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Abstract—The relationship between range-domain and 
position-domain errors remains an open issue for GPS 
augmentation programs, such as the Federal Aviation 
Administration’s Local Area Augmentation System (LAAS).  
This paper introduces a theorem that guarantees a conservative 
error bound (overbound) in the position domain given similarly 
conservative overbounds for broadcast pseudorange statistics.  
This paired overbound theorem requires that a cumulative 
distribution function (CDF) be constructed to bound both sides of 
the range-domain error distribution.  The paired overbound 
theorem holds for arbitrary error distributions, even those that 
are non-zero mean, asymmetric or multimodal.  Two applications 
of the paired overbound theorem to GPS augmentation are also 
discussed.  First, the theorem is employed to construct an 
inflation factor for a non-zero mean Gaussian distribution; in the 
context of a simulation of worst-case satellite geometries for 10 
locations in the United States and Europe, the required inflation 
factor for broadcast sigma is only 1.18, even for biases as large as 
10 cm for each satellite.  Second, the theorem is applied to bound 
a bimodal multipath model tightly; the result shaves more than 
40% off the previously established inflation factor derived 
through a more overly conservative analysis. 

I.  INTRODUCTION 

The FAA has sponsored two programs to supplement the 
Global Positioning System (GPS) to provide increased 
accuracy and integrity for precision landing applications.  The 
Wide Area Augmentation System (WAAS) collects data 
across the coterminous United States and broadcasts 
corrections from satellites in geosynchronous orbit.  The Local 
Area Augmentation System (LAAS) employs local arrays of 
GPS receivers located near individual airports to broadcast 
short-range differential corrections over a VHF radio link.  In 
general, LAAS corrections provide higher accuracy and 
integrity than WAAS corrections, but apply to a much smaller 
geographic area. 

In both classes of differential GPS augmentation, the 
broadcast correction messages incorporate diagnostic 
information that permits the user to assess system availability 
on-the-fly.  An important component of this broadcast signal 
is an estimate of pseudorange error, σi, for each satellite, i.  
Given the local satellite geometry, a user may transform these 
range-domain errors into the position domain, where they 
define an error bound, or protection level, around the aircraft. 

To maintain the validity of these protection limits, the 
pseudorange error statistics broadcast in the DGPS message 
must be conservative.  This paper describes a method for 

generating conservative (or overbounding) distributions in the 
range domain that remain conservative when transformed into 
the position domain.  The technique applies generally to any 
error distribution, be it non-zero mean, asymmetric, or 
multimodal. 

A.  Background:  Overbounding Distributions 
Protection limits are defined based on FAA specifications 

for various categories of risk.  Generally, these risk 
requirements are most stringent in the vertical direction.  
Equation (1) expresses a general form for the VPL, or vertical 
protection level. 

H pVPL K fσ= +  (1) 

For each fault-mode hypothesis, the protection level depends 
on a hypothesis-specific factor, KH, and also on σp, the 
instantaneous vertical position error.  Some fault hypotheses 
may also introduce an offset, f.  The LAAS one-satellite-out 
hypothesis (H1), for instance, sets fj for each receiver, j, based 
on the outputs, Bi,j, of a multiple-reference consistency check 
(MRCC).   
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In (1), the position-domain error is composed from the 
range-domain errors, weighted according to satellite geometry. 
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,p v i i

i
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Here the range error for each individual satellite, σi, is 
weighted by a coefficient of the vertical-projection row of the 
geometry matrix, S.   

The specifications for integrity risk enter (1) through KH.  
This factor is set such that the user vertical position error 
exceeds the VPL only rarely, as required by the integrity 
allotment, IH, for a particular fault hypothesis, H.  Assuming 
the position-domain error has a Gaussian distribution, the KH 
factors have been established according to the following 
equation: 

( )12 erf 1H HK I−= − . (4) 



The actual error distribution is not Gaussian.  However, the 
error distribution may be modeled conservatively by a 
Gaussian distribution, as long as that Gaussian distribution 
contains more probability mass in its tails beyond the vertical 
alert limit (VAL) than the actual distribution.  Such a 
conservative distribution is called a tail-overbounding 
distribution.  In tail overbounding, the overbounding 
cumulative distribution function (CDF), Go, obeys the 
following relationship with respect to the actual CDF, Ga.  
Here x indicates a vertical error value. 
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The tail-overbounding concept provides a powerful tool to 
abstract the position-domain error in order to simplify the 
broadcast signal.  The broadcast signal, however, carries 
range-domain error statistics and not position-domain statistics.  
The user derives position-domain error, according to (3), using 
range statistics and local satellite geometry.  Thus, to be useful 
for DGPS, an overbounding distribution must remain 
overbounding when transformed through (3).  Unfortunately, 
tail overbounding in the range domain does not guarantee tail 
overbounding in the position domain. 

Prior researchers have proposed several alternative strategies 
to tail overbounding in an attempt to establish a bridge 
between the range and position domains [1].  Notably, these 
strategies include probability density function (PDF) 
overbounding and cumulative distribution function (CDF) 
overbounding.  Both these definitions are more restrictive than 
tail overbounding.  A PDF overbound is defined such that the 
overbounding distribution exceeds the actual distribution for 
every point outside the VAL: 

( ) ( ) ,o ag x g x x VAL≥ ∀ > . (6) 

A CDF overbound is defined such that the cumulative 
distribution function of the overbound, Go, is always shifted 
toward its tails relative to the actual cumulative distribution 
function, Ga, according to (7). 
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In (7), as elsewhere in this paper, capital G is used to refer to a 
CDFs, while lowercase g refers to a PDF. 

Although the PDF-based strategy appears to offer little 
advantage over tail overbounding, the CDF-based strategy 
offers an effective way to link range and position-domain 
overbounding, at least for certain distributions.  Specifically, 
DeCleene established this link for symmetric, zero-mean, 
unimodal distributions [2].  DeCleene’s proof relies on the fact 
that the position-domain measurement is the weighted 
summation of a set of range-domain measurements, according 
to (3).  As the distribution function for a summation of 
independent random variables is found through convolution, 
the key step in linking the position and range domains was 

proving that the convolution operation preserved the CDF-
overbounding property.  As shown by DeCleene, the 
convolution of two CDF-overbounding distributions 
overbounds the convolution of two actual distributions, as 
long as both the actual and overbounding distributions are 
zero-mean, symmetric and unimodal. 

B.  Motivation 
In general, convolution does not preserve CDF overbounds 

for distributions that are asymmetric, shifted-median or 
multimodal.  This section provides examples to demonstrate 
the collapse of CDF overbounding in the cases of median 
shifting and asymmetry.  A multimodal example is also 
presented to illustrate the limitations of the Gaussian CDF 
overbound used in the GPS augmentation application. 

Shifted-Median Distributions 
The median of a distribution, g(x), is the x value which 

evenly splits its probability mass (that is the argument for 
which the cumulative distribution function equals one-half).  
According to the definition of CDF overbounding by (7), the 
medians of two distribution functions must be equal for one to 
provide CDF overbounding of the other.  This fact is 
illustrated by Fig. 1.  Thus if two distributions are biased with 
respect to their medians, the two distributions both provide 
partial CDF overbounding of the other.  After repeated self-
convolution, this partial overbounding becomes more 
pronounced.  The following section provides an example to 
illustrate this condition. 

For a symmetric distribution, the mean and median are 
equivalent.  When considering distributions symmetric about 
zero, the shifted-median condition reduces to the zero-mean 
condition discussed in [2]. 
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Fig. 1. CDF overbounding is invalid for median-shifted distributions 

 

Asymmetric Distributions 
The CDF overbounding definition, (7), holds as long as 

distribution medians are coincident, even if one or both of the 
actual and overbounding distributions is asymmetric.  
Convolution, however, may shift the medians of the actual and 



overbounding distribution relative to one another in the case of 
asymmetry.  As an example, consider the following two 
distributions, which satisfy (7): 
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Fig. 2 illustrates these two PDFs, a simple uniform 
overbounding distribution, go, and a quasi-uniform actual 
distribution, ga.  The CDFs for these distributions are plotted 
in Fig. 3. 

Fig. 3 also illustrates the CDFs of each distribution when 
convolved with itself 1, 2, or 5 times.  The convolution of a 
distribution with itself N-1 times describes the result of the 
summation of N random variables with identical, independent 
distributions (IIDs).  The CDF overbound theorem guarantees, 
for symmetric ga and go with a common median, that the 
convolution of the overbounding distribution overbounds the 
convolution of the actual distribution.  For the asymmetric 
case of (8), however, overbounding breaks down after the 1st 
convolution (the 2 IID instance).  The unbounded probability 
first appears near the medians of the two distributions as 
shown in Fig. 3.  The mass of unbounded probability increases 
with each additional convolution, progressing farther and 
farther toward the tails.  This behavior is a clear violation of 
the conservatism required for precision GPS navigation. 
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Fig. 2.  Symmetric and Asymmetric PDFs 

 

0

0.2

0.4

0.6

0.8

1

C
D

F(
x)

CDF for Original RVs Convolution of 2 IIDs

-4 -2 0 2 4
0

0.2

0.4

0.6

0.8

1

x

C
D

F(
x)

Convolution of 3 IIDs

-4 -2 0 2 4
x

Convolution of 6 IIDs

go
ga

 
Fig. 3. Breakdown of CDF overbounding for asymmetric PDF 

 

Multimodal Distributions 
The condition of unimodality is not strictly necessary for 

preservation of CDF overbounding through convolution.  
However, a unimodal-overbound distribution, like the 
Gaussian assumed for GPS augmentation, does not satisfy the 
CDF overbounding requirement of (7) for the case of an 
arbitrary multimodal error distribution.  As an example 
consider the paired delta-function distribution: 

1 1
2 2( ) ( 1) ( 1)ag x x xδ δ= − + + . (9) 

The CDF for the paired delta-function is illustrated in  
Fig. 4.  As shown by the figure, this distribution does not 

have a unique point at which the median exists.  Rather, the 
CDF takes a value of one-half over an extended region of x 
values between 1 and -1.  To apply (7) to this distribution 
requires that the overbounding distribution have a zero 
probability mass located between x values of 1 and -1.  Clearly, 
a unimodal distribution, such as a Gaussian distribution, 
cannot overbound the paired delta-function distribution. 
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Fig. 4.  Paired delta CDF 

II.  PAIRED OVERBOUND THEOREM 

This section introduces a new overbounding strategy called 
paired overbounding.  Paired overbounds are preserved 
through convolution for arbitrary distributions.  Thus the 
paired overbounding concept effectively relates range-domain 
and position-domain overbounding even for distributions that 
have shifted medians, asymmetry and/or multiple modes. 

The paired overbound is, in fact, a set of two CDF bounds 
from which an overbounding CDF may be derived.  This set 
of bounds consists of a left bound, GL, and a right bound, GR, 
defined relative to the actual CDF, Ga, as follows: 
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In paired overbounding, the overbounding CDF is 
constructed from the left and right bounds. 

( )

( )

1
2

1
2

1
2

 otherwise
L L

o

R R

G x G
G

G x G

 ∀ <
= 
 ∀ >

 (11) 



If condition (10) holds, the paired overbound (11) is, in fact, 
a CDF overbound in the sense of (7).  Strictly speaking, the 
overbound properties of (11) are not preserved through 
convolution.  However, the properties of the left and right 
overbounds are preserved through convolution.  This is to say 
if left and right bounds are defined for two arbitrary CDF 
functions, Ga1 and Ga2, according to (12), then the convolution 
of the left and right distributions will still bound the 
convolution of the actual distribution on the left and right 
according to (13).   

If   
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then  
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In other words, the distribution of the sum of two random 
variables, z=x+y, is bounded on the left and right by the 
convolution of the individual bounds for the x and y 
distributions.  A new overbounding distribution for the 
summation, z, may be constructed from the new left and right 
bounds, (13), in the form of the overbound (11). 

Together, (12) and (13) comprise the paired overbound 
theorem.  The proof of (13), given the assumption (12), 
follows. 

According to standard probability theory, (14) describes the 
cumulative distribution function for the random variable z, 
where z=x+y and where x and y are random variables with 
PDFs ga1(x) and ga2(y), respectively. 

( ) ( ) ( )

( ) ( )

1 2 1 2

1 2

z x

a a a a

z y

a a

G z g x g y dydx

g x g y dydx

∞ −

+
−∞ −∞

− ∞

−∞ −∞

=

=

∫ ∫

∫ ∫
     (14) 

Rearranging the integrals and introducing the appropriate 
cumulative distribution function yields: 
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Applying (15) to the summation of a variable drawn from 
the a1 distribution and a second from the L2 distribution 
results in: 
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Combining this equation with assumption (12),  
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Similarly, because 

( ) ( ) ( )1 2 1 2L L L LG z G z y g y dy
∞

+
−∞

= −∫  , (18) 

and because of assumption (12), it follows that 
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Thus the left bound property is invariant to convolution: 

( ) ( )1 2 1 2L L a aG z G z+ +≥  .    (20) 

The proof of the invariance of the right bound property has 
the same form as the development (14) through (20), with the 
right bound substituted for the left and with less than or equal 
signs substituted for greater than or equal signs.  Given that 
the left and right bounds are preserved after convolution, the 
CDF overbound, constructed in the manner of (11), bounds the 
convolution of the actual distributions a1 and a2. 

Thus this proof establishes that the left and right bounding 
properties are preserved through convolution and, hence, that 
an overbound based on the convolved left and right 
distributions overbounds the convolution of the actual 
distributions. By extension, paired overbounding in the range 
domain guarantees paired overbounding in the position 
domain, given an arbitrary error distribution, even one that is 
not zero-mean, symmetric and unimodal. 

III.  APPLICATION TO DGPS 

The paired overbounding strategy offers two advantages 
over standard CDF overbounding for GPS augmentation 
applications.  First, the paired overbound’s additional degrees 
of freedom enable construction of tighter error bounds, 
particularly for the case of non-zero mean error distributions.  
Second, the generality of the paired overbound permits 
bounding of arbitrary multipath distributions, including those 
with more than one mode.  This section develops a pair of 
examples to illustrate tight bounding both of a biased Gaussian 
error distribution and of a bimodal multipath model.  In both 
cases, the paired overbound theorem reduces extra 



conservatism and thereby improves integrity without 
sacrificing availability.   

A.  Reducing Overbounding Conservatism 
For WAAS and LAAS applications, the user assumes that 

broadcast σ values describe a range-domain error distribution 
that is zero-mean Gaussian.  Because these distributions are 
not actually zero-mean and Gaussian, the differential GPS 
reference station must transmit, instead, a Gaussian σ that 
overbounds the actual error distribution in a conservative 
fashion.  As compared with single-CDF overbounding, paired 
overbounding introduces additional parameters that may be 
used to bound more tightly an actual error distribution and 
thereby to mitigate unnecessary conservatism in the bounding 
Gaussian. 

In this context, a paired Gaussian overbound (with each 
Gaussian shifted symmetrically from zero), proves useful.  
The left and right CDFs from which this paired overbound is 
constructed take the form: 
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Here N(bo,σo) refers to the Gaussian density function with 
mean bo and standard deviation σo.  The subscript o indicates 
that the mean and deviation describe the overbounding 
distribution, rather than the actual distribution.  Fig. 5 
illustrates the left and right bounds and the associated paired 
overbound. 

These paired Gaussians bound a region that is symmetric 
around zero.  The effective VPL for either overbound is 
shifted by the weighted sum of the Gaussian offsets, bo,i, for 
each of the N satellites in view. 
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In effect, the overbounding biases shrink the alert limit, 
VAL, the upper allowable bound of the VPL. 

 Because neither the VAL nor the bo,i parameters are 
broadcast, the paired overbound cannot be applied directly to 
shrink the VAL on a user-by-user basis in real time.  The bo,i 
can, however be incorporated in a scaling factor on σo,i.  This 
scaling factor, β, remaps the VPL so that both (22) and (23) 
reach the VAL for the same values of sigma. 
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Fig. 5.  Paired Gaussian CDFs 

 
The scaling factor multiplies both the range-domain errors 

and, in the case of the H1 hypothesis, the MRCC B-values of 
(2).  The range-domain error itself consists of four terms, 
including errors for the ground receiver, the airborne receiver, 
the ionosphere and the troposphere. 

2 2 2 2 2 2
, , , , ,o i i gr i air i iono i tropo iσ σ σ σ σ σ≥ = + + +    (24) 

All of the range-domain error terms are broadcast to the user, 
except for the airborne value, σair.  Because the broadcast 
signal cannot dynamically inflate σair, it is necessary that this 
error always be inflated to cover a worst-case scenario. 

According to (23), β is a function of satellite geometry.  The 
worst case value of β may be empirically bounded by 
identifying the worst prospective satellite geometries, 
including all instances with one or two-satellites removed 
from the constellation.  The pathological worst case for a 
given geometry occurs when all elements of bo,i are assumed 
to have magnitude equal to the worst individual element. 
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In this pathological case, the geometry and bias terms are 
decoupled as an infinity-norm and a one-norm, respectively.   



Antenna and satellite geometry models may thus be applied 
independently to generate the worst case bound according to 
(25).  Based on LAAS test prototype (LTP) data, a reasonable 
model for antenna error, both for the dipole-array multipath 
limiting antenna (MLA) and the high zenith antenna (HZA), is 
a Gaussian distribution with an unknown bias, bo,i, no larger 
than 10 cm [3].  Thus ||bo||∞ may be taken as 10 cm.   

A practical bound on ||Sv||1 may be calculated by simulating 
satellite geometry, including all possible one and two satellite 
out combinations.  To generate such a practical bound, worst-
case values of ||Sv||1 were computed for 10 sites (6 in the 
coterminous United States and 4 in Europe) at one minute 
intervals over a sidereal day.  Geometries with an un-inflated 
VPL greater than VAL were discarded.  The histogram of the 
available ||Sv||1 values over all times and locations is illustrated 
by Fig. 6a.  The most unfavorable one-norm for this set of 
worst two-satellite-out geometries was ||Sv||1=14.24.  
Accordingly, an empirical bound for the one-norm term of 
(25) is ||Sv||1≤15.  Inserting this one-norm bound into (23), 
along with an assumed 10 cm ||bo||∞ and a 10 m VAL, results 
in an inflation factor of β=1.18.  This inflation factor bounds 
the pathological worst-case bias that might occur during a 
sidereal day.   

Allowing the inflation factor to vary over time can reduce 
excess conservatism.  Specifically, the ground station can use 
the current satellite geometry to generate the inflation factor 
through (25).  Less conservative than the steady-valued 
inflation factor that covers the entire sidereal day, this 
instantaneous inflation factor nonetheless provides valid 
overbounding at a particular time.  To implement this solution, 
the ground station would need to refer to a pre-computed table 
of worst case Sv·bo values for all times in one sidereal day.  
Unfortunately, the airborne user cannot take advantage of the 
instantaneous inflation factor, if the factor is not broadcast 
explicitly, and must instead inflate σair with the more 
conservative steady-valued inflation factor, 1.18.    

A reasonable estimate of average inflation factor for this 
time-varying case can be constructed assuming that, at any 
time, only the individual satellites with the worst geometry 
factor (Sv,i = |Sv||∞) have large bias errors (i.e. bo,i = 10 cm).  
For the 10 site simulation, the average instantaneous worst-
element was <||Sv||∞>=2.67, as shown in Figure Fig. 6b.  The 
resulting average instantaneous inflation is: 

1.06
2
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o v

VAL
VAL b S

β
∞ ∞

≈ =
−

. (26) 

The comparison of this averaged time-varying inflation factor, 
1.06, to the steady-valued factor, 1.18, indicates the potential 
gains of overbounding using instantaneous geometry. 

In both its steady and instantaneous forms, this geometry-
based inflation strategy compares favorably to more 
conservative geometry-free inflation factors for mean 
bounding described in previous work [2,4,5]: 

1 max i

i
i H

N
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µ
β

σ

 
= +  
 

. (27) 

Equation (27) assumes the existence of a maximum ratio of 
mean to standard deviation for the error distribution.  For the 
LTP antennas, unfortunately, this ratio is greater than unity at 
several elevation angles [3].  Taking an optimistic mean-to-
deviation ratio as unity and assuming a standard satellite 
constellation (N=9) with KH0 equal 5.81, the level of inflation 
recommended by (27) is β=1.52.   

The comparison of the two strategies for mean bounding 
indicates the utility of the new approach.  By taking into 
account a bound on the worst-case available satellite geometry, 
the new approach reduces conservatism relative to the older, 
geometry-free approach.  Thus, with (23), the inflation factor 
required to overbound 10 cm antenna biases is as low as 1.06 
for instantaneous inflation and 1.18 for worst-case static 
inflation.   
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Fig. 6.  Log plots of histograms for worst-case (a) ||Sv||1 and (b) ||Sv||∞ 

computed at one-minute intervals at 10 locations (6 in the conterminous 
United States and 4 in Europe). 

 



B.  Bounding Multipath Error 
In addition to handling error biases, the paired overbound 

theorem also permits the bounding of iregular distributions 
that may result from multipath modeling.  In [4], for instance, 
Pervan develops a statistical multipath model and 
hypothesizes that the multipath error bound may be 
multimodal:  
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The distribution parameter, b, has a dimension in meters and 
describes the half-width of the PDF.  Fig. 7 illustrates the PDF 
and CDF of this function. 

In the absence of the paired overbound theorem, Pervan 
instead studied this function with tail overbounding in the 
position domain.  To accomplish the transformation 
analytically, Pervan modeled (28) conservatively as a delta 
function pair: 

( ) 1 1
2 2( ) ( )og x x b x bδ δ= − + +  .    (29) 

To assess the tail overbound for this paired-delta distribution, 
Pervan assumed identical multipath error for the range 
measurements for 12 satellites.  The resulting inflation factor 
for the paired-delta functions was kinf,δ = 1.05b/σa. 

Because this bound is highly conservative, application of the 
paired overbound theorem can substantially reduce the 
inflation factor for the multipath error distribution (28).  As an 
example, a pair of uniform distributions could be used as the 
left and right bounding distributions:   
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Here, the γ parameter is chosen so that the bounds lie tangent 
to the multipath CDF at its extreme points, as shown in Fig. 8 
(γ=0.1385b).  Applying these paired-uniform bounds and 
assuming identical multipath error for each range 
measurement for 12 satellites (with all Sv,i equal their worst 
case value of 1), the convolved position-domain paired 
overbound is a twelfth order piecewise polynomial.  Fig. 9 
compares this polynomial to an equivalent central-limit-
theorem Gaussian, ( )( ), 3 1N Nγ γ+N .   

This Gaussian, which overbounds the piecewise polynomial 
conservatively in the tails, can be used to compare the 
inflation factor derived from the paired-delta distribution to 
the inflation factor derived for the paired-uniform distributions.  
By (23) and (25), the β factor for the paired-uniform bound 
can be bounded assuming a worst-case value of ||Sv||1.  In 
accordance with the previous section, VAL is assumed 10 m 
and ||Sv||1 is taken equal to 10. 

( )10VAL VAL bβ γ= −  . (31) 

The associated inflation factor for the paired-uniform 
distributions is kinf,U = 0.657bβ/σa.  Because β is a function of 
b, the ratio of the inflation factors for the two distributions are 
also a function of b: 

( )inf,

inf,

1.598 1 0.1385
U

k
b

k
δ = −  . (32) 

The improvement in inflation factor given by (32) is plotted 
in Fig. 10.  Even for multipath distribution modes at ±1 m, the 
inflation factor is reduced by nearly 40%.  Clearly, the use of 
the paired-overbound theorem enables a substantial reduction 
in the conservatism required to bound the multipath 
distribution (28).  Still further reductions in the inflation factor 
could be achieved by using a tighter paired-overbound (i.e. a 
polynomial paired overbound rather than a uniform one) or by 
taking advantage of the conservatism in the overbounding 
Gaussian shown in Fig. 9. 
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Fig. 7.  Hypothesized Multipath Distribution 
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Fig. 8.  Paired CDF Bounding 
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Fig. 9.  Comparison of convolved Uniform Distribution CDF to Gaussian 
CDF 
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Fig. 10.  Comparison of inflation factors for two bounding distributions 

 
 

IV.  SUMMARY 

This paper introduced an overbounding theorem using paired 
left and right CDF overbounds.  The theorem provides a 
means to bound error distributions in such a way as to 
guarantee bounding after a convolution operation.  
Consequently, the distribution for the sum of a set of random 
variables is bounded if the distributions of the individual 
random variables are bounded.  In contrast with other 
overbounding methods, this paired-overbound theorem applies 
to arbitrarily shaped range-domain error distributions, even 
distributions that are non-zero mean, asymmetric, or 
multimodal. 

In the field of differential GPS augmentation, the paired 
overbound theorem provides a means to guarantee bounding 
of the position-domain error given a bounded range-domain 
distribution.  This property has two applications for GPS 
augmentation.  First, the theorem provides a new tool to 
reduce conservatism in the broadcast σ.  This process of 
mitigating overly conservative assumptions will prove 
significant in certifying GPS augmentation for increasingly 
stringent FAA requirements.  Second, the theorem provides a 
new tool to model irregular multipath error distributions.  No 
tool previously existed to tightly bound these distributions, 
which may, in general, be non-zero mean, asymmetric or 
multimodal. 
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