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ABSTRACT  

The original error description for the Local Area 
Augmentation System (LAAS) assumed unbiased 
measurement errors.  In practice, however, satellite 
ranging errors may exhibit nonzero means.  The LAAS 
error bound must account for these biases.  This 
requirement places a particularly stringent demand on 
Category III (CAT III) LAAS, a future LAAS variant that 
will enable safe automated landing through rollout. 

This paper examines the availability impact of biases on 
CAT III LAAS.  To provide an upper limit for tolerable 
LAAS biases, the paper first considers an improved 
LAAS messaging structure and asks, for this ideal case, 
what maximum level of bias is tolerable.  Even in the 
ideal case, the maximum bias at worst-case CONUS 
airports is only 4-8 cm. This baseline case assumes a 
nominal LAAS error distribution and a relaxed Vertical 
Alert Limit (VAL) of 10 m.  To tolerate larger biases, 
improvements to the nominal LAAS are required.  For 
instance, a dual-frequency LAAS implementation can 
tolerate biases as high as 14-30 cm, even with a tighter 
VAL of 5.3 m. 

Tolerable biases for nonideal bounding algorithms are 
also considered.  In order to achieve ideal performance, 
the LAAS message must be changed to transmit bias 
parameters to the airborne user.  Preferably, the bias-
protection algorithm would not require modification of 
the existing LAAS specification.  Sigma inflation 
methods represent an alternative to bias-parameter 
transmission that requires no LAAS specification change 
but, consequently, that delivers somewhat lower bias 
tolerance.  Performance varies widely for different classes 
of sigma inflation.  Simulations indicate that the best-
performing sigma inflation method (real-time position-
domain inflation) nearly matches the bias tolerance 
possible with bias-parameter transmission.  Unlike bias-
parameter transmission, however, the bias tolerance for 
sigma-inflation methods depends strongly on possessing 
precise knowledge of the airborne error, σair, at the LAAS 
ground facility (LGF). 

INTRODUCTION  

In order to guarantee integrity, a Local Area 
Augmentation System (LAAS) must provide a confidence 
bound for its differential GPS corrections.  Early LAAS 
concepts have relied on confidence bounds based on the 
assumption of zero-mean error distributions for each 
ranging source.  In fact, experience with prototype 
hardware has demonstrated that LAAS differential 
corrections may exhibit small, nonzero biases.  Because 
these biases may vary in time, they are difficult to 
estimate and subtract from differential GPS corrections.  
Consequently, the LAAS confidence bound should 
include terms to protect not only for random errors but 
also for these systematic biases. 

Biases result from three principal mechanisms:  
calibration error, signal-in-space error, and the folding of 
distribution anomalies into the position solution.  The first 
classification, the calibration bias, reflects the difficulties 
of characterizing antenna and receiver hardware.  A single 
calibration curve may be insufficient to describe antenna 
phase center, for instance, because of variations among 
units from the same batch and because of temporal 
changes caused by environment exposure.  The second 
classification, the signal-in-space bias, describes 
distortions to the incoming GPS waveform, such as those 
caused by spectral multipath.  Multipath events introduce 
a site-specific bias that repeats each sidereal day.  Finally, 
the third classification, the anomaly convolution bias, 
occurs when ranging error-distribution anomalies, such as 
asymmetries or secondary peaks, are converted into the 
position domain.  This phenomenon is described in detail 
by [1]. 

Biases have particular significance for Category III (CAT 
III), an advanced version of LAAS which will enable a 
full autoland capability for aircraft on approach.  Given 
the demanding safety requirements for autoland, CAT III 
LAAS offers little margin to tolerate biases.  Even a small 
increase in the magnitude of the LAAS integrity bound, 
called the Protection Level (PL), may cause the PL to 
exceed an alert limit (AL) and thereby to trigger 



temporary system unavailability.  The rigid structure of 
the existing LAAS message aggravates this unavailability 
by causing PL inflation to be unnecessarily conservative. 

This paper relaxes the LAAS message format to 
determine the maximum bias level that can be tolerated 
for CAT III.  Although altering the LAAS message entails 
a potentially expensive specification change, the 
transmission of new measurement-bias parameters to the 
airborne user would enable formation of the tightest 
possible error bound.  The specific modifications required 
to implement this high performance approach would 
impact both the Interface Control Document [2], to permit 
transmission of new parameters, and also the Minimum 
Operational Performance Standards [3], to implement a 
modified PL in the airborne receiver.  At least as a 
theoretical exercise, analysis of bias-parameter 
transmission offers a means to define an upper bound on 
tolerable measurement biases. 

An alternative approach to bias protection that sacrifices 
performance to avoid a specification change is sigma 
inflation.  Sigma-inflation scales existing broadcast 
parameters to guarantee that the user PL is at least as 
large as the “ideal” PL.  Several sigma-inflation methods 
are considered in this paper including sigma-relative 
inflation, excess-mass inflation, offline position-domain 
inflation and real-time position-domain inflation.  
Availability simulation permits the comparison of these 
sigma-inflation methods to the more aggressive approach 
of bias-parameter transmission. 

The paper begins by developing a tight PL bound that 
retains integrity when ranging measurements are biased.  
Subsequent sections introduce models for the systematic 
bias and random error used in defining this tight PL.  The 
ensuing section describes means of implementing the 
desired PL, both exactly, through bias-parameter 
transmission, and approximately, through conservative 
methods for sigma-inflation.  Next, the paper describes a 
tool for availability simulation, which enables 
performance characterization of these different bias-
protection strategies.  Based on simulation results, the 
final section examines the maximum tolerable bias level 
achieved with bias-parameter transmission and the 
comparative performance possible with sigma-inflation. 

VERTICAL PROTECTION LEVEL (VPL) WITH 
BIASED PSEUDORANGE CORRECTIONS 

This section develops a LAAS error bound expression 
that protects for both random errors and systematic biases.  
The particular error bound described in this section is a 
Vertical Protection Level (VPL).  The focus on the 
vertical reflects the tighter demands for vertical 

navigation, since vertical errors represent a more 
significant hazard than horizontal errors during landing 
and since satellite geometry provides poorer position 
resolution in the vertical direction.  

The VPL expression that protects for measurement biases, 
biasVPL , is a modified version of the nominal VPL 

expression, nomVPL , which is given by the LAAS 
specifications.  In fact, the LAAS specifications include 
multiple nomVPL  expressions for different fault 
hypotheses; because the fault-free, or H0, hypothesis 
generally dominates the other VPL expressions, only the 
H0 case will be considered in this paper.  For the H0 case, 
the nomVPL  expression is simply an error bound based on 
the assumption of independent, unbiased Gaussian errors 
for each satellite ranging source.  The probability of an 
outlier falling beyond the confidence bound is embedded 
in the scaling factor, Kffmd.  The satellite geometry and 
accuracy are embedded in the weighting coefficients, Sv,i, 
for each satellite, i. 

 2 2
nom H0 ,

N

ffmd v i iVPL VPL K S σ= = ∑
i=1

 (1) 

The standard deviation for each ranging source is σi.  This 
sigma term combines independent errors for each ranging 
measurement, including ground receiver noise, airborne 
receiver noise, nominal ionosphere gradients, and nominal 
troposphere gradients. 

 2 2 2 2 2
, , , ,i gnd i air i iono i tropo iσ σ σ σ σ= + + +  (2) 

If ranging errors are biased by an unknown, but bounded, 
systematic offset, then the nominal VPL expression no 
longer guarantees system integrity.  Assuming that the 
unknown bias on each ranging source is bounded by a 
term μi, then the total positioning error associated with all 
biases is bounded by μp. 

 ,

N

p v i iSμ μ=∑
i=1

 (3) 

A conservative expression that provides integrity for both 
random Gaussian errors and systematic biases can be 
obtained by adding expressions (1) and (3).  This 
conservative protection level expression is labeled 

biasVPL . 

 2 2
, ,

N N

bias ffmd v i i v i iVPL K S Sσ μ= +∑ ∑
i=1 i=1

 (4) 

Implementing biasVPL  in an operational system would 
require a significant change to the existing LAAS 
specifications.  In the LAAS system, the VPL expression 



is evaluated at the aircraft and compared to the Vertical 
Alert Limit (VAL), a category-specific parameter 
defining the boundary for hazardously large errors.  In 
order for the aircraft to evaluate the biasVPL  expression, 
however, the LAAS ground facility would need to 
transmit the satellite-specific bias parameters, μi, to the 
aircraft.  Further revisions to the airborne equipment 
would be required to add the bias term, (3), to the existing 
nominal VPL expressions. 

This paper seeks, first, to establish a limit on tolerable 
biases using the “ideal” biasVPL  expression defined in 
this section and, second, to compare this upper limit to the 
performance for alternative bias-protection strategies, 
which avoid specification changes by conservatively 
approximating biasVPL .  In order to assess the maximum 
tolerable bias, it is first necessary to introduce error 
models that bound the systematic biases, μi, and the 
random error sigmas, σi, associated with each ranging 
measurement, i,. 

COMPARISON OF BIAS MODELS 

This section focuses on establishing a theoretical bound 
for the systematic ranging bias.  Since the specific form of 
this bias bound will depend strongly on the hardware 
fielded for the LAAS system, several alternative 
structures for the bias bound are described.  Altogether, 
three models are considered:  an absolute-bias model, a 
sigma-relative model, and a piecewise-linear model.  The 
three models are illustrated together in Figure 1.  These 
models, each normalized by a maximum bias, maxμ , 
describe the bias-bound magnitude as a function of 
satellite elevation.  In availability simulations, the largest 
tolerable bias can be determined by adjusting the 
parameter maxμ  upward until system availability drops to 
an unacceptable level. 

Absolute Bias Model 

This simple model treats all biases as uniform, at an 
absolute level expressed in meters.  This model has been 
previously discussed by several authors including 
DeCleene [4], van Graas [5], and Rife [1].  An expression 
for the absolute-bias bound is 

 max( ) 1i iEμ μ = . (5) 

Sigma-Relative Bias Model 

In some cases, especially with strong specular multipath, 
systematic biases may be large at low elevations, where 
the random error is also large.  For such cases, a 
reasonable bound for the systematic bias is proportional to 
the standard deviation, iσ .  This model has been invoked 
in several previous studies, including [4], [6] and [7].  As 

defined here, the maximum relative-sigma bias is defined 
at a reference elevation, refE . 
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μ σ
= ≥  (6) 

Since the maxμ  parameter increases dramatically as refE  
approaches zero, a nonzero reference angle (of 1°) was 
selected for this paper, to assist in comparison of the 
maximum tolerable bias among the various bias models.  
In practice, it is unnecessary to define the model below 

refE , since these satellites are not approved by LAAS. 

Piecewise-Linear Bias Model 

In an actual system the peak bias may not occur at the 
lowest elevation angle.  To simulate generalized bias 
functions, a piecewise-linear model is useful.  As an 
example of a bias function that does not follow either the 
absolute or sigma-relative models, Figure 1(b) illustrates 
bias data for a Multipath Limiting Antenna (MLA) as 
measured by the William J. Hughes Federal Aviation 
Administration (FAA) Technical Center.  For this data, 
the largest bias level occurs at approximately a 30° 
elevation angle.  A piecewise model that bounds the 
FAATC data is 
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For the FAATC data presented in Figure 1(b), the 
bounding maxμ  parameter for the piecewise (and absolute) 
models is 7.5 cm.  For the relative bound, it is 19.0 cm. 
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Figure 1.  Bias Model Comparison 



COMPARISON OF SIGMA MODELS 

A model of the random error parameter, iσ , is also 
necessary to simulate biasVPL .  The standard sigma 
model for LAAS was proposed by McGraw et al. [8].  
This baseline model captures the nominal noise 
performance expected for a ground station with a 
multipath-limiting antenna.  For CAT III operations, 
however, the availability achieved using this baseline 
error model, even in the unbiased case, is significantly 
lower than desired.  As a consequence, other researchers 
have proposed both tighter error bounds and alternative 
hardware configurations, as summarized by Shively [9].   

This paper considers two alternative error models in 
addition to the nominal model.  The first is a reduced 
airborne error model, that attempts to remove excess 
conservatism from the Airborne Accuracy Designator 
(AAD) curve.  The second is a dual-frequency error 
model, which benefits from additional smoothing which 
will be possible using divergence-free corrections based 
on L1 and L5 measurements. 

Nominal Error Model 

The nominal sigma model treats LAAS ranging errors as 
independent Gaussian distributions with standard 
deviation σi.  This sigma term is the root-sum-square of 
errors associated with the ground receiver, with the 
airborne receiver, and with ionosphere and troposphere 
gradients, as described by (2).  The nominal sigmas for 
each of these terms are defined as follows. 

Assuming four MLAs at the ground station, the ground 
contribution to the random error can be characterized by 
the Ground Accuracy Designator (GAD) “C4” curve [8]. 
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The corresponding sigma for the airborne receiver is 
described by the Aircraft Accuracy Designator (AAD) 
curves.  In particular, the “B” curve (AAD-B) should 
bound the random error for CAT III-qualified airborne 
equipment. 
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The ionosphere sigma model consists of two parts, a first 
term associated with the differential delay caused by 
random ionospheric gradients and a second term 
associated with carrier-smoothing divergence.  In defining 
these two terms, a number of parameters are employed, 
including the obliquity factor, OF, the vertical ionosphere 
gradient standard deviation, σvig (taken as 4 mm/km), the 
distance between the aircraft and the ground facility 
antenna centroid, X (taken as 6 km), the filter smoothing 
time, τ (taken as 100 s), and the aircraft approach 
velocity, airV  (bounded by 0.13 km/s). 

 ( ) ( ) ( )_ , 2iono red i i i vig airE OF E X Vσ σ τ= ⋅ +  (10) 

The troposphere error is assumed much smaller than the 
other error sources, and is neglected for this analysis. 

 , 0trop iσ =  (11) 

Figure 2 illustrates the total error, as a function of 
elevation, which results from combining all four error 
sources.   

In availability simulations, this nominal error model 
results in large VPL values and unacceptable availability 
if the VAL is set to the specified CAT III level of 5.3 m.  
The precise level of the VAL parameter for CAT III 
remains under discussion, however, and may eventually 
increase as high as 10 m.  For a 10 m VAL, the nominal 
error distribution delivers an acceptable availability 
(>0.999), as discussed by Shively [9].  

Reduced Airborne 

Alternatives to the nominal error model can achieve 
acceptable availability for a lower VAL.  A reduced 
airborne model, for instance, shrinks the total error curve 
by removing excess conservatism associated with airσ .  
This reduced airborne model is described by the LAAS 
Minimum Aviation System Performance Standards 
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(MASPS) [10] and provides a shaper airborne bound than 
(9), more in line with data measured from actual airborne 
receivers.  The reduced airborne noise model is 

 ( ) / 27.7
, 0.074 0.18 iE

air i iE eσ − °= + . (12) 

The reduced airborne model treats all other error terms as 
equivalent to those of the nominal model.  The total error 
for the reduced airborne model is, nonetheless, 
significantly smaller than the nominal total error, as 
shown in Figure 2.  A consequence of this smaller total 
sigma is that the model achieves an acceptable availability 
if VAL is 9 m or larger [9]. 

Dual Frequency 

A future dual-frequency capability, based on L5, would 
enable further reduction of the total error curve.  In fact, 
availability simulations suggest that a dual-frequency 
LAAS could achieve acceptable availability for a VAL as 
low as 5.3 m, the level currently specified for CAT III 
LAAS  [9].   

Of the many methods for combining dual-frequency 
measurements, McGraw recommends divergence-free 
smoothing [11].  The raw noise level for divergence-free 
smoothing is similar to that for single-frequency carrier 
smoothing.  In an ionosphere gradient, however, the 
divergence-free solution accumulates no code-carrier 
divergence error.  Thus the ionosphere error depends only 
on the differential gradient between the ground station 
and the user, and not on the divergence accumulated over 
the filtering time constant, τ.  This change eliminates the 
dominant term from the single-frequency ionosphere error 
expression, (10), and yields 

 ( )_ ,iono df i i vigE OF Xσ σ= ⋅ ⋅ . (13) 

Whereas divergence limits smoothing for the single-
frequency case, the smoothing time can be significantly 
increased with dual frequencies.  Longer filtering times 
reduce ground and airborne receiver noise.  As suggested 
by Shively [9], it is reasonable to expect that code noise 
and multipath might be reduced by a factor of 2 using a 
longer smoothing time.  Based on this assertion, the 
expression for ground noise in the dual-frequency case is 

 ( )
22

21
_ , 4

0.010.04
2 sin( )
RR

gnd df i i
i

E
E

σ
σ

⎛ ⎞⎛ ⎞= + + ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (14) 

The reduced dual-frequency airborne noise term is 

 ( ) 2 21
_ , _ , _ ,2air df i i air noise i air multipath iEσ σ σ= + . (15) 

Combining these three curves, (13)-(15), and continuing 
to neglect troposphere error, the total sigma for the dual-
frequency case is dramatically lower than that for both the 
nominal and the reduced airborne noise models, as shown 
in Figure 2. 

BIAS-PROTECTION STRATEGIES 

In order to ensure integrity given possible measurement 
biases, the user VPL must be equal to or larger than the 

biasVPL  (4).  If the bias and sigma models defined in the 
previous sections are broadcast to the aircraft, then the 
exact biasVPL  expression can be evaluated.  Alternatively, 
if bias parameter terms are not transmitted to the airborne 
user, then biasVPL  must be conservatively approximated 
by inflating the broadcast sigma.  This section details 
these bias-protection strategies, namely bias-parameter 
transmission and sigma-inflation.  Four methods of 
sigma-inflation are considered here:  relative inflation, 
excess-mass inflation, offline position-domain inflation 
and real-time position-domain inflation.  These sigma-
inflation methods achieve progressively sharper bounds at 
the expense of greater complexity.   

Bias-Parameter Transmission 

Because bias-parameter transmission implements the 
exact biasVPL  expression, (4), it always achieves an 
availability that is equal to or better than other bias-
protection strategies.  As a practical detail, implementing 
bias-parameter transmission requires the definition of a 
new message type that incorporates one bias parameter, 
μi, for each differential correction.  To preserve VHF Data 
Broadcast (VDB) bandwidth, this new message would 
most likely be transmitted at a lower update rate than that 
used for the standard LAAS Type 1 message. 

Relative Inflation 

The simplest sigma-inflation approach is relative 
inflation. Like other sigma-inflation methods, relative 
inflation ensures that the aircraft evaluates a nomVPL  
expression that conservatively approximates biasVPL .  
Relative-inflation, previously described by several authors 
including [4] - [7], makes the assumption that biases are 
proportional to the sigmas for each ranging source.  In 
this sense, relative inflation implicitly assumes a sigma-
relative bias model, which may or may not be a good 
model for the actual system.   

For relative-inflation, the key bounding parameter is, 
maxμ , a term which describes the worst bias-to-sigma 

ratio over all satellites, i, as a function of their elevations, 
Ei. 



 ( )max max ( ) , ( ) ( ) / ( )
i

i i i i i i i iE
E E E Eμ μ μ μ σ= =  (16) 

To provide a formal error bound, the maxμ  parameter 
should be defined based on a minimum σi model that uses 
the smallest possible user airborne term, airσ , and the 
shortest possible separation distance for ionosphere and 
troposphere gradients, X = 0.  Evaluating maxμ  for this 
case and substituting into equation (4), for biasVPL , 
provides the following conservative approximation. 
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i=1 i=1

i=1 i=1

 (17) 

Taking advantage of a property of vector norms [12], this 
inequality may be rewritten more compactly, as VPLrel. 

 2 2
rel , biasVPL VPL

N

R ffmd v i iK Sξ σ= ≥∑
i=1

 (18) 

In this compact form, the term ξR is an inflation factor for 
the total-error standard deviation, iσ .  The parameter N, 
which indicates the largest number of satellites in view at 
any epoch, is set to 12 satellites for this analysis. 

 max1R
ffmd

N
K

μ
ξ = +  (19) 

This inflation factor applies to the total sigma for each 
ranging source; the total sigma, however, consists of four 
error terms, of which the LAAS ground facility only 
controls three:  the ground, ionosphere and troposphere 
error contributions.  The ground facility has no 
knowledge of the airborne sigma, ,air iσ , which may vary 
from aircraft to aircraft, nor any means to alter this term.  
Hence, in order to achieve the desired total inflation, the 
broadcast must provide additional margin in the ground 
sigma in order to establish implicit inflation for ,air iσ .  The 
modified expression for the ground sigma, _ ,gnd rel iσ , 
should be computed using the maximum possible value of 

,air iσ  that any approaching aircraft might use. 

 ( )2 2 2 2 2
_ , , ,1gnd rel i R gnd i R air iσ ξ σ ξ σ= + −  (20) 

Excess-Mass Inflation 

Excess-mass inflation is a second sigma-inflation 
approach.  This approach embeds ranging biases in 
individual broadcast sigma terms in a closed-form 
manner.  Unlike the relative inflation method, the excess-
mass inflation technique makes no assumption about the 

bias model.  The excess-mass approach is not unique in 
this respect, as Shively has proposed another closed-form, 
model-free method [13], which is not discussed here. 

The concept behind the excess-mass bounding technique 
is to represent biased Probability Distribution Functions 
(PDFs) as unbiased functions with a total integral greater 
than one [14].  Figure 3 illustrates a sample excess-mass 
function bounding a biased-Gaussian distribution.  As 
shown in the figure, the excess-mass bound is not 
everywhere a tight-bound.  For this reason, the excess-
mass approach tends to perform poorly if the bias is 
significantly larger than the sigma for the same satellite. 

As the excess-mass concept was originally introduced for 
the Wide Area Augmentation System (WAAS) [15], 
further developments are required to adapt the excess-
mass concept to LAAS.  These derivations of the LAAS 
excess-mass equations are treated rigorously in the 
Appendix and summarized in brief in this section.  The 
basic requirement for the excess-mass function is that it 
be everywhere greater than the modeled error distribution.  
If the modeled error distribution is a normal distribution 
with a bias, iμ , and a standard deviation, iσ , then a 
conservative excess-mass function can be defined using 
two parameters, an inflation, iξ  and a total mass, ki. 

 ( )( , ) 0,i i i i ikμ σ ξ σ≤ ⋅N N  (21) 

As shown in the appendix, closed-from expressions for 
the inflation and mass parameters can be derived to 
optimize the sharpness of the excess-mass overbound. 
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Using this conservative form, an approximate excess-
mass protection level, VPLEM, can be implemented. 
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Figure 3.  Excess-Mass PDF Bound 
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N

FFMD v i EM i iK S ξ σ= ≥∑
i=1

 (23) 

Here, the total excess-mass inflation, ,EM iξ , is derived by 
combining the mass and inflation parameters, given by 
(22), as follows. 

 , /EM i i EM FFMDK Kξ ξ=  (24) 

 ( )1

1
2 erfc (erfc / 2 / )

N

EM FFMD i
i

K K k−

=

= ∏  (25) 

In these equations, the modified K-factor parameter, KEM, 
accounts for the excess-mass parameters, ki, by decreasing 
the allowed integrity risk probability.  The resulting 
inflation factor, ,EM iξ , is specific to each ranging source, 
i.  Since the only satellite-specific sigma parameter 
broadcast in the VDB message is _ ,gnd EM iσ , this term 
must be defined carefully to implicitly inflate the ,air iσ  
and ,iono iσ  terms, in the manner of (20). 

 ( )( )2 2 2 2 2 2
_ , , , ,1gnd EM i EM gnd i EM air i iono iσ ξ σ ξ σ σ= + − +  (26) 

Offline and Real-Time Position-Domain Inflation 

The two previous inflation methods were designed to 
protect integrity for all satellite geometries.  In practice, 
however, certain pathological worst-case geometries are 
not observed by airports in the Conterminus United States 
(CONUS).  Consequently, a sharper inflation factor can 
be derived by taking site-specific geometry information 
into account.  This approach, which requires simulation of 
the satellite constellations observed by each LAAS 
facility, is referred to as a position-domain inflation 
approach.  In the position-domain approach, the inflation 
factor applies directly to the VPL and covers biases for all 
visible satellites, taken together.  This position-domain 
inflation concept is a natural extension of the Position-
Domain Monitor (PDM) concept, a proposed 
modification for LAAS which would validate 
measurement quality by computing position solutions for 
all subsets of approved satellites that a user might 
possibly employ for navigation [16]-[18].   

The primary function of position-domain inflation is to 
determine a scaling factor that, when multiplied by the 
nominal VPL, ensures integrity for the biased case.  In 
order to ensure integrity, one of two criteria must be met 
for all satellite combinations a user might employ.  The 
first criterion applies to available geometries, with 

biasVPL  less than VAL.  To ensure integrity in these 
cases, the inflated nomVPL  expression should always 
equal or exceed biasVPL .  Considering all geometry 

subsets, λ(t), that are available at an epoch, t, the inflation 
factor for available subsets, avξ , is  
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⎛ ⎞
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The second criterion applies to unavailable subsets for 
which biasVPL  exceeds VAL.  For these cases, integrity is 
ensured as long as the inflated nomVPL  expression also 
exceeds VAL.  Thus, the inflation factor for unavailable 
subsets, unξ , is 

 
( )bias( ):VPL VAL

nom

VAL( ) max
VPL ( )un t

t
tλ

ξ
λ≥

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
. (28) 

Inflating by the larger of avξ  and unξ  ensures that no 
integrity violation can occur.  This rule defines the value 
for the real-time inflation factor, RTξ : 

 ( )( ) max ( ), ( )RT av unt t tξ ξ ξ= . (29) 

Figure 4 graphically illustrates the two criteria used in 
defining RTξ .  For all values of biasVPL  (horizontal axis), 
the inflated nominal VPL that is evaluated at the aircraft 
must not fall in the red-shaded zone; points inside this 
zone represent integrity violations, as they fail one of the 
two criteria.  For a sample geometry case, all satellite 
subsets are plotted as crosses.  Without inflation, many of 
the crosses fall in the shaded zone that represents an 
integrity violation.  Inflating nomVPL  by  RTξ  ensures 
integrity by lifting all the data points into the valid region. 

To implement real-time position-domain inflation, a 
distinct value of RTξ  is needed at each epoch.  As an 
alternative, a single offline inflation-factor, OLξ , could be 
derived to protect all epochs during the sidereal day.   

 ( )max ( )OL RTt
tξ ξ=  (30) 

This offline position-domain inflation, OLξ , is always 
equal to or greater than the real-time inflation, RTξ . 
Consequently, the real-time solution provides a tighter 
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Figure 4.  Position-Domain VPL Inflation



overall bound, but at the expense of greater processing 
requirements for the operational system.   

As with other sigma-inflation strategies, the position-
domain inflation strategy must also account for limited 
knowledge of the airborne error bound, ,air iσ .  A 
conservative value of ,air iσ  must be assumed in 
simulating each geometry subset.  Also, because the ,air iσ   
term cannot be modified directly by the VDB broadcast, it 
must be indirectly inflated by applying (20). 

AVAILABILITY CALCULATION 

The performance of the five bias-protection methods 
described in the previous section can be assessed by 
means of an availability simulation.  Of the five methods, 
the bias-bound transmission method will achieve the 
highest level of availability performance, by definition.  
The sigma-inflation methods can only approach this 
limiting availability.  Thus, availability simulation can 
address two relevant issues regarding biased 
measurements in a CAT III system.  First, by simulating 
the bias-bound transmission strategy, a limit can be 
established for the largest bias magnitudes that are 
tolerable for CAT III LAAS.  Second, by simulating 
sigma-inflation strategies, the performance of the bias-
bound transmission method can be assessed in 
comparison to other bias-protection methods which do not 
require a specification change. 

Availability Criterion 

System availability is computed as an ensemble average 
of instantaneous availability for all satellite subsets that 
occur during a 24-hour day.  Satellite subsets are 
considered at discrete epochs, tl, spaced at five-minute 
intervals.  For each epoch, satellite geometries are 
computed with a variable number of unavailable satellites, 
Q, a parameter which ranges from zero (all satellites 
available) to a time-varying upper limit (with only four 
satellites in view).  For each value of Q, all possible 
satellite subset permutations, ( , )lm t Qλ , are considered.   

The availability of each permutation depends on two 
requirements.  First, VPL must be lower than VAL.  
Second, the geometry must have no more than 2 critical 
satellites, as required for Cat III operations.   

To assess the first requirement, VPL is evaluated 
separately for each bias-protection strategy.  For bias-
parameter transmission, the VPL is assessed using (4).  
For the relative-inflation strategy, VPL is assessed using 
an inflated nominal VPL, (18).  For excess-mass inflation, 
VPL is assessed using (23). Lastly, in the position-domain 
inflation cases, VPL is evaluated using (18), with OLξ  or 

RTξ  substituted for the Rξ  term, as appropriate.  In 

evaluating VPL, the Kffmd factor was set to 6.673, in 
accordance with the LAAS MASPS [10]. 

The second availability requirement, which restricts the 
number of critical satellites, is an extension of the first 
requirement, which tests VPL.  A critical satellite is one 
which, if suddenly removed from the position solution, 
would cause VPL to transition to a value greater than 
VAL.  The number of critical satellites can be computed, 
therefore, by sequentially removing satellites from a 
subset, one at a time, and comparing VPL to VAL for 
each reduced satellite set. 

For all bias-protection strategies, separate availability 
simulations were performed for nine different error 
models.  The nine combined error models consisted of 
combinations of the three bias-bounding models (sigma-
relative, absolute, piecewise linear) and the three sigma 
models (nominal, reduced airborne, and dual-frequency).  
VAL was set in correspondence with the sigma error 
model, to ensure adequate availability for the unbiased 
case.  Specifically, VAL was set to 10 m for the nominal 
sigma, 9 m for the reduced airborne sigma and 5.3 m for 
the dual-frequency sigma model. 

Together the two availability requirements act to screen 
out poor satellite geometries.  As this test is deterministic, 
the instantaneous availability probability is either 1, if 
both requirements are satisfied, or 0, if either requirement 
is lacking. 

 ( ), ( , )

1 criteria met
0 criterion not metlavail instantaneous m t QP λ
⎧

= ⎨
⎩

 (31)   

Sensitivity Weights 

In computing VPL, the Sv coefficient vector is derived 
using the standard method for a weighted least-squares 
solution. 

 [ ]( ) 1
0 0 1 0 T T

vS G W G G W
−

= ⋅ ⋅ ⋅  (32)   

G is the augmented geometry matrix that consists of unit 
pointing vectors to each satellite and a column of ones for 
the unknown clock offset.  W is a diagonal matrix with 
diagonal elements equal to the inverse of the variance for 
each ranging source. 
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 (33)   

The Sv matrix is not altered when all σi values are scaled 
by the same inflation factor, ξ. For this reason, Sv values 
were identical for the bias-transmission method and for all 
sigma-inflation strategies, except excess-mass inflation. 



Because the bias-parameter transmission strategy permits 
changes to the existing LAAS specification, the default 
weights could be altered to minimize VPL in the presence 
of biases.  A means to implement such a weight 
optimization for the case of biased measurements was 
proposed by Blanch [19].  This method was not tested in 
the present study, since the predicted availability gains are 
modest and since complexity of the method, based on 
second-order cone programming, is high. 

System Availability Computation 

For each bias-protection strategy and for each error 
model, the total system availability was computed as a 
weighted average of instantaneous availability for all 
usable geometry subsets occurring over a 24-hour day.  
Geometries were simulated for 20 airports in CONUS 
using a standard “optimized” 24-satellite constellation 
[20].  In this weighted-average availability, each five-
minute interval is weighted uniformly by a factor of 1/L 
(where L, the number of time intervals, equals 288).  A 
uniform weight is also assigned to each of the M 
permutations that occur for a particular number of 
unavailable satellites, Q.  The probability weight, PQ, 
which describes the likelihood of unavailable satellites for 
the 24-satellite constellation, is based on a set of historical 
weights, listed in Table 1 [9].  The resulting ensemble 
average, denoted by angle brackets, predicts availability 
at a single airport. 
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AVAILABILITY COMPARISON 

Availability simulations were employed to assess the 
performance of each of the bias-protection methods.  
Multiple availability simulations were computed for each 
airport, to assess the impact of the bias and sigma models.    
In all, nine error model combinations were considered, 
including each pairing of the three bias bounds for 

maxiμ μ (absolute, relative, and piecewise linear) with 
each of the three Gaussian σi models (nominal, reduced, 
and dual-frequency).  For these nine combinations, the 

maximum bias level, maxμ , was varied between 2 cm and 
80 cm at 2 cm intervals.  Thus, with 9 error models and 
with 40 bias levels, a total of 360 cases were evaluated for 
each bias-protection method at each airport. 

In observing the results of these availability simulations, 
the most salient feature is the sudden drop in availability 
that occurs as the bias magnitude maxμ  increases, with all 
other parameters held constant.  Figure 5 clearly 
illustrates this slope discontinuity.  In the figure, the 
minimum availability over all 20 CONUS airports is 
plotted as a function of maxμ .  The illustrated minimum 
availability results are based on the nominal model for σi 
(and the corresponding VAL of 10 m).  Each of the three 
biases models, is plotted on a separate chart, proceeding 
from the absolute model (Figure 5a), to the relative model 
(Figure 5b), and on to the piecewise linear model (Figure 
5c).  In each case as maxμ  increases, availability decreases 
gradually except at one point.  This sharp availability 
jump will be referred to as the transition event, and the 
largest bias magnitude achieved prior to transition will be 
referred to as the transition point. 

Transition events occur when large biases cause an “all-
in-view” geometry to become unavailable.  All-in-view 
geometry combinations are those cases with all satellites 
operational above a particular airport, either because the 
constellation is fully functional (Q = 0) or because 
malfunctioning satellites are on the opposite side of the 
globe from the simulated airport (Q > 0).  The availability 
after transition is approximated by the availability change 
upon loss of one all-in-view geometry.  The loss of a 
single all-in-view geometry causes an availability 
decrease greater than or equal to the weight of the Q = 0 
case in the ensemble availability expression (34).  This 
weight, , 0avail QP = , is equal 

 3
, 0

0.985 3.42 10
288 1

Q
avail Q

P
P

L M
−

= = = = ⋅
⋅ ⋅

. (35) 

The resulting upper bound on availability after transition 
is 1 0.9966all in viewP − −− = .  This upper bound can be used 
to automate the detection of transition points, by 
searching for the largest value of maxμ  which delivers an 
availability of at least 0.9966. 

For an operational CAT III system, it is important that the 
all-in-view geometry remain available at all times.  
Otherwise, there will be times during each sidereal day 
when the LAAS system is unavailable for navigation.  In 
this sense, the largest tolerable bias equals the transition 
bias.  Any biases larger than the transition bias sacrifices 
availability for one or more all-in-view geometries (and 
hence for five or more minutes during the sidereal day).   

Table 1.  Historical Probability Weights 

Unavailable Satellites, Q, 
in 24 Satellite 
Constellation 

Standard Probability 
Weight, PQ 

0 9.85056×10-1 
1 1.4839×10-2 
2 1.04×10-4 
3 1.0×10-6 

4+ 0 



A principal goal of this paper was to assess the maximum 
tolerable bias using the best-case bias protection method, 
that of bias-parameter transmission.  Availability 
simulations indicate that, for the nominal sigma error 
model and a 10 m VAL, the maximum tolerable bias was 
only 4 cm – 8 cm.  The exact level depends on the bias 
model used, with the maximum tolerable bias ranging 
from 4 cm for the absolute model, to 6 cm for the 
piecewise linear model, and to 8 cm for the sigma-relative 
model.  These low tolerable bias levels represent a 
significant challenge for the design of CAT III hardware.  
Preferably, the tolerable bias would be at least 10 cm, or 
more. 

It is significant to note that the worst-case CONUS 
airports determine the maximum tolerable bias level.  
When examining the median availability over all CONUS 
airport, tolerable biases were significantly higher:  42 cm 
for the absolute model, 74 cm for the piecewise model, 
and over 80 cm for the sigma-relative model.  Median 
availability plots for the nominal sigma error distribution 
are shown in Figure 6.  Clearly, the biased measurements 

would not be a problem at most CONUS airports, other 
than a few worst-case locations. 

Similar results are observed for the two other sigma 
models (reduced airborne and dual-frequency).  For the 
reduced airborne noise model with a 9 m VAL, the 
tolerable bias level was 4 cm – 8 cm for the worst-case 
airport and 42 – 78 cm for the median airport.  For the 
dual-frequency error model with a 5.3 m VAL, tolerable 
bias levels were 14 – 22 cm for the worst-case airport and 
34-70 cm for the median airport.  Surprisingly, the dual-
frequency error model tolerates larger biases than the 
nominal model, even with the tighter 5.3 m VAL.   

This result reflects extra availability margin in the dual-
frequency case.  That is, the VAL for the nominal (10 m) 
and reduced airborne (9 m) models was set to ensure 
availability of at least 0.9999 in the unbiased case.  In the 
dual-frequency case, VAL was set to its specified value of 
5.3 m, and the resulting baseline availability, with no 
biases, was even higher than 0.9999. 
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Figure 5.  Minimum Airport Availability with Three Bias Models (and Nominal σ Model, VAL = 10 m) 



The second principal goal of the availability simulations 
was to compare performance of sigma inflation to that of 
bias-parameter transmission.  The relative performance 
ranking was generally consistent among all sigma 
inflation strategies.  Real-time position-domain inflation 
always performed better than offline position-domain 
inflation.  The position-domain inflation techniques 
always outperformed relative inflation and excess-mass 
inflation.  The performance of these latter methods, 
however, depended on the bias model.  The relative 
inflation technique always outperformed excess-mass 
inflation for the sigma-relative bias model, to which 
relative inflation is tuned.  The excess-mass approach 
always outperformed the relative inflation approach for 
both the piecewise-linear and absolute bias models, with 
one exception (which occurred for the dual-frequency 
sigma model in the median-availability case).   

Transition points for all models are tabulated in Table 2 
and Table 3.  The former table lists transition points for 
the minimum-availability airport, and the latter, for the 
median-availability airport.   

Based on these tables, it can be concluded that the 
tolerable biases for the closed-form sigma inflation 
techniques (relative and excess-mass inflation) were 
generally half the tolerable biases for bias-parameter 
transmission.  For this reason, the closed-form sigma 
inflation techniques are not recommended for application 
at the minimum-availability CONUS airports.  By 
comparison, the closed-form sigma inflation methods 
provided very reasonable bias tolerance at the median 
availability CONUS airport, in the 16 – 46 cm range 
depending on the sigma error model. 

The real-time position-domain inflation technique 
performs very well even at worst-case CONUS airports.  
In fact, the tolerable biases for this position-domain 
technique nearly match the upper limits established for 
bias-parameter transmission.   

The major disadvantage of the real-time position-domain 
inflation method (and of all sigma-inflation methods) is 
sensitivity to unknown variations in the σair parameter.  
Significant availability may be lost for the position-
domain inflation method if the σair parameter value must 
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Figure 6.  Median Airport Availability with Three Bias Models (and Nominal σ Model, VAL = 10 m) 



be estimated conservatively.  As an example, consider an 
airport with two sets of approaching aircraft, one set using 
the nominal sigma model and a second set using the 
reduced airborne sigma model.  For a sigma-inflation 
technique to protect both cases, the more conservative 
must be used in the definition of the inflation factor.  
Performance suffers accordingly.  By contrast, in bias-
parameter transmission, the exact VPL expression is 
evaluated at the aircraft, which has full knowledge of its 
own σair.  Thus the bias-parameter transmission approach 
need not compensate to cover the worst of the two σair 
parameters.   

Figure 7 illustrates this hypothetical case by comparing 
the performance of real-time position-domain inflation to 
that of bias-parameter transmission.  A 10 m VAL is 
assumed for both sets of approaching aircraft.  For aircraft 
with the higher σair parameter, based on the nominal 
model, the tolerable bias is 4 – 8 cm for bias transmission 
(at the worst availability airport).  For aircraft with the 
reduced σair parameter, the maximum tolerable bias 
increases dramatically, up to the range of 16 – 38 cm.  
This improvement applies only to for bias-parameter 

transmission.  By comparison, the performance of the 
position-domain inflation method is always the same, 
regardless of the aircraft error model.  The tolerable bias 
with this sigma-inflation method is only 2 – 8 cm, on par 
with bias-transmission for the nominal σair case, but 
substantially inferior to bias-transmission for the reduced 
σair case.  Based on this analysis, it may be concluded that 
bias-parameter transmission is preferable to sigma-
inflation if σair varies significantly among approaching 
aircraft.  Otherwise, bias-parameter transmission offers 
little performance advantage over the best-performing 
sigma inflation methods, which would require no changes 
to the existing LAAS specification. 

SUMMARY 

Given the possibility of measurement biases, LAAS 
integrity requirements motivate the definition of a 
conservative protection level equation that incorporates a 
bias bound parameter for each ranging source.  The major 
challenge of implementing this modified protection level 
at the airborne receiver involves the specification changes 

Table 2.  Largest Bias that achieves a Minimum Availability of 0.999 

 Dual Frequency Sigma Reduced Airborne Sigma Nominal Sigma 
 Absolute 

Bias 
Relative 

Bias 
Piecewise 

Bias 
Absolute 

Bias 
Relative 

Bias 
Piecewise 

Bias 
Absolute 

Bias 
Relative 

Bias 
Piecewise 

Bias 
Transmit Bias 

 
0.14 0.30 0.22 0.04 0.08 0.08 0.04 0.08 0.06

Real-Time 
Position Domain 

0.12 0.28 0.20 0.04 0.08 0.08 0.02 0.08 0.06

Offline  
Position Domain 

0.10 0.20 0.16 0.02 0.06 0.06 0.02 0.06 0.04

Excess-Mass 
Inflation 

0.06 0.14 0.10 0.02 0.04 0.04 0.02 0.04 0.02

Relative-Bias 
Inflation 

0.06 0.16 0.08 0.02 0.04 0.02 0.00 0.04 0.02

 

Table 3.  Largest Bias that achieves a Median Availability of 0.999 

 Dual Frequency Sigma Reduced Airborne Sigma Nominal Sigma 
 Absolute 

Bias 
Relative 

Bias 
Piecewise 

Bias 
Absolute 

Bias 
Relative 

Bias 
Piecewise 

Bias 
Absolute 

Bias 
Relative 

Bias 
Piecewise 

Bias 
Transmit Bias 

 
0.34 0.70 0.58 0.42 0.78 0.72 0.42 0.8+ 0.76

Real-Time 
Position Domain 

0.30 0.62 0.52 0.36 0.66 0.64 0.36 0.70 0.62

Offline  
Position Domain 

0.24 0.46 0.38 0.28 0.48 0.48 0.28 0.52 0.46

Excess-Mass 
Inflation 

0.14 0.32 0.26 0.20 0.32 0.32 0.20 0.40 0.36

Relative-Bias 
Inflation 

0.16 0.38 0.18 0.14 0.40 0.24 0.16 0.46 0.22



that would be required to transmit bias parameters to the 
airborne user.  As an alternative to this bias-parameter 
transmission strategy, sigma-inflation techniques can be 
defined that conservatively approximate the desired 
protection level equation without requiring any 
specification change.  Although bias-parameter 
transmission will always outperform sigma-inflation, the 
sigma-inflation methods are generally preferable to 
maintain compliance with existing specifications. 

The maximum tolerable bias for CAT III LAAS was 
determined by computing availability simulations for the 
bias-parameter transmission method.  Availability 
simulations indicate that, for the nominal LAAS error 
model and a 10 m VAL, the maximum tolerable bias at 
the worst-case CONUS airport is only 4 – 8 cm.  
Constructing a system that achieves this bias bound 
represents a significant challenge for CAT III LAAS, 
assuming that the fielded hardware performs at the level 
of the nominal LAAS error curves. 

The tolerable bias improves dramatically if dual 
frequency signals are available.  With dual-frequencies 
and a 5.3 m VAL, the maximum tolerable bias rises to a 

level of 14 – 30 m, with the specific level depending on 
the bias model used in simulation.  Achieving this level of 
tolerable bias should be fully feasible for CAT III LAAS. 

Availability simulations indicated the potential for sigma-
inflation methods to perform nearly as well as bias-
parameter transmission methods.  Although closed-form 
sigma inflation techniques tolerated only half the 
maximum biases achieved by bias transmission, a real-
time position-domain inflation technique performed 
nearly on par with bias-parameter transmission.   

The only significant disadvantage of sigma-inflation 
arises when approaching aircraft use differing models for 
airborne receiver noise, in which case the bias-
transmission method may substantially outperform sigma 
inflation.  With this case excepted, the marginal 
performance gains for bias-transmission over sigma-
inflation do not justify any changes to the existing LAAS 
specifications to aid in protection of integrity for the 
biased measurement case. 
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Figure 7.  Median Airport Availability with Three Bias Models (VAL = 10 m):  Case of aircraft approaching with 
one of two error models for σair (nominal or reduced) 
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APPENDIX 

When defining an excess-mass bound for a Gaussian 
distribution with a nonzero mean, two parameters must be 
selected for each ranging source:  ξi and ki.  The ξi 
parameter scales the width of the excess-mass function, 

,EM if , and the ki parameter scales its height.  If the 
excess-mass function is a normal distribution, N, for 
instance, it has the following form. 

 ( ), 0,EM i i i if k ξ σ= ⋅N  (36) 

As discussed in [14], a set of excess-mass functions can 
be substituted for biased error distributions in computing 



a position-domain error bound.  The position-domain 
bounding function, ,EM posf , has the following form. 
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EM pos i v i i i
ii

f k S ξ σ
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⎛ ⎞⎛ ⎞
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∑∏ N  (37) 

The VPL derived from this bounding function has the 
conventional form. 

 2 2 2
, ,

N

H0 EM EM v i i iVPL K S ξ σ= ∑
i=1

 (38) 

The excess-mass VPL differs from the conventional VPL 
in its sigma-inflation and in the definition of the K-factor, 
which is modified to account for a reduction in the 
probability allotment for hazardously misleading 
information.  For example, the effective Fault-Free 
Missed Detection (FFMD) probability for the excess-mass 
method is 
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The corresponding KEM term can be computed from 
KFFMD according to (25), given that the excess-mass 
function has a Gaussian form. 

 ( )1

1
2 erfc (erfc / 2 / )

N

EM FFMD i
i

K K k−

=

= ∏  (25) 

For the purpose of availability maximization, the optimal 
values for the ξi and ki parameters are those that result in 
the lowest ,H0 EMVPL .  This optimization is expensive to 
compute, since the Sv vector changes for each geometry 
subset at each epoch for all airports.  As an alternative 
method to ensure high availability with reduced 
computation effort, the parameters may be selected based 
on a tight-fit criterion. 

For a tight fit, the excess-mass bound should be tangent to 
the underlying biased Gaussian distribution at exactly one 
point.  This tangency condition places the following 
constraint relationship on ξi and ki, as a function of the 
normalized bias parameter, iμ .  
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A tight fit should also minimize the difference between 
the overbounding excess-mass function and the nominal 
biased-Gaussian distribution.  A convenient metric to 
describe this difference is the functional one-norm.  If the 
difference between the two normal distributions is  

 ( )0, ( , )i i i i ik ξ σ μ σΨ = ⋅ −- NN , (41) 

then the functional one-norm can be defined as follows. 
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This norm is treated as symmetric across zero, so it is 
computed along the negative axis and then doubled.  The 
symmetry across zero implies that the appropriate tight fit 
condition along the positive axis uses a bias of +μi  rather 
than -μi.  Substituting (40) into (42) and minimizing gives 
the following result. 

 ( )21 1
2 2 1i i iξ μ μ= + +  (43) 

This result can be derived by taking the first derivative of 
(42) with respect to ξi, and setting the result to zero to 
find the minimum of the one-norm. 
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The exponential expression can be shown to be always 
positive, so the right hand term, in parentheses can be set 
equal to zero and solved to give (43).  Inserting (43) into 
(40) gives an expression for ki. 

 ( )11
2expi i i ik ξ μ ξ −=  (45) 

The resulting expressions for the two excess-mass 
parameters, ξi and ki, were given as (22) in the body of 
this paper.  Though not designed specifically to minimize 
the ,H0 EMVPL  equation, these parameter choices still 
provide a tight bound that results, correspondingly, in an 
availability computation that is nearly optimal. 


