operation. This necessitated the need to buffer data

2300
ION GNSS 21st. International Technical Meeting of the
Satellite Division, 16-19, September 2008, Savannah, GA.

samples before being transferred into the FFT IP block for
performing the FFT operation.

1763

15408

2023

30816

2956

30816

0

10000

20000

30000

40000

Slices Flip Flops LUT
FPGA Feature

Resource Utilization for Single Channel

Utilized Device Total

Figure 10: FPGA Resources Utilized to Implement a
Single FFT-Based Correlator

19

136

5

136

0

50

100

150

18 Kb BRAM 18 x 18 MULT
FPGA Feature

Resource Utilization for Single Channel

Utilized Device Total

Figure 11: FPGA Resources Utilized to Implement a
Single FFT-Based Correlator

The resources utilized to implement a single tracking
channel are substantially lower compared to those utilized
by a FFT-based correlator. This clearly justifies the
reason for using ASICs for performing massively parallel
serial search based acquisition in commercial receivers.
Figure 12 and 13 illustrate the resources utilized to
implement a single tracking channel.

512

15408

632

30816

639

30816

0

10000

20000

30000

40000

Slices Flip Flops LUT
FPGA Feature

Resource Utilization for Single Channel

Utilized Device Total

Figure 12: Resources utilized to implement a single
tracking channel

19

136

5

136

0

50

100

150

18 Kb BRAM 18 x 18 MULT
FPGA Feature

Resource Utilization for Single Channel

Utilized Device Total

Figure 13: Resources utilized to implement a single
tracking channel

Based on the resources utilized to implement a single
FFT-based correlator and a single tracking channel, we
decided to extend the design to implement a multi-
channel receiver. Since synthesis tools are designed to
optimize implementation of designs, the resources used to
implement a multi-channel receiver with multiple
correlators cannot be directly computed based on the
resources utilized to implement a single correlator or
tracking channel. This can only be determined through
trail and error based on the total resources available on the
FPGA under consideration and the extent of optimization
the synthesis tool is able to perform.

Using the Virtex-II Pro FPGA, we were able to
implement a 12 channel receiver comprising of 6 FFT-
based correlators. This receiver could track the incoming
signals in real-time thereby meeting our goal of
implementing a reconfigurable embedded multi-channel
GPS L1 receiver capable of running in real-time.

Several of the proposed new signals have a much larger
chipping rate compared to the 1.023 MHz chipping rate
used in the GPS L1 C/A signal. As a result, the IF and
sampling rate required to process such signals would be
higher resulting in increased data sizes. Preliminary
analysis indicates that upto 3 FFT-based correlators can
be implemented to acquire a GPS L5 signal. This signal
has a chipping rate of 10.23 MHz. The present top of the
line FPGAs such as the Virtex-5 series consists of over 6
– 7 times greater logic resources compared to those in the
Virtex-II Pro. Hence, such FPGAs can be used to
implement embedded reconfigurable multi-channel,
multi-frequency GNSS receivers. Futher, designs can be
easily transferred from one FPGA platform to the other.
This is possible because the type of FPGA being used
only influences the synthesis stages of translate, mapping
and place and route. All other design stages involved in
developing an embedded GNSS receiver are independent
of the choice of the actual FPGA hardware.

2301
ION GNSS 21st. International Technical Meeting of the
Satellite Division, 16-19, September 2008, Savannah, GA.

APPLICATIONS

As previously stated, the purpose of our current research
efforts it to develop a reconfigurable platform which can
be used for a variety of applications. Most of our
applications will be from an aviation signal integrity
analysis perspective. Some of the research applications
we intend to use this platform include:

1. DME/ TACAN Interference and Mitigation

The GPS L5 and Galileo E5 signals lie within the
Aeronautical Radio Navigation Services band. Hence they
are subject to signal interference from existing nav-aids
such as the Distance Measuring Equipment (DME) and
the Tactical Air Navigation (TACAN). Figures 12 and 13
show the frequency and time-domain plots for the GPS
L5 signal collected at Stanford University subject to
interference from six different DME/TACAN locations
around the vicinity of Stanford University. Of particular
importance is the sharp inference peak visible at a
frequency of 1173 MHz resulting from the DME
transmitter located at Woodside, CA.

1155 1160 1165 1170 1175 1180 1185 1190 1195 1200
-150

-140

-130

-120

-110

-100

-90

frequency (MHz)

m
ag

ni
tu

de

Frequency Domain

Woodside
DME @ 1173.0 MHz

1155 1160 1165 1170 1175 1180 1185 1190 1195 1200
-150

-140

-130

-120

-110

-100

-90

frequency (MHz)

m
ag

ni
tu

de

Frequency Domain

1155 1160 1165 1170 1175 1180 1185 1190 1195 1200
-150

-140

-130

-120

-110

-100

-90

frequency (MHz)

m
ag

ni
tu

de

Frequency Domain

Woodside
DME @ 1173.0 MHz

Figure 14: Frequency Spectrum of GPS L5 signal subject
to DME/TACAN interference

0 0.05 0.1 0.15 0.2 0.25 0.3

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

time (msec)

am
pl

itu
de

Time Domain of the Baseband Signal

0 0.05 0.1 0.15 0.2 0.25 0.3

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

time (msec)

am
pl

itu
de

Time Domain of the Baseband Signal

0 0.05 0.1 0.15 0.2 0.25 0.3

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

time (msec)

am
pl

itu
de

Time Domain of the Baseband Signal

Figure 15: Time-Domain plot of GPS L5 baseband signal
subject to DME/TACAN interference

Such interference results in repeated receiver lock of loss.
Extensive research is being carried out by Stanford
University researchers to identify optimal interference

mitigation techniques [15]. The proposed reconfigurable
platform can be used to test the performance of such new
mitigation techniques.

2. Ionospheric Scintillation Analysis

Ionospheric scintillation is the phenomenon of deep signal
fadings observed in GNSS signals. Such scintillation is
usually not observed in the mid-latitude region, but it is
frequently observed in the equatorial region during solar
maximum. Signal to noise ratio or more precisely carrier
to noise density ratio (C/No) of a certain satellite channel
remains almost constant when no scintillation is observed.
However, strong scintillation causes the signal C/No to
fluctuate rapidly. The fluctuation can be more than 25 dB.
Figure 16 compared the impact of scintillation on signal
C/No [16, 17, 18].

0 10 20 3010

20

30

40

50

Tim e (sec)

dB
-H

z

Carrier-to-Noise Power Ratio

dB
H

Healthy Signals

0 10 20 3010

20

30

40

50

Tim e (sec)

dB
-H

z

Carrier-to-Noise Power Ratio

dB
H

Healthy Signals

0 20 40 60 80
10

20

30

40

50

Time (sec)

dB
-H

z

Carrier-to-Noise Power Ratio

Scintillated Signals

0 20 40 60 80
10

20

30

40

50

Time (sec)

dB
-H

z

Carrier-to-Noise Power Ratio

Scintillated Signals

Figure 16: Impact of Ionosphere Scintillation on Signal
C/No Ratio (Courtesy Dr. Tsung Yu Chiou, Stanford
University)

Such deep signal fads result in repeated GNSS receiver
loss of lock and are of extreme concern to aviation users.
Since no past scintillated data is available for the GPS L5/
Galileo E5 signals, its effect on such signals cannot be
empirically established. We intend to use the proposed
reconfigurable platform to collect and analyze the effects
of ionospheric scintillation on the L5 band of GNSS
signals during the upcoming Solar maximum in the year
2011.

2302
ION GNSS 21st. International Technical Meeting of the
Satellite Division, 16-19, September 2008, Savannah, GA.

SUMMARY

As a first step in developing a Reconfigurable Platform
capable of tracking multiple frequencies and
constellations, we proposed and validated the feasibility
of designing a reconfigurable embedded software receiver
which can function in Real-Time. The complete receiver
was designed using Model-Based Design Tools optimized
for DSP functions. The small form factor of the hardware
combined with the fact that no external DSP or a Host PC
is required makes it an ideal test platform. We presented a
few of the applications this reconfigurable platform can
be utilized for. These applications can be developed in
quick time using the appropriate Model-based design
tools. Lastly, the fact that this particular hardware board is
accessible to students at over 2000 universities makes it a
perfect educational tool for teaching and learning GNSS
receiver design.

ACKNOWLEDGEMENTS

This work was funded by the Federal Aviation
Administration (FAA) through grant # CRDA 08-G-007.
Their support is greatly appreciated. The authors also
acknowledge the training support provided by Xilinx Inc.
at their San Jose, CA based learning center. The opinions
expressed and results presented in this paper are solely
those of the authors. They do not necessarily reflect the
views of the FAA, Xilinx Inc. or any of its vendors.

REFERENCES

1. Grace Xingxin Gao, David De Lorenzo, Alan Chen,

Sherman Lo, Dennis Akos, Todd Walter and Per
Enge, “Galileo GIOVE-A Broadcast E5 Codes and
their Application to Acquisition and Tracking,”
Proceeding of the ION National Technical Meeting
2007, San Diego, CA, January 2007

2. Grace Xingxin Gao, Jim Spilker Jr., Todd Walter, Per
Enge and Anthony Pratt, “Code Generation Scheme
and Property Analysis of Broadcast Galileo L1 and E6
Signals”, Proceeding of the ION Global Navigation
Satellite Systems Conference 2006, Fort Worth, TX,
September 2006.

3. Gao, Grace et. al. , “GNSS over China: the Compass
MEO Satellite Codes”, Inside GNSS Magazine, July-
August 2007

4. Xilinx UG 190 Virtex-5 FPGA User Guide. Retrieved
September 26, 2008 from
www.xilinx.com/support/documentation/user_guides/ug190.pdf

5. Altera Stratix III Device Handbook. Retrieved
September 18, 2008 from
http://www.altera.com/literature/hb/stx3/stratix3_handbook.pdf

6. P. Misra, P. Enge, Global Positioning System: Signals,
Measurements and Performances. Ganga-Jamuna
Press, Lincoln, MA, 2006

7. E. Kaplan, C. Hegarty, Understanding GPS Principles
and Applications. Artech House, Boston, MA, 2006

8. Akos, Dennis M., “A Software Radio Approach to
GNSS Receiver Design”, Ph.D. Dissertation, Ohio
University, 1997.

9. Akos, Dennis M., et al., "Real-Time GPS Software
Radio Receiver," Proceedings of ION National
Technical Meeting 2001, Long Beach, CA, Jan. 22-24,
2001, pp. 809 - 816.

10. Ledvina, B. M. et. al., “Performance Tests of a 12-
Channel Real-Time GPS L1 Software Receiver”,
Proceedings of the ION GPS/GNSS Conference 2003,
Portland, OR, September 9-12, 2003, pp. 679 - 688.

11. Gold, Kenn., Brown, Alison “A Software GPS
Receiver Applicable for Embedding in Software
Defined Radios”, Proceedings of the ION GPS/GNSS
Conference 2003, Portland, OR, September 9-12,
2003.

12. Parkinson, K., “A real time multi-channel GPS
positioning system architecture”, Proceedings of the
IGNSS 2007 Symposium on GPS/GNSS, Sydney,
Australia, December 4-6, 2007.

13. Mumford, P.J. et. al., “The Namuru Open GNSS
Research Receiver”, Proceedings of the ION Global
Navigation Satellite Systems Conference 2006, Fort
Worth, Texas, September 26 – 29, 2006, pp. 2847-
2855

14. Xilinx Embedded System Tools Reference Manual,
Retrieved September 19, 2008 from
http://www.xilinx.com/support/documentation/sw_manuals/edk
10_est_rm.pdf

15. Grace Xingxin Gao, “DME/TACAN Interference and
its Mitigation in L5/E5 Bands”, Proceeding of the
Global Navigation Satellite Systems Conference 2007,
Fort Worth, TX, September 25-28, 2007.

16. Seo, Jiwon, et. al., “Characteristics of Deep GPS
Signal Fading Due to Ionospheric Scintillation for
Aviation Receiver Design”, Proceedings of the 12th
International Ionospheric Effects Symposium,
Alexandria, VA, May 2008

17. S. Basu and S. Basu, Equatorial Scintillations – A
Review, Journal of Atmospheric and Terrestrial
Physics, Vol. 43, No. 5, June 1981.

18. J. Aarons, Global Morphology of Ionospheric
Scintillations, Proceedings of the IEEE, Vol. 70, No.
4, April 1982.

2303
ION GNSS 21st. International Technical Meeting of the
Satellite Division, 16-19, September 2008, Savannah, GA.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

