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ABSTRACT  

Ground-Based Augmentation Systems (GBAS), such as 
the Federal Aviation Administration’s Local Area 
Augmentation System (LAAS), ensure integrity by 
enabling users to compute a conservative navigation error 
bound, called the Protection Level (PL).  Although the PL 
covers both fault-free operations and certain faulted 
operations (reference-receiver faults or ephemeris faults), 
the PL does not explicitly account for all known fault 
modes.  These remaining fault modes, including signal 
deformation, code-carrier divergence, and excessive 
acceleration, are covered implicitly through a range-
domain bound known as the Maximum-allowable ERror 
in Range (MERR). 

This paper introduces a new formulation for MERR that 
accounts for several limitations of earlier methods.  In 
contrast with earlier formulations, which defined MERR 
as a static value, the new method defines MERR as a 
function of time.  This time-varying MERR bound can 
then be compared to the expected time-evolution of the 

navigation error associated with each fault mode.  The 
GBAS can be proven to maintain integrity during a fault 
event so long as the error magnitude does not exceed the 
MERR.   

The time-varying MERR formulation addresses three 
limitations associated with earlier static formulations.  
Specifically, the new method (1) resolves ambiguity in 
the timing of bound application, (2) removes arbitrary 
restrictions on the performance of GBAS fault monitors, 
and (3) establishes a clear relationship between the 
MERR and the GBAS Time-to-Alert (TTA) requirement.  
In particular, TTA strongly impacts MERR magnitude, as 
illustrated by an application of the time-varying MERR to 
the signal-deformation fault mode. 

INTRODUCTION  

A primary responsibility of GBAS is to broadcast 
parameters that allow a user to compute a conservative 
error bound, called the Protection Level (PL).  System 
availability is evaluated in real-time by comparing the PL 
to the alert limit, an operational criterion which describes 
the maximum navigation error tolerable during a 
precision approach.  In general, the broadcast alert limit 
has a constant value, whereas the PL varies in time 
depending on the quality of the satellite geometry viewed 
by the GBAS user.  To account for these geometry 
effects, the user receiver computes PL specifically for the 
set of satellites employed in its navigation solution. 

To ensure integrity, the user PL must exceed worst-case 
undetected errors under both nominal and faulted 
conditions.  Accordingly, the GBAS Local Ground 
Facility (LGF) both excludes unhealthy satellites and 
provides a sigma parameter that describes the errors for 
each usable satellite.  LGF exclusions occur only when 
ground monitors, dedicated to individual fault modes such 
as signal deformation, code-carrier divergence, and 
excessive clock acceleration, detect an anomaly.  The 
broadcast sigma parameter must protect users when 
anomalies are too small to detect with monitoring. Thus, 
as shown in Figure 1, GBAS integrity is achieved as long 



as either ground monitoring detects the anomaly or the PL 
provides a bound for the resulting navigation error. 

In practice, separate PL values are defined for each fault 
mode based on probability allotments from the GBAS 
integrity risk tree [1].  In an ideal case, allotments would 
be assigned dynamically such that the PL would be 
identical for all fault scenarios.  Practical development 
considerations, however, have motivated the use of a 
static integrity tree and distinct PLs for each fault mode.  
Furthermore, to reduce user-receiver complexity, the user 
is required only to evaluate PL expressions for three 
scenarios:  the fault-free (H0) case, the single reference-
receiver fault (H1) case, and the ephemeris-fault case.  
The LGF assumes responsibility for other fault scenarios. 

In taking responsibility for these fault modes, the LGF 
cannot explicitly determine the user PL, as the LGF lacks 
information about the satellite set employed in the user 
navigation solution.  Consequently, the LGF must assume 
a worst-case user geometry.  This assumption permits the 
definition of a range-domain bound on the largest 
permissible fault-induced error.  This bound is commonly 
referred to as the Maximum-allowable Error in Range, or 
MERR.  

Several previous authors have provided a framework for 
determining and applying MERR.  Existing MERR 
formulations, however, place constraints on ground 
monitor design and provide no connection to the GBAS 
Time-to-Alert specification.  Resolving these issues 
would significantly benefit the development and 
validation of GBAS ground facilities. 

This paper introduces a new time-varying MERR concept.  
The time-varying MERR is developed in three steps.  The 

first section of this paper reviews existing MERR 
methods to highlight their strengths and liabilities.  The 
second section derives the time-varying MERR to address 
these liabilities.  Finally, the last section of the paper 
illustrates the application of the time-varying MERR 
concept through an example involving the signal-
deformation fault scenario. 

PREVIOUS MERR FORMULATIONS 

This section reviews past developments of the MERR to 
highlight the key concepts, milestones, and limitations of 
the existing MERR formulation. 

The MERR first appeared in a paper by Shively under the 
name MERPROS (Maximum Error in Pseudorange for 
One-Statellite) [2].  Shively’s paper laid the groundwork 
for converting the position-domain PL bound into a 
geometry-free bound on the worst-case range-domain 
error for a faulted satellite.  This bound, the MERPROS, 
was derived based on two key assumptions regarding the 
form of the ranging error and the role of fault monitoring.  
The first assumption treated the ranging error for the 
faulted satellite (satellite k) as a random error with an 
abnormally wide error distribution.  Using the Gaussian 
overbound concept [3], the widened error distribution, 
p(Efault), was modeled as a normal distribution, N, with 
zero mean and with standard deviation scaled by a 
multiplicative factor, F, relative to the fault-free standard 
deviation, σff.   

 ( ) ( )fault ff,kp = 0,FσE N  (1) 

The second assumption was to apply no direct credit for 
ground monitoring in the MERPROS derivation.  Rather, 
monitor missed-detection probabilities were introduced 
subsequently in the integrity and continuity discussion of 
the MERPROS [2]. 

In parallel with the development of the MERPROS (soon 
abbreviated to the shortened form, MERR), other research 
explored the role of ground monitoring in greater detail.  
This research noted that ground monitoring provides full 
system integrity for fault anomalies larger than a cutoff 
level, called the Minimum Detectable Event (MDE) [4].  
Central to the derivation of the MDE is the assumption 
that the monitor statistic is composed of a wholly 
deterministic bias, induced by the fault, and an additional 
random error, associated with fault-free monitor noise.  
Under this assumption, the Gaussian overbound for the 
monitor statistic, mfault, is parameterized by a standard 
deviation for fault-free monitor operations, σmon, and a 
mean equal to the fault-induced bias term, η. 

 ( ) ( ),fault mon kp m = ,η σN  (2) 

Figure 1.  MERR Concept 

During a fault scenario, GBAS integrity is ensured by 
(1) ground monitoring and (2) by the navigation-error 
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Because LGF monitoring assures GBAS integrity above 
the MDE, the MERR need only apply below the MDE.  
Based on this observation, it was proposed that the MERR 
would ensure GBAS integrity as long as it exceeded the 
ranging error at the MDE.  This proposed integrity test, 
comparing the MDE error and the MERR, is illustrated in 
Figure 2.   

The figure consists of two plots, which show the ranging 
error and missed-detection probabilities for a hypothetical 
fault event.  The MDE time is defined in the lower plot, at 
the moment when the missed detection risk equals the 
allowed integrity risk.  The ranging error at the MDE 
point is evaluated in the upper plot.  As long as this 
ranging error is less than MERR (derived using the 
MERPROS methodology), then the proposed test 
suggests GBAS integrity is validated for the fault event.  

In fact, as Zaugg later showed, this proposed test does not 
validate GBAS integrity in all cases [5].  Zaugg 
recognized that the point of greatest integrity risk actually 
occurs below the MDE point.  To illustrate this fact, 
Zaugg plotted the combined risks associated with monitor 
missed detection (Pmd) and with navigation error 
exceeding PL given a missed detection event (Ppl).  The 
point of highest total integrity risk (Pmd ⋅ Ppl) occurs at a 
point inside the MDE, as illustrated in Figure 3.  In the 
figure, the Maximum-risk Point is labeled MP. 

Based on his observations, Zaugg modified the MERR 
formulation to incorporate the monitor missed-detection 

probability directly.  This revised MERR expression is 
here referred to as MERRMP, where the subscript denotes 
the Maximum-risk Point, MP.  Values of MERRMP are 
lower than values of the original MERPROS, indicating 
that Zaugg’s refined MERRMP provides enhanced 
conservatism. 

In addition to resulting in a stricter bound, the MERRMP 
derivation differs from the MERPROS derivation in two 
respects.  First, the MERRMP derivation treats the fault as 
a deterministic bias rather than a random error.  Second, 
the MERRMP formulation assumes a particular form for 
the monitor time response under faulted conditions, in 
order to incorporate the missed-detection risk directly into 
the MERR derivation.   

The first assumption replaces the distribution for the 
faulted-satellite ranging error, Efault, previously described 
by (1), with a different Gaussian overbound.  This 
alternate distribution treats the fault-induced error as a 
deterministic bias, E, summed with a random error.  The 
random error, with standard deviation, σff, describes the 
fault-free noise in the pseudorange measurement. 

 ( ) ( )fault ff,kp = E,σE N  (3) 

This deterministic treatment of the fault-induced error 
better matches the monitor statistic description, (2), used 
in deriving the MDE. 

A second key aspect of the MERRMP derivation was the 
assumption of proportionality between the fault-induced 
biases in the ranging error, E, and the monitor statistic, η.  
Assuming some relationship between these two quantities 
is necessary to embed the missed-detection risk in the 
MERRMP bound.  As a consequence of this assumption, 
however, MERRMP is only valid for certain monitor 
designs with proportional time response for the monitor 
statistic and the error transient such that  E(t) ∝ η(t).  This 
assumed proportionality also obscures the relationship 
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between MERR and the GBAS Time-to-Alert 
requirement.  This ambiguity led Zaugg to conclude that 
Time-to-Alert was not a significant restriction in applying 
the MERR bound. 

In practice, the MERRMP concept is applied to establish 
GBAS integrity by confirming that MERRMP exceeds the 
MDE error for each relevant system fault.  The MERRMP 
approach has been generally accepted and widely applied 
to validating GBAS integrity for signal deformation, 
code-carrier divergence, and excess acceleration.  
Because the method treats fault-case errors as pure biases, 
however, it is less useful for analysis of fault modes that 
induce elevated levels of random error, such as the Low 
Power or Radio-Frequency Interference fault modes.   

Despite the wide acceptance of Zaugg’s MERR 
formulation, the methodology leaves open several 
unresolved issues.  These open issues include (1) the 
absence of a precise comparison criterion for MERRMP, 
(2) the restriction to monitor designs with filter transients 
proportional to the ranging-error transient, and (3) the 
lack of a quantitative relationship between MERRMP and 
Time-to-Alert.   

The first open issue results from the fact that Zaugg did 
not derive a new integrity test along with his derivation of 
MERRMP.  Designers have continued to compare the 
MDE error to MERRMP as a test of integrity, but it is not 
clear that this is the correct comparison.  Figure 4 
illustrates the consequences of this assumption.  The error 
at the MDE point, E(tMDE), may exceed MERRMP even 
though the error at the MP point does not.  In this case, 
the MERRMP fails to bound the MDE error, so the 
conventional MERR test fails to confirm GBAS integrity.  
Arguably, however, the MERRMP should be compared not 
to the error at the MDE point but to the error at the MP 
point, which is well bounded.  Resolving this ambiguity 
requires a more precise definition of the MERR 
comparison test. 

The second unresolved issue of MERRMP is the assumed 
proportionality between the offsets in monitor statistic, η, 
and navigation error, E.  For proportionality to hold, both 
the monitor and user-ranging filters need to respond in a 
similar manner to a fault input.  In practice, neither are the 
forms of the monitor and ranging filters similar, nor are 
the inputs to the individual filters necessarily 
proportional.  Figure 5 offers two examples.  The left 
column of Figure 5 illustrates signal-deformation 
transients when the monitor and range-smoothing filters 
are both Linear Time-Invariant (LTI), with time constants 
of 50 seconds for the monitor filter and 100 seconds for 
the ranging filter (also known as the carrier-smoothing 
filter).  Both filters experience step inputs during the 
signal-deformation fault, but because of the difference in 
time constants, the monitor time response (lower left) is 
not proportional to the response of the ranging-error filter 
(upper left).  The right column of Figure 5 illustrates a 
Code-Carrier Divergence (CCD) example that strays still 
farther from proportionality.  The ranging filter is again 
taken to be a first-order LTI filter with a 100-s time 
constant.  In the illustrated example, this filter experiences 
a restart ten seconds after the onset of CCD.  By 
comparison, the CCD monitor filter will likely perform as 
a second-order cascade of two filters with individual time 
constants of 40 seconds, as proposed by Pervan [6].  This 
monitor filter response increases as the range error 
response decays, giving a clear indication that the 
proportionality assumption is invalid.  A more extensive 
MERR theory is required to validate integrity for these 
types of monitor responses, which lack proportionality. 

A third unresolved MERRMP issue is the ambiguous 
relationship between MERRMP and Time-to-Alert (TTA).  
Since the MERRMP test is not defined for a specific 
instant in time, it is not possible to determine at what 
moment a MERR violation occurs or how much time 
passes before the LGF monitors detect and exclude an 
offending satellite.   

These timing issues will be increasingly critical for 
Category III and for alternative GBAS implementations.  
Currently, for Category I, the time required to transmit a 
monitor warning message to an airborne user is less than 
six seconds.  As the required TTA is six seconds, the 
Category I system is expected to meet the TTA 
requirement with margin.  By contrast, for Category III, 
the TTA is reduced to only two seconds.  The LGF 
monitor must detect threats very quickly to ensure 
integrity in this case.  In fact, if the transmission time 
remained at six seconds, the Category III monitor would 
need to detect threats four seconds before they became 
hazardous in order to meet the two second TTA 
requirement.  The Federal Aviation Administration’s 
proposed Local Airport Monitor (LAM) system would 
also experience transmission times longer than the TTA 
requirement [7].  LAM would provide an alternative 
means of achieving Category I GBAS capabilities by 
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rebroadcasting WAAS monitor messages.  The associated 
transmission time of ten seconds exceeds the Category I 
TTA requirement by four seconds.  As a consequence, 
LAM integrity requires that WAAS monitors detect 
threats four seconds before those threats become 
hazardous.  A reformulated MERR should take this time 
differential into account for the purposes of integrity 
validation. 

This paper introduces a time-varying MERR concept that 
addresses all three unresolved issues associated with 
existing MERR methodologies.   In order to establish 
integrity using this new MERR formulation, the error 
transient is compared to MERR as a function of time.  As 
long as MERR for a particular fault mode everywhere 
exceeds the error transient, the integrity of the GBAS is 
ensured.  The fact that MERR is compared to the error 
transient at every moment in time resolves the first open 
issue, regarding the ambiguous timing of the MERRMP 
test.  Also, because the new MERR formulation is 
evaluated as a function of time, no restrictions on the 
monitor statistic and error transients are required.  This 
flexibility resolves the second open issue by removing the 
proportionality constraint and permitting validation of 
arbitrary monitor designs.  Finally, with the time-varying 
MERR, TTA requirements enter directly into the MERR 

derivation.  This quantitative connection between MERR 
and TTA resolves the third open issue associated with 
existing methodologies. 

DERIVATION OF TIME-VARYING MERR 

This section develops a mathematical formulation for the 
time-varying MERR.  If the fault-induced ranging error 
exceeds the MERR bound at any time, GBAS integrity 
cannot be ensured. 

For a system anomaly to result in a hazardous error, two 
simultaneous failures must occur.  This chain of events 
was illustrated in Figure 1.  First, ground monitoring must 
fail to detect the anomaly, and second, the PL must fail to 
bound the resulting navigation error.  The MERR will be 
defined to reflect the conditional risks associated with this 
chain of events. 

The Vertical Protection Level 

A key step in quantifying the MERR bound is defining 
the protection level.  The protection level used in deriving 
the MERR is in fact a Vertical Protection Level (VPL).  
The Lateral Protection Level (LPL) is neglected, both 
because the geometric diversity of the satellite 

Figure 5.  Comparison of Ranging Error Transient (E) and Monitor Statistic Transient (η) for Two Scenarios.   

The left column represents transients associated with signal deformation.  The right column represents transients associated with a 
ranging-filter restart which occurs during a code-carrier divergence event.  Curves are normalized to a maximum value of one.  A dotted 
reference curve is drawn on each plot.  The dotted reference represents the normalized step response of a first-order linear time- 
invariant (LTI) filter with a 100-s time constant.  In neither example is the ranging error transient, E, proportional to the fault-induced 
monitor bias, η. 
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constellation is poorest in the vertical direction, causing 
larger vertical errors than horizontal, and because the 
consequences of navigation errors are most severe in the 
vertical direction. 

Although the airborne user evaluates multiple VPL 
expressions, only the fault-free expression (VPLH0) is 
used in deriving MERR.  The fault-free VPL is generally 
larger than the alternative VPL expressions for the faulted 
reference-receiver case (VPLH1) and for the ephemeris 
fault case (VPLe).  Moreover, since the user evaluates 
VPL to be the largest of these three expressions, the user 
VPL will always be at least as large as VPLH0. 

The VPLH0 expression is a confidence level for the fault-
free error distribution.  The confidence level is based on 
an allotted integrity risk, Pffmd.  Assuming a Gaussian 
overbound for the position error, the allotted risk 
probability is encoded in a sigma-scaling factor for the 
fault-free missed detection event:  Kffmd.  The scaling 
factor and risk probability are related by a Q-function 
representing the cumulative distribution for a Gaussian 
distribution with zero mean and unit variance. 

 ( )1 1
2ffmd ffmdK Q P−= − . (4) 

The VPL bound is simply the K-factor multiplied by the 
standard deviation of the vertical positioning error, σv,p. 

 H0 ,VPL ffmd v pK σ=  (5) 

Assuming Gaussian overbounds, the vertical component 
of the positioning error is derived from the standard 
deviations (σff,i) for each of the N satellite ranging errors, 
evaluated under fault-free conditions.  These errors are 
projected into the vertical direction by the sensitivity 
weights, Sv,i. 

 2 2
, , ,

1

N

v p v i ff i
i

Sσ σ
=

= ∑  (6) 

 

The Navigation Error 

As illustrated in Figure 6, the protection level must bound 
navigation errors that ground monitors fail to detect.  In 
the event of a monitor missed detection, an integrity 
violation occurs at the instant when the vertical 
component of the navigation error exceeds the VPL.  
Figure 6 provides a hypothetical example in which the 
total vertical component of the navigation error (red) 
exceeds the VPL (green dashed line). 

As shown in the lower plot of Figure 6, the model for the 
total error signal can be decomposed into two component 
signals:  a random signal with a probability distribution 

matching the fault-free condition and a deterministic, 
fault-induced error.    The random component of the error 
signal is strongly correlated in time.  This time correlation 
is modeled using the concept of an exposure window. 

The Exposure Window 

GBAS integrity is defined over an exposure window that 
reflects the duration of approach and landing operations.  
For Category I, the exposure window is 150 s, 
corresponding to the duration of an approach.  For 
Category III operations, the exposure window is 15 s (in 
the vertical direction) or 30 s (in the horizontal direction), 
corresponding to the duration of landing and rollout.  An 
integrity violation occurs if the navigation error exceeds 
the protection level at any instant during the exposure 
window.   

The duration of the exposure window determines the prior 
probability that a hazardous anomaly occurs during the 
approach or landing operation.  System anomalies occur 
rarely; however, an operation with a longer exposure 
window introduces a somewhat higher prior probability 
for a fault.  Since the start time of the exposure window is 
arbitrary, the probability of occurrence of any instant in 
the fault transient is identical to the prior probability for 
that fault. 

In addition to determining the prior probability of a 
hazardous anomaly, the exposure window also provides a 
means to assess the time-correlation of the random 
component of the navigation error.  Correlation reflects 
slow variation of certain error sources inherent in the raw 
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measurement (multipath, ephemeris, ionosphere and 
troposphere, for instance) and, more significantly, the 
carrier-smoothing applied in the user receiver.  Nominal 
carrier smoothing acts as a first-order filter with a 100-s 
time constant.  Correlation time can be defined as twice 
the filter time constant (i.e. 200 s).  Because the 
correlation time exceeds the exposure window duration 
(150 s, maximum), the random signal remains roughly 
constant throughout this window. 

Because the signal is highly correlated over the entire 
exposure window, risk need only be assessed at the 
single, riskiest instant within the window.  To prove 
integrity for any arbitrary exposure window, it is thus 
sufficient to show that the error transient never, at any 
instant, results in a risk probability greater than the 
allotted integrity risk. 

Deriving MERR for a Fault Scenario 

This section derives the time-varying MERR based on the 
instantaneous probability that the vertical navigation error 
exceeds the VPL.  The vertical navigation error, Ev,p, 
equals the weighted sum of the error associated with the 
faulted satellite, Efault, and the errors associated with the 
other unfaulted satellites, Ei. 

 , , , ,
1

( )
N

v p v i i v k fault v i i
i i k

S S t S
= ≠

= = +∑ ∑E E E E  (7) 

The faulted-satellite error, Efault,, is the sum of the fault-
induced bias, E, and the random signal, E'.  For the 
faulted satellite, k, the random signal is a zero-mean 
Gaussian with standard deviation equal to the fault-free 
case (σff,k). 

 ( ) ( ),( ) ( ) '( ), ' 0fault ff kt E t E t p E = ,σ= +E N  (8) 

Since the random component of the faulted ranging signal 
is identical to that for the fault-free case, the probability 
distribution for the vertical positioning error is 

 ( ) ( ), , ,( )v p v k v pp = S E t ,σE N . (9) 

Based on this overbounding distribution, the probability 
of a vertical positioning error exceeding the protection 
level, Ppl, is given by the sum of two Gaussian Q-
functions: 

 , ,

, ,

( ) ( )v k v k
pl

v p v p

VPL S E t VPL S E t
P Q Q

σ σ
⎛ ⎞ ⎛ ⎞− − − +

= +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 (10) 

These Q-functions represent the cumulative probability in 
the tails of the Gaussian error distribution outside the 
VPL, as illustrated by the gray region of Figure 7.  In 

practice, the total probability in one of the distribution 
tails is a negligible fraction of the probability in the other.  
After neglecting the smaller tail probability, the dominant 
Q-function can be inverted to give the following equation 
for Kpl. 

 ( ) ( ) ,1

,

( )
( ) v k

pl pl
v p

VPL S E t
K t Q P t

σ
−

−
= − =  (11) 

The allowed protection level risk, Ppl, is a function of time 
that depends on the monitor missed-detection probability, 
as discussed in the following section.  Given Ppl, and 
hence Kpl, can be evaluated, it is possible to rearrange (11) 
to solve for the fault-induced ranging error: 

 ,,

, ,

( )( )
( ) ffmd pl v ppl v p

v k v k

K K tVPL K t
E t

S S

σσ ⎡ ⎤−− ⎣ ⎦= = . (12) 

This equation for the ranging error depends on satellite 
geometry through the vertical positioning sigma, σv,p, and 
through the faulted-satellite weighting factor, Sv,k.  
Invoking equation (6) for σv,p, the ratio of these geometry-
dependent terms may be lower bounded as follows. 

 

2 2
, ,

, 1
, ,

, , ,

N

v i ff i
v p i

ff k ff k
v k v k ff k

S

S S

σσ
σ σ

σ
== ≥
∑

. (13) 

This inequality expresses the fact that the two-norm of a 
vector is larger than any element of that vector.  The 
worst constellation geometry (with the lowest maximum 
error) is the case dominated by the faulted satellite.  
Assuming this worst-case constellation, geometry is 
removed from (12), resulting in the following equation for 
Maximum-allowable Error in Range (MERR): 

 ( ) ( )ffmd pl minMERR t K K t σ⎡ ⎤= −⎣ ⎦ . (14) 
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In the above equation, σmin is defined to be the minimum 
fault-free sigma (σff) over all elevations.  For GBAS, this 
minimum fault-free sigma occurs at a 90° elevation.  
Since the MERR bound is derived to apply at this worst-
case elevation for the worst-possible geometry, it applies 
conservatively to all other satellite geometries as well. 

Instantaneous Integrity Risk 

The time-varying MERR derived in the previous section 
varies as a function of the protection level risk, Ppl(t).  
This section relates the protection level risk to the total 
risk allotment, Pa, determined from the GBAS fault tree.   

The risk allotment takes into account three simultaneous 
events:  first, a fault event must occur; second, ground 
monitoring must fail to detect the fault; and third, the 
VPL must fail to bound the fault-induced error given that 
ground monitoring has failed.  These three events are each 
described by a conditional probability:  Pf, the prior 
probability of the fault, Pmd, the probability of a missed 
detection given the existence of the fault, and Ppl, the 
probability that the error exceeds protection level given a 
missed-detection.  For integrity, the product of these 
conditional risks may equal but not exceed the risk 
allotment. 

 ( ) ( )pl md f aP t P t P P= . (15) 

The maximum allowable protection level risk is 
determined by division: 

 ( )
( )

a
pl

md f

P
P t

P t P
= . (16) 

Time-variations in Ppl(t), and hence in MERR(t), result 
from changes in the missed-detection probability, Pmd(t).  
Specifically, Ppl and MERR increase as Pmd decreases.  

The integrity allotment, Pa, and the fault prior, Pf, in (16) 
are static quantities.  For Category I GBAS, Pa for each 
fault mode ranges between 10-11 and 10-9 depending on 
the severity of the fault and Pf is set to a standard value of 
4.2⋅10-6 per satellite per approach for all fault modes [8]. 

Monitor Missed Detection Probability 

This section derives the monitor missed-detection risk, 
Pmd, upon which the value of Ppl, and hence of the time-
varying MERR, depends.  The risk of a monitor missed-
detection event decreases as the monitor statistic 
increases.  In order to express this relationship, the 
monitor statistic signal is modeled, like the ranging error, 
as the combination of a random signal associated with 
fault-free noise, η’, and a deterministic signal induced by 
the fault, η.  The combined monitor statistic for a faulted 
satellite channel is mfault: 

( ) ( ),( ) ( ) ( ) ', ' 0fault mon km t t t p = ,η η η σ= + N  (17) 

A Gaussian overbound, with standard deviation σmon, is 
assumed to describe the value of the random signal 
component at any instant in time. 

Fault monitoring at the Local Ground Facility (LGF) 
attempts to detect faults by comparing the monitor 
statistic to a threshold.  The threshold is set sufficiently 
high to minimize false alarms caused by fault-free noise.  
When the monitor statistic exceeds the threshold, the LGF 
sends a warning message that excludes the affected 
satellite from the user navigation solution.   

The LGF warning must reach the user in a timely fashion.  
The required time between the onset of a hazardous 
condition and the arrival of the warning message at the 
user is called Time-to-Alert (TTA).  The actual worst-
case Time-to-Transmit (TTT) the warning message may 
be longer or shorter than the required TTA.  If 
transmission time is longer than the specified TTA, the 
monitor must make up the difference by triggering early.  
If the transmission time is shorter than the allowed alert 
time, then the monitor may trigger late, after the fault 
becomes hazardous.  In either case, the time difference is 
referred to as the Relative Detection Time (RDT). 

 RDT TTA TTT= −  (18) 

The RDT is illustrated in Figure 8. 

Figure 8.  Relative Detection Time 

In practice, the Time-to-Alert (TTA) requirement may 
not match the actual maximum Time-to-Transmit (TTT) 
warnings from the ground facility to the airborne user. 
The time difference, called the Relative Detection Time 
(RDT), alters the allowed Time-to-Detect (TTD) such 
that it is either shorter or longer than the duration 
between the anomaly onset and the moment at which the 
anomaly becomes hazardous, a duration labeled the 
Time-to-Hazard (TTH). 
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The RDT is defined to be negative if the monitor must 
trigger in advance of a protection level violation.  For 
Category I operations, the RDT is zero seconds, because 
the maximum transmission time is six seconds, equal to 
the specified alert time requirement.  For Category III 
operations, a six-second transmission time would be 
longer than the allowed 2 second TTA.  In this case, the 
RDT would be -4 seconds, implying that a monitor would 
need to detect the anomaly 4 seconds before the anomaly 
becomes hazardous. 

The RDT enters directly into the formula for the missed-
detection probability, Pmd(t).  The Pmd is the probability 
that the monitor statistic lies inside the monitor 
thresholds, as illustrated by the gray region in Figure 9.  
Integrating the Gaussian distribution for the monitor 
statistic, mfault, given by (17), gives the following formula 
for Pmd in terms of two Gaussian Q-functions.  The time 
at which Pmd is evaluated must be shifted relative to PL 
evaluation by the RDT. 

( ) ( )
( )md

mon mon

T t T t
P t RDT Q Q

η η
σ σ
− − −⎛ ⎞ ⎛ ⎞

− = −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. (19) 

This equation assumes the random components of the 
monitor statistic, m', and the vertical positioning error, 
Sv,kE', are independent.  If the random variables were 
strongly correlated, their dependence would need to be 
taken into account in the Pmd equation, (19), in order to 
satisfy the conditional probability relationship of (16).  
The assumption of independence is justified for the 
following reasons. 

• The errors that generate the monitor statistic 
noise, m', only represent a fraction of the total 
ranging error introduced by the ground station 
receivers (i.e. σground,mon,i < σground,i). 

• The ranging error introduced by the ground 
signal is a small fraction of the total ranging 
error, which is dominated by airborne receiver 
noise (σair,i), ionosphere decorrelation noise 
(σiono,i) and troposphere decorrelation noise 
(σtr,i), such that σground,i < σff,i where 

 2 2 2 2
, , , , ,ff i ground i air i iono i tr iσ σ σ σ σ= + + +  (20) 

• Although MERR is defined for a worst-case 
geometry, the faulted-satellite ranging error is 
generally only a fraction of the total vertical 
navigation error, Ev,p (i.e. σff,i < σv,p). 

Because the errors that result in monitor noise have little 
impact on vertical positioning error (σground,mon,i << σv,p), 
it is not expected that the random component of the 
monitor statistic, m', would display a measurable 

correlation with the random vertical navigation error, E'.  
Moreover, since any minor correlation would improve 
(reduce) the missed-detection probability for large errors, 
it is conservative to assume independence. 

Time-Varying MERR Summary 

The time-varying MERR has been derived as a function 
of the deterministic component of the monitor statistic 
transient, η(t).  So long as MERR(t) exceeds the fault-
induced ranging bias, E(t), for all time, the GBAS is 
ensured to maintain full integrity throughout the duration 
of a fault scenario.   

Verifying integrity for any fault mode thus requires a 
fault-specific model of the time transients for η(t) and 
E(t).  Given these curves, MERR is evaluated by 
computing Pmd(t) from η(t) according to (19).  Next, Ppl(t) 
is derived from Pmd(t) according to (16) and converted 
into Kpl(t) through (11).  Finally, MERR(t) is evaluated by 
inserting the expression for Kpl(t) into (14).   

Integrity is verified by ensuring that the expression E(t) is 
less than MERR(t) for all time.  Figure 10 illustrates this 
comparison by extending the example shown earlier in 
Figure 2 and Figure 4.  For the fault scenario illustrated, 
GBAS integrity is ensured since the MERR bound (green) 
is everywhere larger than the ranging bias (red). 

A significant feature of the MERR(t) curve, as illustrated 
in the figure, is that the curve asymptotes and grows 
toward infinity at a particular time.  The asymptote occurs 
where the missed detection probability, Pmd, falls below 
the total allowed risk given the fault prior (Pa / Pf).  At 
this point, previously identified as the Minimum 
Detectable Event (MDE) point, the monitor takes full 
responsibility for system integrity, so that the PL need not 
bound the faulted navigation error.  In effect, MERR 
becomes infinite beyond the MDE point. 
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Another feature of the time-varying MERR curve 
illustrated in Figure 10 is the relationship between MERR 
and MERRMP.  By design, these values are equal at the 
MP point when RDT is zero and when the η(t) and E(t) 
curves are proportional.  Because the time-varying MERR 
curve is compared directly to the E(t) curve, the time-
varying MERR is slightly less conservative than the 
MERRMP, which has generally been compared to the error 
at the MDE point.  In practice, this benefit of the time-
varying MERR is small unless RDT is non-zero.  The 
signal-deformation example in the following section 
underscores the significance of RDT. 

APPLICATION OF TIME-VARYING MERR TO 
SIGNAL-DEFORMATION MONITORING 

In contrast with earlier MERR formulations, the time-
varying MERR requires a model for the transients of both 
the monitor statistic and the ranging error.  These 
transients must be evaluated for all threats in the relevant 
threat space.  To provide an example, this section applies 
the time-varying MERR to the particular case of the 
signal-deformation fault. 

Signal-Deformation Background 

Signal deformation occurs when a GPS satellite emits a 
pathological signal, sometimes called an evil waveform.  
Evil waveforms distort the correlation peaks tracked by 
GPS receivers.  These distortions may result in ranging 
biases as large as tens of meters for worst-case threats.  
Though these errors are large, they would ideally cancel 
in a differential correction scheme as long as the evil 
waveforms impacted all receivers in a like manner.  
Unfortunately, the diversity of user receiver designs 
results in substantial differences in signal-deformation 
errors for different receivers.  Consequently, differential 
corrections do not necessarily eliminate large signal-
deformation errors. 

To date only one signal-deformation event has ever been 
detected.  This fault was observed for satellite SV19 in 
October of 1993.  It is not known when the fault first 
occurred, and it is possible that the fault was present from 
the time the satellite was launched.  Following the signal-
deformation fault, the SV19 signal was recovered by 
switching over from the A-side electronics to the B-side.  
In the absence of data describing the signal-deformation 
transient, the accepted threat model treats the fault 
aggressively, as a step function. 

 Signal-Deformation Transients 

The signal-deformation event model introduces a step 
error into the raw ranging measurement.  This step is 
smoothed in the user receiver before being introduced into 
the navigation solution.  Consequently, the model for the 
fault-induced ranging bias, E(t), is the step response of the 
smoothing filter.  The response for the baseline carrier-
smoothing filter is that of a linear time-invariant (LTI), 
first-order filter with a time constant of 100 seconds [1].  
Assuming this baseline filter for the current example, the 
fault-induced bias, E(t), has the following form.  It is 
convenient to divide the bias by its steady-state value, Ess, 
so that the normalized bias, fE(t), is only a function of 
time and the carrier-smoothing time constant, τCS. 

 ( )( ) ( ) 1 exp( / )E CS
ss

E t f t t
E

τ= = − −  (21) 

The signal-deformation model also assumes that the raw 
monitor statistic, which quantifies distortion in the code 
correlation peak, experiences a step input.  The monitor 
filter smooths the raw data before applying a detection 
threshold.  Thus the monitor statistic transient, like the 
range error transient, is the step response of a low-pass 
filter.  To provide rapid detection, the time constant of the 
monitor filter may be as little as 50 seconds.  For a first-
order LTI monitor with a time constant, τmon, of 50 
seconds, the step response, η(t), can be written in a 
normalized form, fη(t), as follows.   

 ( )( ) ( ) 1 exp( / )mon
ss

t f t tη
η τ
η

= = − −  (22) 

Here, the monitor transient is normalized by its steady-
state value, ηss.  Even without specifying steady-state 
values, it is possible to observe that the normalized 
transients, fE(t) and fη (t), are not proportional because 
their time constants differ.  These two normalized 
functions were plotted in the left column of Figure 5. 

Signal Deformation in Steady-State 

Extensive simulations would be required to determine the 
specific steady-state values, Ess and ηss, for each threat in 
the space of signal deformations.  These steady-state 
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biases, equal the raw monitor and range biases caused by 
signal deformation, are functions of correlator-peak 
shape.  The simulations required to determine correlator-
peak shape for each evil waveform in the signal-
deformation threat space are beyond the scope of the 
present paper [9].  However, it is sufficient to note that 
these simulations can be used to map individual threats 
into the space of positive Ess and ηss.  Fortunately, MERR 
can be mapped into this same space to yield a bound as a 
function of ηss.  GBAS integrity can be verified for each 
evil waveform in the signal-deformation threat model if 
MERR exceeds Ess(ηss) for each threat. 

Mapping MERR onto Threat Space 

The following procedure describes how to convert 
MERR(t) from a function of time to a function of the 
steady-state monitoring statistic, ηss.  For any given value 
of ηss the MERR transient (14) can be evaluated using the 
monitor time response, (22), and intermediate equations 
for Pmd, Ppl, and Kpl.  This value of MERR is a function of 
time, parameterized by the steady-state monitor statistic 
value:  MERR(t; ηss).  To establish integrity, this MERR 
expression must equal or exceed the fault-induced error 
for the entire duration of the fault transient. 

 ( ) ( ; )ssE t MERR t η≤  (23) 

Dividing by the normalized transient for the ranging error, 
fE, given by (21), the above inequality is rewritten as 

 
( ; )
( )

ss
ss

E

MERR t
E

f t
η

≤ . (24) 

Since the MERR curve must be a bound for all time, the 
largest value of Ess for which integrity can be established 
is the smallest value of right-hand side of (24) over all 
time.  This minimum value depends on the parameterized 
monitor statistic, ηss.  The resulting bound on Ess is called 
MERRss(ηss). 

 ( ) ( ; )min
( )ss ss t

E

MERR tMERR
f t

ηη
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 (25) 

This equation effectively maps MERR into the two-
dimension space characterized by positive values of Ess 
and ηss.  Any threat with a steady-state error value, 
Ess(ηss), that is below MERRss(ηss) is bounded with 
integrity. 

Comparison of Time-Varying and Static MERR 

In addition to providing a means to evaluate the signal-
deformation integrity of arbitrary GBAS implementations, 
the MERR mapping provides a means to compare the 
performance of the time-varying MERR to previously 

proposed MERR implementations, such as MERRMP.  In 
evaluating MERR, a larger value is more desirable in 
order to bound larger errors.  In present work on Category 
I GBAS, signal-deformation errors for certain receiver 
designs, particularly double-delta designs, exceed MERR 
[9].  A larger value of MERR might ensure integrity for 
the entire user space.   

The static MERR derived by Zaugg (MERRMP) can be 
converted to the space of positive Ess and ηss values by a 
process similar to that derived for the time-varying 
MERR, as summarized by (25).  In applying (25) to the 
static MERR, MERRMP is treated as infinite after the 
MDE time.  Before the MDE time, MERRMP has a 
constant value.  This constant is 4.36σmin, as derived by 
Zaugg for the signal-deformation fault mode [5].   

Both the static and time-varying MERR expressions are 
proportional to σmin.  This sigma term is the standard 
deviation of the fault-free ranging error, σff,i, evaluated at 
90° elevation.  As described by (20), the ranging error 
consists of contributions from ground receiver noise, 
airborne noise, ionosphere noise and troposphere noise.  
For the purposes of this paper, the ground error was 
evaluated using the GAD-C3 curve, the airborne error 
was evaluated using the AAD-A curve, and the 
ionosphere error was evaluated at 6 km using the a 
vertical-ionosphere gradient sigma, σvig, equal 4 mm/km 
[10],[11].  The troposphere sigma was neglected.  The 
resulting value of  σmin was 0.25 m. 

The ratio of the allotted integrity risk to the fault prior for 
the time-varying MERR was assigned the same value 
used in [5]:  Pa/Pf, = 10-3.  The RDT was set to zero. 

Using these parameters, the values of the time-varying 
and static MERR curves are plotted against ηss in Figure 
11.  As shown in the bottom plot, the static MERR (green 
circles) is approximately equal to the time-varying MERR 
(black line) for this example.  The small difference 
between the two curves is detailed in the top part of 
Figure 11, which plots the difference, ΔMERRss, defined 
as the value of the time-varying MERR curve minus the 
MERRMP curve.  The difference between the two curves 
results, primarily, from the assumed proportionality 
between the monitor statistic and ranging error biases in 
the formulation of MERRMP.  This proportionality is only 
approximate for the current example, since the time-
constant for the monitor filter, at 50 seconds, is shorter 
than the time constant for the pseudorange smoothing 
filter, at 100 seconds.  The step responses for the two 
filters are nearly linear (and hence proportional) only 
when the steady-state monitor statistic, ηss, is large, 
beyond the right edge of the ΔMERRss plot.  Through 
much of the ηss range, the MERRMP curve is 
overconservative by up to 0.2 m relative to the time-
varying MERR curve.  At the low end of ηss, where the 



proportionality assumption breaks down, MERRMP is not 
a conservative bound, and ΔMERRss is negative.  It can be 
concluded from Figure 11 that the static MERR is a 
reasonable approximation of the time-varying MERR for 
signal-deformation analysis, but that the static MERR 
may be invalid over certain regions and slightly 
overconservative over others. 

The proportionality between the monitor statistic and 
ranging-error biases breaks down further if the RDT is not 
equal to zero.  The time-varying MERR bound changes 
for non-zero RDT as illustrated in Figure 12.  MERRMP is 
not shown in this figure, since the static MERR does not 
change with RDT.  As is evident from comparing Figure 
11 to Figure 12, the MERRMP formulation provides a poor 
approximation of the true MERR bound for cases when 
RDT is not equal to zero. 

As shown in Figure 12, the MERR bound becomes much 
larger when the maximum transmission time is shorter 
than the required Time-to-Alert (i.e. when RDT is 
positive).  The MERR bound becomes smaller when the 
transmission time is longer than the alert time (i.e. when 
RDT is negative).  The difference is substantial, 
especially as the value of the steady-state monitor 
parameter, ηss, becomes large.  This result may introduce 
some benefit for Category I operations, if the maximum 
transmission time can be shown to be less than the six-
second TTA.  By contrast, this result will make integrity 
more difficult to establish for Category III operations, 
unless the maximum transmission time can be made 
shorter than the required two-second TTA.  This effect 
also has a significant impact on the proposed Local 
Airport Monitor (LAM), which would rebroadcast WAAS 
signals in a LAAS format to enable Category I approach.  
The transmission time for LAM is 10 seconds, as 

compared to a TTA requirement of 6 seconds.  As shown 
by Figure 12, the MERR curve is significantly depressed 
for the LAM case, with RDT equal -4 seconds. 

CONCLUSION 

This paper developed a novel method of deriving a range-
domain bound to cover GBAS navigation errors in a fault 
scenario.  This bound, called the time-varying MERR 
(Maximum-allowable Error in Range), replaces earlier 
versions of the MERR bound that did not take temporal 
effects into account.  Specifically, the time-varying 
MERR formulation provides (1) a precise comparison 
criterion to validate GBAS integrity, (2) a relaxation of 
the requirements on monitor-filter design, and (3) a means 
to incorporate the Time-to-Alert requirement directly in 
the MERR bound. 

The time-varying MERR concept was applied to develop 
a bound for the signal-deformation fault mode.  For this 
example, it was shown that the older, static MERR 
formulation provided a reasonable approximation of the 
time-varying MERR for the baseline case.  However, the 
static MERR approximation broke down when the Time-
to-Alert requirement was considered.  In fact, it is the 
difference between the alert time and the message 
transmission time, labeled the Relative Detection Time 
(RDT), which impacts the MERR bound.  If the 
transmission time is shorter than the alert time, as may be 
the case for Category I GBAS, the time-varying MERR 
bound is significantly more generous than the static 
approximation.  If the alert time is shorter than the 
transmission time, as may be the case for Category III 
GBAS, the time-varying MERR bound is significantly 
stricter than the static approximation. 
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