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ABSTRACT  
 
Safe marine navigation in the Arctic is becoming more 
important with a growing interest in the region in recent 
years. With the summer Arctic sea ice extent having 
decreased by 50% since 1980, this now opening waterway 
has given rise to serious interest in commercial activities 
in the Arctic. There are several navigational challenges 
that face ships operating in Arctic waters. Sea charts are 
known to be untrustworthy, navigational equipment can 
be problematic, and there is the constant danger of multi-
year and glacial ice collisions. Here we focus on the threat 
of ice. Knowledge of its whereabouts is crucial to the safe 
planning of routes and in the avoidance of sometimes-
fatal collisions. With increased traffic and without proper 
detection systems in place, there is a danger of accidents 
in the Arctic that may result in loss of life or have severe 
environmental ramifications. 
 
Here we propose a modernized system which offers 
improvements in the two major components of the current 
ice mitigation strategy, namely, on the ship-based 
monitoring side and on the ship-to-ship aiding side. Ship-
based monitoring today is a largely manual process which 
requires a skilled and experienced crew to interpret radar 
data and scan the area visually to correctly identify 
dangerous ice. This relies heavily on the use of expert 
lookouts, as radar is known to fall short of the 
requirements needed to reliably detect all forms of 
hazardous ice. Ship-to-ship aiding exists today in the form 
of organizations such as the North American Ice Service 
(NAIS) where icebergs and ice conditions are reported in 
part by passing ships. However, most ice reports are 



based on visual sightings whose accuracy is likely not 
high. Here, we propose crowdsourcing ice navigation 
based on a GNSS data registration system. In this 
scenario, ice detection and classification is done robustly 
and automatically based on a redundant multispectral 
system. This data is then geo-referenced using GNSS, 
enabling reliable ship-to-ship aiding in systematic way. 
The high integrity sharing of ice data offers a framework 
in which to perform path planning in a reliable and 
automated way, finding the safest route with the available 
information and relying less on the expertise of the crew. 
 

INTRODUCTION  
 
The Arctic sea ice extent, that is the amount of ice that 
covers the Arctic Ocean, has greatly diminished in the last 
30 years, giving rise to an increased interest in the now 
accessible Arctic. In fact, the summer minimum sea ice 
extent has decreased by more than 50% since 1980 [1] 
and is projected to continue decreasing [2]. Figure 1 
shows this decay from 1984 to 2012. This decrease in ice 
coverage has triggered the expansion of many industries 
into the area, some prospective and some very real and 
rapidly expanding. Ships operating in Arctic waters face 
many challenges in terms of navigation and it is our 
ultimate aim that these new operations be done as safely 
as possible to avoid loss of life and environmental 
disasters. 
  

 
Figure 1. Comparison of summer minimum arctic sea ice extent from 
1984 to 2012 (source: Wikimedia commons). 

Trends in Arctic Traffic 
 
Many natural resources are estimated as being present and 
untapped in the Arctic, one of the main being oil and gas. 
The United States Geological Survey (USGS) has 
estimated there to be 30% of the world’s undiscovered 
gas and 13% of the world’s undiscovered oil to be in the 
Arctic Circle [3]. This is certainly attracting commercial 
resource exploration and exploitation though this is not 
the only industry expanding into the Arctic. Figure 2 
shows that both fishing and cargo transportation activities 
have increased in the Canadian Arctic in recent years. 
Commercial shipping is a prospect mainly because the 
decrease in sea ice coverage has opened many previously 
inaccessible routes in the summer months. Figure 3 shows 
an example of why such routes are attractive as they can 
allow for significantly shorter distances than traditional 
shipping lanes through the Suez or Panama Canals [4]. 
Most studies indicate, however, that although there will 
be a rise in Arctic marine traffic it will mostly be 
destinational not trans-Arctic as many shipping 
companies are reluctant to invest in Arctic routes due to 
their increased risk [4, 5].  
 
Figure 4 shows the increase in traffic in the Canadian 
Northwest Passage over the period between 2005 and 
2010. This highlights the rapid increase in tourism in this 
part of the Arctic, a trend seen in other areas such as 
Greenland [5], as well as Russia where tourists can take a 
trip to the geographic North Pole onboard a nuclear 
icebreaker [6]. Although only a handful of cargo ships 
have traversed the Northwest Passage to date, the 
Northeast Passage along the northern shores of Russia has 
been a major commercial waterway for quite some time 
[6]. 
 
 

 
Figure 2. Trends in the total ship traffic in the Canadian Arctic (based 
on data from [4]). 
 



 
Figure 3. Example of a shorter shipping route through the Arctic Ocean 
(adapted from Wikimedia commons). 
 

 
Figure 4. Ship traffic in the Canadian Norwest Passage (based on data 
from [4]). 
 
 
Navigation in The Arctic and The Threat of Ice 
 
Navigation in the Arctic has many unique challenges. Sea 
charts are known to be untrustworthy, navigational aids 
such as compasses have limitations at high latitudes, 
GNSS suffers from poor geometry and ionospheric 
activity, and there is the constant threat of collision with 
ice [7]. Here we focus on the threat of ice. 
 
Safe navigation in ice-infested waters requires 
technological aids such as radar as well as an experienced 
crew. Sea ice is typically broken down into five major 
categories which are summarized in Table 1. The first is 
freshly frozen seawater known as new ice or nilas. Nilas 
is a soft slushy material, typically less than 10 cm thick, 
and does not pose a danger to ships. Young ice has been 
around longer in the season and can be up to 30 cm thick 
and much harder than nilas. This can pose a danger to 
non-ice-strengthened ships under certain circumstances. 
Ice of one year’s growth is known as first-year ice. This 

ranges in thickness from 30 cm to 2 m and is a danger to 
non-ice-strengthened ships. Multi-year ice is a material 
that has survived through several seasons. As such, it has 
had time to grow and compact into a very thick (2 to 4+ 
m) and hard material. This is a threat to any non-polar 
class ship. The standards in place for what constitutes a 
seaworthy ship operating in ice conditions ultimately 
depends on the type of ice that is being encountered. As 
such, there are several classes of polar ship ranging from 
commercial ships operating in first-year ice known as 
Polar Class 6 or 7 (Baltic Class) to the strongest nuclear 
icebreakers which routinely power through multi-year ice 
on their way to the North Pole known as Polar Class 1. 
These classes are summarized in Figure 5. 
 
The last category is icebergs. These are composed of very 
hard land-based glacial ice which is many years, 
sometimes centuries, old. Icebergs break off large land-
based glaciers in a process known as calving. As these 
can break off in a variety of shapes and sizes, icebergs are 
further classified into the categories shown in Table 2. 
Those which pose the principal danger to ships are bergy 
bits and growlers. The reason for this is that they have 
very little material above the waterline, typically only a 
few meters, and much mass below making them both very 
difficult to detect and very dangerous to hit.  
 
Figure 6 shows a breakdown of ship collisions by ice type 
from 1980 to 2011. This shows that bergy bits, growlers, 
and multi-year ice cause the most damage to ships. The 
reason for this is that these can be the most difficult to 
detect [8]. Small floes of multi-year ice can be mixed in 
with regions of first-year ice and typical marine radar may 
not allow for a clear distinction. Bergy bits and growlers 
have so little above the waterline that they can be lost in 
the sea clutter when using radar in their pursuit [9-12]. As 
such, current detection techniques rely heavily on the 
experience of the crew where lookouts serve as the 
primary means of detection as radar is deemed unreliable 
[7, 13].  
 

 
Figure 5. Classes of polar ships (based on data from [14-16]). 



Ice Type Thickness Danger 

New Ice (Nilas) 
 

 
 

< 0.1 m Not a danger to 
ships. 

Young Ice 
 

 
 

0.1 – 0.3 m Potential danger 
to non-ice 
strengthened 
ships. 

First-Year Ice 
 

 
 

0.3 – 2 m Danger to non-
ice strengthened 
ships. 

Multi-Year Ice 
 

 
 

2 – 4+ m Polar class ship 
required. 

Glacial Ice 
 

 
 

1 – 5+ m  Polar class ship 
required. 

Table 1. Types of ice encountered at sea and their danger to ships (based 
on data from [13, 16-18]). 
 
 

Description 

Height 
Above Sea 

Level 
[m] 

Relative Size Mass 
[tonnes] 

Very Large > 70 

Merchant Ship + >180,000 Large 48 – 70 
Medium 16 – 48 
Small < 16 
Bergy Bit 1 – 5 Small House 5,400 
Growler < 1 Grand Piano 120 
Table 2. Iceberg classification by size (based on data from [12]). 
 
 

 
Figure 6. Ice collision breakdown by ice type around North America, 
Greenland, and parts of Europe 1980-2011 (based on data from Brian T. 
Hill’s Ship Iceberg Collision Database [19, 20]). 
 
 
Current Ice Mitigation Strategies 
 
The current ice mitigation strategy around areas of high 
traffic around North America consists of two major 
components. The first is ice reports generated by the 
North American Ice Service (NAIS). This organization 
consists of a joint effort between the United States’ 
International Ice Patrol (IIP) and the Canadian Ice Service 
(CIS) who broadcasts daily ice warnings for the North 
Atlantic.  
 
The NAIS service began in 1912 as a result of the 
Titanic’s collision with an iceberg which resulted in a 
tremendous loss of life. Figure 8 shows the region 
patrolled by the NAIS, an area which is prone to icebergs 
and commonly referred to as iceberg alley. Currents draw 
icebergs from the coast of Greenland to areas of high 
shipping traffic near mid-latitudes in the North Atlantic. 
The efforts of the NAIS are primarily to bound the area 
containing icebergs so that ships can plan routes around it. 
This boundary is shown in the February 9, 2014 ice report 
given in Figure 7 as an example. The numbers listed in 
the grid boxes on the report represent the number of 
known icebergs in that particular area.  



Ice is reported by a variety of means to the NAIS 
including coast guard ships, reconnaissance aircraft, 
satellite imagery, commercially hired reconnaissance, and 
by merchant ships. Figure 9 shows the breakdown of 
iceberg reports by type for the year 2012. Focusing on the 
last column, that of boundary setting icebergs, we see that 
merchant ships account for nearly 10%, satellite imagery 
less than 5%, government reconnaissance 45%, and the 
remainder by commercially hired reconnaissance at 40% 
[17]. Note the strong reliance on merchant ships to share 
their icebergs sightings, so much so that it is incentivized 
in the form of the annual Carpathia Award which awards 
the ship with the most reports [17]. 
 
The second and last line of defense against ice are the 
ship-based sensors. Radar is a useful tool, but it is highly 
advised not to solely rely on it [7, 13]. The most reliable 
method is to make use of lookouts onboard the ship, that 
is skilled crew scanning the horizon with binoculars for 
signs of dangerous ice [13]. This can be seen in the 
iceberg reports to the NAIS whose breakdown is given in 
Figure 10. This shows that nearly half of icebergs are 
detected by visual inspection (43%) while the other half is 
detected by a combination of visual and radar 
confirmation (47%). Only 10% of these are found via 
radar alone but these are typically very large and outside 
of visual range. Thus, iceberg detection is a largely 
manual process which relies heavily on the experience of 
the crew. 
 

 
Figure 7. Typical report of the North American Ice Service (NAIS) 
(source: NAIS). 
 

 
Figure 8. The coverage of the North American Ice Service (NAIS) 
(source: [17]). 
 

 
Figure 9. Breakdown of iceberg report source by method for the year 
2012 (source: [17]). 
 
 

 
Figure 10. Breakdown of iceberg reports by detection method for the 
year 2012 (source: [17]). 
 
 
Ice Collisions 
 
The ship based detection methods rely heavily on the 
experience of the crew, though this is sometimes not 
enough. Figure 11 shows what can happen when this 
system fails. In 2007, the MS Explorer, a passenger cruise 
ship, suffered a fatal collision with glacial ice in the 
Bransfield Strait off of King George Island, Antarctica. 
The accident occurred as the crew mistook an area of 
glacial ice for much more benign first-year ice. As a 
result, the ship sank within 20 hours. Thankfully, all 100 
passengers were saved though this highlights the danger 



associated with the misclassification of ice and how it can 
happen even today.  
 

 
Figure 11. The MS Explorer sinking after a collision with ice in the 
Bransfield straight near Antarctica in 2007 (source: Chilean Navy). 
 
In recent years, in areas around North America, 
Greenland, and parts of Europe, there are still more than 2 
major collisions with ice each year. Furthermore, when a 
ship does have a collision with ice, data shows that it has 
a 1 in 6 chance of being lost. These figures are based on 
the most current data from Brian T. Hill’s Ship Iceberg 
Collision Database from the period between 1980 and 
2011 and are summarized in Table 3. 
 
Figure 12 shows the number of collisions that have 
occurred with ice each year from 1900 to 2011. Note that 
these are also broken down by ice type. Clearly the 
number of collision occurring each year is not decreasing 
though the nature of the collisions has changed over the 
years. Starting in 1945, which corresponds to the advent 
of ship-based radar, the number of collisions with large 
icebergs drops drastically. In fact, there are no more 
reported collisions with large icebergs in subsequent 
years. The consistent threat throughout the years has been 
bergy bits and growlers and in recent years multi-year ice. 
Multi-year ice has likely always been a culprit, though it 
was perhaps not properly reported and is likely seen in the 
‘unknown’ category. This further supports that radar is an 
effective tool in detecting large icebergs but still falls 
short in the detection of the smaller bergy bits, growlers, 
and small floes of multi-year ice. 
 
Figure 13 shows where major collisions have occurred in 
the period between 1980 and 2011. Many are 
concentrated in the so-called iceberg alley off the coast of 
Newfoundland and Labrador where currents bring 
icebergs down from the coast of Greenland. This is also 
the focus area of the NAIS. It further shows that ships 
don’t have to be operating in the Arctic Circle to be wary 
of dangerous ice. Figure 14 shows the ice collision 
breakdown by latitude and demonstrates that most happen 
below the boundary of the Arctic Circle, typically defined 
as the 66o north latitude mark.  
 

 
Collision rate* > 2 per year 

Likelihood of ship being lost* 1/6 

Probability of collision** 1/2000 

Probability of ship being lost 1/12000 

Table 3. Summary of ship ice collision statistics. 
 

* Based on data between 1980-2011 from Brian T. Hill’s Ship Ice 
Collision Database [19, 20]. 

**Based on [19]. 
 
 

 
Figure 12. Number of ice collisions around North America, Greenland, 
and parts of Europe 1900-2011 (based on data from Brian T. Hill’s Ship 
Iceberg Collision Database [19, 20]). 
 
 

 
Figure 13. Location of ice collisions around North America, Greenland, 
and parts of Europe 1980-2011 (based on data from Brian T. Hill’s Ship 
Iceberg Collision Database [19, 20]). 
 



 
Figure 14. Ice collision breakdown by latitude in areas around North 
America, Greenland, and parts of Europe 1980-2011 (based on data 
from Brian T. Hill’s Ship Iceberg Collision Database [19, 20]). 
 
 

PROPOSED SYSTEM OVERVIEW  
 
In this section, we propose a modernized system which 
offers improvements in the two major components of the 
current ice mitigation strategy, namely, on the ship-based 
monitoring side and on the ship-to-ship aiding side. Ship-
based monitoring today is a largely manual process which 
requires a skilled and experienced crew to interpret radar 
data and scan the area visually to correctly identify 
hazardous ice. Ship-to-ship aiding exists today in the form 
of organizations such as the NAIS where icebergs and ice 
conditions are reported in part by passing ships. However, 
most ice sightings are based on visual sightings whose 
accuracy is likely not high. Here, we propose 
crowdsourcing ice navigation based on a GNSS data 
registration system. In this scenario, ice detection and 
classification is done robustly and automatically based on 
a redundant multispectral system. This data is then geo-
referenced using GNSS, enabling reliable ship-to-ship 
aiding in systematic way. The high integrity sharing of 
data allows for paths through the ice to be planned both 
safely and economically, relying less on the human factor 
and the experience of the crew. 
 
Crowdsourcing  
 
To demonstrate how such a system could be 
implemented, we will build on a working example 
throughout this text. To do so, we chose a real place near 
Disko Island in Greenland shown in Figure 15. Depicted 
here in the summer months, there are four medium sized 
ports in this area, the Ports of Qeqertarsuaq, Ilulissat, 
Aasiaat, and Qasigiannguit. Figure 16 shows the same 
area in winter with much snow and ice coverage, where 
landmasses are highlighted in red. For this example, we 
will assume hypothetical ship traffic over a period of 
three days for the purpose of explanation. On the first day, 
Figure 16 shows the paths taken by these theoretical 
ships. At the scale of this image, the width of the path 

lines represents the coverage of the onboard ship sensors, 
assumed at roughly 6 km in all directions. Thus, green 
areas represent the information gathered by passing ships 
on day 1. The instant the data is collected, however, it is 
volatile as it begins to drift with ocean and wind currents. 
Thus, we require the ability to propagate this information 
forward in time in order to estimate its drifted location so 
that it is useful to a ship passing through at a later epoch. 
To accomplish this, a ship can make a variety of wind, 
ocean current, and other meteorological measurements in 
conjunction with its collected ice information that can be 
fed into a propagation model. As there will be uncertainty 
in the propagation scheme, as well as other ice outside of 
these tracks that may get mixed in over time, the older the 
track, the less a ship can trust its information.  
 
Figure 17 shows the ice conditions at the beginning of the 
second day. If all the information collected on day 1 is 
referenced to an epoch at the beginning of day 2, we see 
that some tracks have drifted. This represents both the 
information propagation and decay. The decay or age of 
data represents the level of uncertainty and is indicated by 
the track color, green being the least uncertain and newest 
data, orange being the most uncertain and oldest data. 
Figure 18 shows the state of information at an epoch on 
day 3. Here, we have tracks from day 2 (shown in green) 
and previous information from day 1 which has decayed 
even further (shown in red). If we are a ship, as shown in 
the northwest corner of Figure 18, trying to use this data 
to plan a safe passage through the area to the highlighted 
port it must somehow account for the known data’s 
sparsity, varying levels of inherent safety (ice conditions) 
and degradation (age of data). This is a problem in path 
planning, one that will be addressed later in this paper, we 
first need to address the problem of how to trust the 
information gathered by another ship in the first place. 
 
 

 
Figure 15. Four ports near Disko Island, Greenland. (source: 
AQUA/TERRA satellite imagery, ocean.dmi.dk/arctic/) 
 



 
Figure 16. Hypothetical ship traffic and collected ice data on day 1. 
 

 
Figure 17. Ice data from day 1 propagated forward in time to a reference 
epoch on day 2. Green represents the newest data, orange the oldest and 
most uncertain. 
 

 
Figure 18. Ice data from days 1 and 2 propagated forward in time to a 
reference epoch on day 3. Green represents the newest data, red the 
oldest and most uncertain. 

Improved Ship-Based Sensing 
 
In order for a ship to trust the information that is gathered 
by others, the data must be collected reliably and 
consistently to ensure a high level of integrity. To ensure 
this, ice detection and classification must be robustly 
automated and tied to a universal coordinated system 
using GNSS.  
 
For inspiration, we turned to another problem of 
automated perception, that of self-driving automobiles. 
Autonomous vehicles such as Stanford University’s 
Stanley, which won the Defense Advance Research 
Project Agency (DARPA) Grand Challenge in 2005 and 
Google’s self-driving car, which today routinely navigates 
busy city streets and highways, make use of a 
multispectral system to perceive their environment. A 
combination of video processing and lidar is used in the 
case of Stanley [21] and an additional radar system is 
employed in the case of Google’s self-driving car [22].  
 
In the context of ice classification, different types of ice 
and snow have different electromagnetic properties in 
different bands [12]. Figure 19 shows the spectral 
reflectance signatures of an assortment of glacial ice and 
snow in visible bands where a video camera can see as 
well as the infrared bands where a lidar system would be. 
From the reflectance information alone, cross checks can 
be done to offer classification redundancy in these 
different spectra. Other aspects of these technologies can 
also be used to identify areas of dangerous ice. Lidar 
systems can generate high-resolution 3D maps which can 
be used to find patterns and shapes to further aid in the 
classification process. Furthermore, since much of the ice 
classification is currently performed by some form of 
human visual inspection, many of these procedures can 
likely be automated in the processing of video images. 
 
Both lidar and video rely heavily the ability to judge what 
is dangerous by what’s going on at the surface, as they do 
not possess the power to penetrate the top layer of snow 
cover if one is present. Radar, a very new technology for 
cars but a very old one for ships, does posses this 
penetrating power. Much work has been done on using 
different forms of radar such as X- and S-Band linearly 
polarized radar for ice classification. Further information 
on this topic can be found in [8-12, 23-26]. However, 
there are still many situations where radar falls short of 
the performance requirements needed for ice navigation 
such as in the detection of small floes of multi-year ice or 
glacial ice such as bergy bits or growlers [8]. 
 
We now see how these systems qualitatively complement 
each other and how in their combination we can 
potentially achieve higher redundancy than we do with 
any of them on their own. Radar falls short on resolution, 
lidar and video processing on surface penetration. The 



challenge ahead is in leveraging their individual strengths 
and combining them in a meaningful and robust way. 
 

 
Figure 19. Spectral reflectance of different types of snow and glacial ice 
in the visible and infrared spectrum. (adapted from [27, 28]). 
 
 
GNSS Data Registration 
 
Improved ship-based sensing is only one small part of this 
picture. For a ship to effectively navigate ice-infested 
waters, it requires accurate knowledge of ice conditions 
well in advance so that it may effectively plan a route 
through it.  
 
Registering the sensor data recorded by the ship with 
GNSS allows for a global coordinate system to be 
employed and ship-to-ship consistency to be achieved. 
This is what enables ship-to-ship aiding in this 
framework. High integrity GNSS, however, is currently 
unavailable at high latitudes though some have argued its 
necessity in the Arctic and how it can be attained by 
Satellite Based Augmentation Systems (SBAS) [29, 30]. 
The proposed ice navigation system is summarized in 
Figure 20.  
 

 
Figure 20. Proposed ice navigation system. 

SHIP-BASED LIDAR 
 
To obtain a first assessment of lidar as a tool for ice 
detection and classification onboard a ship, we obtained 
access to a dataset whose original intention was 
glaciology research. RIEGL Laser Measurement Systems 
(LMS) in collaboration with environmental research 
scientist David Finnegan of the Cold Regions Research 
and Engineering Lab (CRREL) of the United States Army 
Corps of Engineers (USACE) worked to develop the 
RIEGL VZ-6000 Terrestrial Laser Scanner, a 1064 
nanometer wavelength lidar system purpose built for high 
performance on ice and snow. This system has a range of 
over 6 km and is able to resolve angular measurements to 
better than 0.0005o which corresponds to less than 1 cm at 
a range of 1 km and 5 cm at 6 km. In addition, it has a 
beam width or resolution cell which is characterized by a 
laser beam divergence of 0.12 milliradians, which 
corresponds to 1.2 cm at a range of 1 km and 72 cm at 6 
km. The system is also integrated with GNSS, a desirable 
feature for the proposed ice navigation system. The 
RIEGL VZ-6000 is shown set up next to the data 
collection site in Figure 21. 
 

 
Figure 21. RIEGL VZ-6000 overlooking the Helheim Glacier in 
Greenland (source: riegl.com). 
 

 
Figure 22. Location of the data collection site, the Helheim Glacier in 
Greenland (source: Google Maps). 



The data used in this analysis was taken by a small team 
which consisted at its core of David Finnegan and Ananda 
Fowler of RIEGL LMS. For more information on this 
effort, please refer to [31]. The data collection site was the 
Helheim Glacier in Greenland whose location is shown in 
Figure 22. The lidar data is of the so-called glacial 
mélange portion of the site. Shown in Figure 23, this 
represents the area ahead of the glacial calving front 
where pieces of ice shear off the main body of the glacier. 
As the name suggests, this region contains ice of 
difference ages as well a mixture of dirt and snow. Since 
we are interested in the classification of different types of 
ice and snow, this area is ideal for this study.  
 

 
Figure 23. Glacial mélange and calving front of the Helheim Glacier 
(source: NASA Earth Observatory). 
 
Figure 24 shows the lidar system set up on the fjords 
alongside the Helheim Glacier. This set up is ideal for this 
study as it is not dissimilar from the configuration such a 
system would have onboard a ship in terms of height 
above targets and grazing angles. To give a sense of the 
range performance of the system in practice, the banks 
opposite to the lidar scanner (also shown in Figure 24) are 
roughly 6.8 km away and results demonstrate that the 
system is capable of scanning to that distance, thus 
outperforming the listed specifications.  
 

 
Figure 24. Experimental setup of the RIEGL VZ-6000 lidar system on 
the banks of the Helheim Glacier (source: riegl.com). 

Figure 25 shows a top view elevation map of the 3D point 
cloud mapped by the lidar system. This is only one small 
section of the entire scan, though it does give a sense of 
the scale of the ice; note the commercial container ship in 
the bottom right corner of the image. The black areas 
between colored points represent shadows behind objects 
the lidar could not see. These occur because the lidar is 
not scanning from above but rather on the banks, giving 
rise to areas behind large pieces of ice for which there is 
no line of sight. A view better aligned with the vantage 
point of the scanner is given in Figure 26. This plot shows 
the parameter most important for classification, namely, 
the reflectance. RIEGL LMS post-processed this data to 
correct for path loss (1/s4) as well as atmospheric losses, 
thus this plot represents the inherent reflectivity of the 
material.  
 

 
Figure 25. Elevation map of a section of the Helheim Glacier mapped 
by the RIEGL VZ-6000. 
 

 
Figure 26. Lidar reflectance map of a section of the Helheim Glacier 
mapped by the RIEGL VZ-6000. 
 
We are now tasked with using this reflectance data for 
material classification. We want the data to inform us of 
what categories are inherent to it, rather than blindly 
trying to categorize it based on reflectance alone. As such, 

Mélange  Calving Front 



we made use of a machine learning algorithm known as k-
means clustering to determine the categories intrinsic to 
the data. k-means clustering works by finding the 
principal k clusters which represent a given dataset. In this 
case, we performed clustering based on similar material 
reflectance. Results for the case of k = 6 clusters are 
shown in Figure 27. Six categories were used as this 
found dominant clusters which best matched expected 
results. Each point labeled 1 through 6 represents a 
category where 1 represent the most reflective and 6 the 
least reflective. From this plot, it is clear that we are able 
to identify materials which are snow and firn (old 
recrystallized snow) and those which are ice. Category 1 
represents fresh snow. This matches exactly with the 
expected result as it was used as the point of calibration 
for the data, i.e. the most reflective category was taken as 
that of fresh snow. Category 4 represents firn or old 
recrystallized snow. Categories 2 and 3 represent snow 
types which are somewhere between fresh snow and older 
firn. Category 5 represents refreezing glacial ice, namely, 
areas of glacial ice that melt and refreeze during the 
season. Category 6 is that of solid glacial ice, in this case 
predominantly that which has dirt and other debris mixed 
into it.  
 

 
Figure 27. k-means clustering results with 6 clusters (reflectance 
spectrums adapted from [28]). 
 
The geographic location of these color-coded categories is 
given in Figure 28. Here, we see that the majority of the 
top layer is different types of snow and firn, though there 
are some areas of ice shown in yellow and red. Figure 29 
shows these further categorized into areas of snow (blue) 
and those of ice (red). Again, we see largely snow cover, 
though here it is easier to see the structure of the ice. We 
see ice signatures at the base of the large jagged 
structures. These are likely snow-covered pieces of glacial 
ice whose true colors shine through at their base where 
constant movement likely wears off the snow. Figure 30 
shows areas of ice only. From this it is clear that the entire 

underlying structure is that of glacial ice, an expected 
result as this is an area filled completely with glacial ice 
albeit covered in snow. This result does highlight one of 
the major drawbacks of a lidar system on its own for ice 
navigation, its inability to penetrate the snow to find areas 
of ice hiding underneath.  
 
 

 
Figure 28. Map of k-means clustering results with 6 clusters. 
 

 
Figure 29. Clustering results separated into categories of snow / firn and 
ice. 
 

 
Figure 30. Clustering results highlighting areas of glacial ice only.  
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Ultimately, this analysis gives only a first glimpse into the 
potential that such a system has for ice detection and 
classification onboard a ship. This method does not yet 
represent a robust classifier but merely indicates that such 
a system is capable of performing snow and ice 
classification and identify areas of potential danger based 
on the material reflectance.  
 

PATH PLANNING FRAMEWORK 
 
We now return to the problem of path planning through 
the ice using the measurements of others. This problem 
can be set up in the framework of a sequential decision 
making process, specifically that of a Markov Decision 
Process (MDP). In its simplest form, a MDP is a model of 
the system dynamics. Shown in Figure 31, the transition 
from a given state, say a geographic location, to another 
state, a new location, requires some action, perhaps the 
thrust from engines onboard a ship. Both actions and 
states can have rewards associated with them. Actions 
such as thrust require fuel, a negative reward since fuel is 
expensive. States such as locations may have a negative 
reward if they are an area of danger such as land or glacial 
ice or a positive reward if it is an area of open water. In 
planning a path from some initial state to some final state, 
we want to maximize the cumulative reward along a 
given path to find that which is optimal in terms of both 
safety and fuel expenditure.  
 

 
Figure 31. Markov Decision Process (MDP). 
 
To do this, consider the simple example of that shown in 
Figure 32.  Here the states, shown on the left, are boxes in 
a 2D world and can be thought of as six possible 
geographic locations. On the right, we have the possible 
actions that can be taken: north, east, south, or west. In 
red, we have the reward associated with both states and 
actions. Most states (2D locations) are neutral but the 
northeast corner is a great place to be, the desired 
destination at +100, and the southeast corner is to be 
avoided at -50 representing an area of hazardous ice. The 
actions, assumed to be deterministic in this example, also 

have a penalty associated with them at -3 representing the 
cost of fuel expenditures.  
 

 
Figure 32. Simple example of a MDP. 
 
The problem we wish to solve is how to get from the 
starting state to the desired state in an optimal way. To do 
this, we wish to maximize the cumulative reward along a 
path. For this simple example, we can start from the final 
state and backtrack to find the answer. Starting at the 
desired state and moving west, the best we could have 
done had we started at this location is a cumulative 
reward of 97. The reason is that we start with 0, incur a 
cost of 3 for moving east and gain a reward of 100. Had 
we started south of the goal in the southeast corner, the 
best we could have done is a cumulative reward of 47. 
Just by being there, we would start at -50, incur a cost of 
3 for moving north, and finally gain 100 at the final 
destination. Clearly, no optimal route would choose to go 
through this point, as there is just too large of a penalty 
for passing through it. Thus, if we start in the southern 
middle box, we should go north, not east as we would 
incur an additional cost of 50 on top of the cost of 6 for 
moving twice in both cases. Thus, the optimal solution to 
our problem is to go north then east. We can continue to 
fill out the remaining boxes by backtracking in this way, 
the final result of which is given in Figure 33. This 
resultant 2D map is known as the value function and 
represents the maximum total reward that can be attained 
by starting in each box. A greedy algorithm can be used to 
plan the path for this simple case. In other words, starting 
from any given point, always look for the largest 
neighboring value and follow that path. This results in a 
policy that gives the optimal path for any given starting 
point. 
 

 
Figure 33. Value function and optimal path. 
 



We will now apply this to the problem of path planning in 
the area around Disko Island, Greenland given in Figure 
18. Figure 34 shows the data known after a hypothetical 
three days of traffic in the area where colors ranging from 
blue to red can be thought to represent the reward 
associated with each location, blue being positive and red 
being negative. We see the final destination has the 
highest reward and areas that are either land or hazardous 
ice have the least reward or highest penalty. We also see 
how the age of data diminishes the reward associated with 
tracks of open water. The older they are, the less they are 
trusted. 
 
To further make this look like the example given in 
Figure 32, we can grid the 2D area as shown in Figure 35. 
Now the color associated with each box qualitatively 
represents the reward associated with each location, blue 
being positive, red being negative. We now solve for the 
value function as shown by the contour map given in 
Figure 36. Employing a greedy algorithm on the value 
function, we can solve for the optimal path starting from 
the ship location given in Figure 18 in the northwest 
corner. This optimal path is shown in both Figures 35 and 
36. This path is found to gravitate towards areas of open 
water, especially those which have the youngest age of 
data, avoids all areas of hazardous ice as well as areas 
which are unknown, and ultimately arrives at the desired 
destination.  
 
Ultimately, this problem is more complex than that which 
was described here as we have to account for the 
probabilistic nature of the system as well as how to 
incorporate the new measurements taken by the ship on 
the fly. As such, this problem will be built into the 
framework of a Partially Observable Markov Decision 
Process (POMDP) where the underlying state of ice will 
be only partially observable. 
 

 
Figure 34. Known information after 3 days of traffic, blue indicates 
desirable areas, red indicates areas of danger. 
 

 
Figure 35. Known information after 3 days of traffic gridded in 2D, the 
color of each box represents the reward associated with each location, 
blue being positive and red being negative. The optimal path using the 
available information is overlaid in black. 
 

 
Figure 36. Value function and optimal path through the ice from the 
given starting location to the desired destination. 
 

CONCLUSION 
 
A proposal for a modernized ice navigation system has 
been presented. This system offers improvements in the 
two major components of the current ice mitigation 
strategy, namely, in ship-based sensing and in ship-to-
ship aiding. Improvements in local ship-based ice 
awareness can be achieved by making use of 
advancements in sensing technology found in autonomous 
vehicles. Multispectral sensing based on a combination of 
lidar, radar, and video processing could offer the 
redundancy needed to achieve a robust method of 
autonomous ice detection and classification. This would 
reduce the need for experienced lookouts to manually 
determine ice conditions by visual inspection.  
 



This improved ship-based sensing will not be enough on 
its own to guarantee the highest level of safety. Ships 
require knowledge of ice conditions well in advance to 
plan routes both safely and economically. As such, we 
need to crowdsource this ship-based ice data and tie it 
together using GNSS. This enables a universal coordinate 
system and ship-to-ship level consistency. Furthermore, 
this offers a framework in which to perform path planning 
in a reliable and automated way, finding the safest route 
with the available information. 
 
As ship traffic increases and there are less experienced 
persons operating in the Arctic, technology which 
automates operations in ice-infested waters will be 
essential. Our aim is to get ahead of the trends in Arctic 
traffic in the development of such a system. This will 
allow for safer operations in the Arctic, striving towards 
the prevention of collisions with hazardous ice in the 
hopes of preventing major accidents which could result in 
loss of life or severe environmental impact. 
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