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ABSTRACT
In this paper we attempt to provide continuity and integrity guarantees despite the presence of a spoofing attack. Using a
software defined radio (SDR), we assign two channels per PRN allowing us to track both the authentic and spoofed signal. We
employ a Multi-Hypothesis Extended Kalman Filter (MHEKF) to coast on inertial sensors during signal outages and identify
the authentic signals once they become available. We finally leverage and modify RAIM integrity equations to cast protection
levels that encompass the authentic and spoofed position solution for a guarantee on the user’s location.
We present results both for highway driving data with artificially injected spoofing signals as well as results on the TEXBAT
dataset. We demonstrate continuous navigation despite the presence of spoofing attacks and provide integrity through protection
levels that account for the lift-off spoofing attacks in their threat model.

I. INTRODUCTION
GNSS has become the foundation of the position, velocity and time (pvt) solution of many safety of life applications. This
success story has been fueled by the accuracy, availability, continuity and high levels of integrity offered by satellite navigation
systems. Nowadays this performance is put in jeopardy by intentional and unintentional interference.
In this paper we consider targeted interference through counterfeit GNSS signals. Generally broadcasted by a malicious actor
attempting to fool the victim’s GNSS receiver, this attack on satellite navigation systems is known as spoofing. A rich body
of research exists on GNSS spoofing detection, and promising results have been shown for defenses against different threat
scenarios. Overviews of attack modes and common defense strategies are given by [1–3]. While there is no silver bullet among
defense strategies, several approaches combining metrics have shows robust behavior detecting a wide range of threats [4, 5].

In this paper we consider the less thoroughly researched topic of GNSS spoofing mitigation. Mitigation is the attempt to resume
the use of satellite navigation despite the presence of an attack. The goal is to exclude the compromised satellite signals from
the navigation solution and continue the use of the authentic signals.

The idea to exclude unwanted signals from the navigation solution goes at least back to the failure detection and isolation
suggested in [6], nowadays generally implemented within the scope of Receiver Autonomous Integrity Monitoring (RAIM).
But RAIM is designed to protect against faulted satellites, not spoofing attacks and only covers faults on a single satellite. The
same limitation applies to the estimation scheme presented in [7]. Advanced RAIM (ARAIM) will go further by considering
multiple faults and constellations [8].



Several techniques leverage spatial processing techniques to suppress spoofing signals when they are broadcasted from one
direction. The malicious signals are removed from the received RF pattern, such that once again only authentic signals are
visible to the receiver. This is achieved by steering a spatial null towards the largest power source using an array of multiple
antennas [9], [10]. In the case of a moving receiver, a synthetic array can alternatively be constructed [11] and the correlation
in Doppler variation leveraged to identify and exclude satellite signals coming from the same direction [12]. Several signal
processing techniques have been explored that eliminate signals without the use of multiple or moving antennas. [13–15]
eliminate one signal per PRN for example by a projection the signals onto their nullspace or by superpositioning the opposite
signal. All three approaches however make strong assumptions on which signal per PRN is the authentic and which one is the
spoofed signal.

Building upon our work in [16], in this paper we present techniques that offer continuity and integrity in the presence of a
spoofing attack. Using a Software Defined Ratio (SDR), we track and decode both the authentic and spoofed signal for each
PRN during an attack. Using the pseudorange residuals, we efficiently identify the two consistent (the authentic and spoofed)
navigation solutions among all possible signal combinations. The question of which of the two consistent solutions to trust is
then cast in the position domain, breaking with the main assumptions made in the literature.

For continuous navigation we suggest the use of a Multi Hypothesis Extended Kalman Filter (MHEKF). It coasts on an Inertial
Measurement Unit (IMU) during the lift-off phase of an attack and identifies the authentic GNSS solution once two consistent
position solutions are available. We show application examples using the TEXBAT dataset (described in detail in [17, 18]) and
simulated attacks on driving data collected around Calgary.

To provide integrity during an ongoing spoofing attach we modify the Multi-Hypothesis Solution Separation (MHSS) algorithm
developed for RAIM [19] to generate protection levels that encompass both the authentic and spoofed position solution while
still protecting against satellite failures. We offer a larger, conservative bound as well as a tighter bound once the two consistent
solutions have been identified. We once again show examples applying the bound to simulated attacks on driving data.

The remainder of the paper is organized in three main sections plus a summary and conclusion. In Section II we review the work
in [16] on tracking multiple signals for each PRN and identifying consistent navigation solutions. In Section III we present the
MHEKF architecture to provide continuous navigation during the attack. In Section IV we then cast protection levels around
the authentic and spoofed position solution to provide integrity.

II. SIMULTANEOUS PROCESSING OF SPOOFED AND AUTHENTIC SIGNALS
The main prerequisite for this paper’s work is that the victim needs to be able to receive the authentic signals with sufficient
strength such that they can be tracked and decoded by the receiver. This is not necessarily the case during jam-then-spoof attacks,
very high power advantage lift-off attacks or in the case of a nulling attack or physical signal blockage [3]. Once detected, the
effect of a spoofing attack can in these cases only be reduced to a denial of service.
We further assume that a spoofing attack can be detected robustly before any error is introduced in the navigation solution, e.g.
using a combination of metrics as detailed in [5].

Should the authentic signals be visible during the attack, the victim receives at least the authentic and the spoofed signal (and
possible reflections thereof) for each spoofed PRN in view. The presence ofmore than one peak in the complex ambiguity function
has been used for spoofing detection [20, 21]. Several approaches have been presented to track both signals simultaneously.
In [22] and further developed in [23] through the use of auxiliary tracking channels, which is very similar to our strategy in [16].

In this section we briefly review the acquisition of multiple signals per PRN detailed in [16] and summarize the identification
of the two consistent sets of signals, representing the spoofed and authentic navigation solution.

1. Multiple Signals per PRN
The cited techniques are generally capable of tracking multiple signals for each PRN if their code phase differs by at least
one chip. For GPS L1 signals this corresponds to a pseudorange difference of around 300 m. If two signals are spaced more
closely, the two correlation peaks overlap and no two distinct peaks are visible. It is worth noting that for GPS signals on the L5
frequency this overlap is reduced to around 30 m due to the 10x higher chipping rate of the signals. In Figure 1 (reproduced here
from [16]) we can observe the in-phase and quadrature correlator tap values as recorded by an SDR during TEXBAT scenario
3. TEXBAT scenario 3 is a lift-off attack, during which the spoofer initially transmits signals with the same code delay τ and
thereby range information as the authentic signal, overpowers the authentic signals, and then gradually changes τ . Before and
during the early stage of the attack, the receiver’s correlation peak shows no distortion as depicted in Figure 1a. Once the attacker
changes τ , the correlation peak gets distorted by the superposition of correlation values (Figure 1b). This distortion is visible
both in the inphase correlation due to the altered τ as well as the quadrature correlation due to the difference in Doppler and
carrier phase between authentic and spoofed signal. Once the signals are spaced more than approximately one chip, a secondary
peak is detected and tracked with a second set of 21 correlator pairs. This can be seen in Figure 1c.



-1.5-1.35-1.2-1.05-0.9-0.75-0.6-0.45-0.3-0.15 0 0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5

-1.5

-1

-0.5

0

0.5

1

1.5

t = 63.3 sec

(a) Early phase, spoofer transmits replica of the
authentic signal. No distortion visible.
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(b) Lift-off phase, spoofer alters his τ and lures
the victim off course. Distortion is visible in both

I and Q channel.
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(c) After lift-off. Two distinct but distorted peaks
are visible. The secondary peak is indicated by

dashed lines.

Figure 1: Correlator values during three stages of a lift-off spoofing attack. Plots based on 21 correlator pairs spaced evenly between ±1.5
chips around the prompt correlator of identified peaks. All values are normalized by the prompt inphase correlator of the main peak.

The capability of tracking multiple signals especially for large power differences between the signals depends on several factors,
such as the used front end and the receiver’s analog to digital conversion bit resolution. The used SDR has a 16 bit resolution
and was capable of tracking secondary signals during the 10 dB power advantage attack of TEXBAT scenario 2.

Once two peaks are detected, each is processed separately for an independent set of code phase, carrier phase and Doppler
measurements as well as independent navigation data.

2. Two Consistent Solutions
Decoding multiple signals for each PRN offers a lot of opportunities, but comes with a caveat: the number of possible navigation
solutions skyrockets. For n satellites in view with for example two signals each, we can compute 2n solutions. Even if we
leverage similarities through rank one updates, this quickly becomes impractical to be done in real time in a receiver.

Among the large number of possible navigation solutions, only few are actually of interest: the authentic and spoofed solutions.
From here on out we limit our considerations to at most two signals per PRN, representing one authentic and one spoofed signal.
Among the 2n possible solutions, only 2 will be formed from a consistent set of pseudoranges.
Here we break with a common assumption in the literature: we do not assume anything about the spoofer’s signal being stronger
than the authentic. Either one of the two signals decoded for a specific PRN could be trustworthy or not. If one can be marked
as compromised due to e.g. unrealistically high signal strength or disagreeing code and carrier rates it makes the following
considerations easier, but it is not required.

a) A greedy Histogram Filter
Instead of computing 2n solutions at every epoch, we follow a greedy approach to identify consistent sets of pseudoranges.
In [16] we detail the approach using a histogram filter [24]. The filter keeps track of the likelihood of each considered signal
combination at every epoch through a transition step and a recursive belief update.
We start at epoch 1 with any chosen signal combination c, e.g. by computing a navigation solution based on the strongest
signals for each PRN and one based on all the weakest signals. Since only one signal combination is considered, its probability
is p(c) = 1. The transition step then assigns probabilities to all "adjacent" signal combinations of p(c)λδ . λ is a transition
probability hyperparameter, in our experience 0.01 has worked well. δ is the number of signal assignments that are different
between the new set and the original signal combination. We consider the "adjacent" combinations that differ only in δ = 1
satellite assignment. This is the first step of the local greedy search of consistent signal combinations.
During the recursive belief update the likelihood of each considered combination is computed by forming the residual χ2

statistic. Consider the linearized measurement equation in [25]

y = Gx+ ε (1)

where y ∈ Rn are the pseudorange measurements minus the expected range, G ∈ Rn×p is the geometry matrix for p states
(p = 4 for one constellation) in the state vector x. The measurement noise is normally distributed with covariance matrix
W−1 ∈ Rn×n



W =

 σ2
1 0 0

0
. . . 0

0 0 σ2
N

 (2)

the χ2-statistic t is given by [26]

t = yT (W −WG(GTWG)−1GTW )y (3)

We can compute the probability of a vector of measurements for a combination c by evaluating the probability density function
(pdf) of the central χ2 distribution with n− p degrees of freedom at t

p(y|c) =
1

2(n−p)/2Γ((n− p)/2)
t(n−p)/2−1e−t/2 (4)

where Γ is the gamma distribution and t is computed using Eq. (3). Using Bayes Rule we can then compute the posterior
probability of a signal combination c being consistent.

p(c|y) =
p(y|c)p(c)∑
c∈C p(y|c)p(c)

(5)

where C is the set of all considered combinations (where the number of considered combinations |C| � 2n) and p(c) is the
probability of the combination after the transition step.

If we continued these two steps at each epoch, |C| would quickly grow until it reaches 2n. To avoid this, we prune the number
of considered combinations after every epoch. Possible pruning approaches are to consider only combinations with a posterior
probability above some threshold, or to consider only theM most probable combinations. We choose the latter approach and
limitM = 20 as this directly controls the computational effort necessary at each epoch.

Several measures can be taken to further limit the computational burden at every epoch. If the broadcasted ephemeris is
consistent among all decoded signals, the satellite orbits only need to be propagated once per epoch. The signal combinations
further use similar sets of pseudoranges; this should be leveraged through the use of rank one updates (as explained for example
in Appendix I of [8]).

b) Application Examples
The result of this step are, at every epoch, a set of navigation solutions. Each has a probability of being computed from a
consistent set of signals associated with it. Let us finish the brief but theoretical description of the approach with an application
example. Specifically, we show the result when running the approach on TEXBAT scenarios 4 and 6 previously depicted in [16].
Both scenarios are position push attacks with 0.4-1 dB power advantage. During scenario 4 the receiver is stationary, during
scenario 6 the receiver is moving. During both scenarios the attacker introduces a 600 m offset in the ECEF z coordinate. This
is reflected in the navigation solutions depicted in Figure 2. The figures show the truth as a black line, and the solution obtained
by an SDR without any spoofing defense in blue. Red dots show the obtained navigation solutions at every epoch, color-coded
for each solution’s posterior likelihood. During the initial, nominal period of the scenario only one solution exists. Once lift-off
begins around 160 sec in Figure 2a and 130 sec in Figure 2b, multiple solutions begin to emerge, all more or less equally
inconsistent as they were obtained from strongly distorted correlation peaks. Once lift-off is completed for all satellites around
260 sec (scenario 4, Fig. 2a) and 230 sec (scenario 6, Fig. 2b), the two consistent solutions of all nominal and all spoofed
signals emerge. The dynamic scenario overall shows noisier conditions, likely because the number of visible satellites changes
constantly, prompting the histogram filter to re-converge on consistent signal combinations.

III. CONTINUITY
In the previous section we have shown how to compute both the authentic and spoofed navigation solution among all possible
signal combinations. Two problems persist however if we want to navigate continuously:

• For a significant period during lift-off we are without having identified any consistent navigation solution. We can not
use satellite navigation.

• Once two consistent solutions have emerged, we still have not determined which one of the two is to be trusted.



0 50 100 150 200 250 300 350 400 450

-500

0

500

1000

0 50 100 150 200 250 300 350 400 450

-1000

0

1000

0 50 100 150 200 250 300 350 400 450

0

500

1000

1500

0 50 100 150 200 250 300 350 400 450

-1000

0

1000

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(a) Scenario ds4.

0 50 100 150 200 250 300 350 400

-2000

0

2000

0 50 100 150 200 250 300 350 400

-2000

-1000

0

0 50 100 150 200 250 300 350 400

-1000

0

1000

2000

0 50 100 150 200 250 300 350 400

-2000

-1000

0

1000

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

(b) Scenario ds6.

Figure 2: ECEF position solutions in meter during TEXBAT scenarios ds4 and ds6. Red dots show position solutions of the most probable
solutions at each epoch, color coded for their likelihood as determined by the Histogram Filter architecture. The solid black line represents

the truth. The blue solid line is the solution obtained if all main peaks are used, representing a receiver without spoofing defense.

1. The Multi-Hypothesis EKF
We resolve both issues using a Multi-Hypothesis Extended Kalman Filter (MHEKF) and an additional sensor allowing us to
perform dead-reckoning navigation, such as an IMU. A similar approach is presented in [27], where the Doppler measurements
are assumed unaffected and used during the coasting period. Here we use a loosely coupled EKF combining IMU and GNSS
measurements presented in [16], based on the error-state implementation described in [28]. Each filter’s state x ∈ R17×1 is
given by

x =



Ψ
r
ṙ
ba
bg
bc
ḃc


(6)

x contains the attitude in Euler angles Ψ ∈ R3×1, the ECEF position and velocity r ∈ R3×1 and ṙ ∈ R3×1, accelerometer and
gyro bias terms ba ∈ R3×1 and bg ∈ R3×1 as well as the clock bias and clock drift terms bc and ḃc. EKFs coupling IMU and
GNSS measurements have been well studied and the interested reader is referred to the cited literature. In this section we will
focus on the specifics of tracking multiple hypothesis with two filters.
During nominal conditions, one EKF tracks the antenna’s state using both IMU and GNSS measurements. Standard system
dynamics and IMU models are employed. The interested reader is referred to [16, 28], details are omitted here for brevity.
Once a spoofing attack is detected, the filter stops applying GNSS measurement updates and coasts on the IMU. Additional
information from other sensors, e.g. such as velocity from an odometer or velocity and/or altitude from a pitot-static system
could greatly improve the coasting capability but are not applied in this paper.
A second, "compromised" EKF in the meantime keeps employing GNSS measurement updates. Once the histogram filter
described in Section II.2 a) has converged and identified the same two signal combinations as most probable in multiple
consecutive epochs, the "trusted" EKF can resume using satellite navigation. To determine which GNSS solution to use, the
two EKFs perform a localization with unknown correspondences [24]. Several approaches exist to this standard problem, here
we employ a maximum likelihood estimator to assign the correspondences. The assignment j(i) of the ith GNSS solution is



chosen to minimize a Mahalanobis distance.

j(i) = arg min
k

(z
(i)
G − CGx

(k))T (CGΣ(k)CTG +R
(i
G)−1(z

(i)
G − CGx

(k)) (7)

for state estimate of the kth EKF after the dynamics update x(k) and its covariance matrix Σ(k), the measurement of the ith
GNSS solution z(i)G and its covariance R(i)

G and the GNSS measurement matrix CG ∈ R4×17 here given by

CG =

[
0(3×3) I(3) 0(3×9) 0 0
0(1×3) 0(1×3) 0(1×9) 1 0

]
(8)

where 0(a×b) is a matrix of zeros with dimensions a× b and I(c) is a c× c identity matrix.

The "compromised" EKF has been tracking the spoofed position solution during lift-off. At the moment that two consistent
GNSS solutions become available, its estimate is likely close to the spoofed solution with tight covariance. The "trusted" EKF’s
state estimate on the other hand is likely closer to the authentic GNSS solution but with a large covariance. The precision of its
estimate and size of its covariance matrix depend on the duration of the coasting phase, as well as the number and quality of the
available non-GNSS sensors and the dynamics model.
In the case of a large error covariance and unprecise estimate, the confident estimate of the "compromised" EKF close to the
spoofed position greatly helps choosing the correct assignment as it will strongly favor the spoofed solution for itself.

An exotic attack scenario could be imagined that takes advantage of this behavior. Consider a spoofer that broadcasts signals
significantly weaker than the authentic signals, but strong enough to trigger the spoofing detection. During lift-off the receiver
presumably keeps tracking the stronger, authentic signals. The "compromised" EKF tracks these authentic signals and claims
them for itself during the correspondence assignment in Eq. (7). The "trusted" EKF with significantly larger covariance
CGΣ(k)CTG is then forced to use the spoofed solution. The spoofing attack, even though it failed to capture the receiver’s
tracking correlators (or rather: because it failed to) would be successful; our initial assumption of a (mostly) successful lift-off
attack was violated.
If the receiver designer chooses to provide robustness against this type of attack, the "compromised" EKF should be omitted.
The "trusted" EKF, after the coasting phase, then has no competition for the authentic GNSS solution close to its own estimate.
This approach does require higher coasting performance through a higher quality IMU or additional sensors, to avoid the EKF
drifting too far to be able to decide between the two consistent GNSS solutions once they are available.

2. Application Examples
Let us now support the theoretical derivations with application examples. Once again we turn to the TEXBAT dataset.
Unfortunately, TEXBAT comes without ground truth pvt information. Simulating IMUmeasurements for the dynamic scenarios
5 and 6 that are in agreement with nominal GNSS measurements is therefore difficult. Instead, we limit the TEXBAT analysis
to the stationary scenarios 3 and 4. They offer realistic spoofing attacks but only simulated IMU measurements. Additionally,
we analyze IMU+GNSS data collected on highways around Calgary, Canada and inject simulated spoofing signals in post
processing as an example with highly realistic coasting behavior.

a) TEXBAT
As we have seen in Figure 2a, the lift-off attack in TEXBAT scenario 4 is initially not 100% successful; the SDR does not
immediately track the spoofed position solution. This effect is even more drastic in scenario 3, the SDR never tracks the spoofer’s
solution. Scenario 3 is time-push attack once again with a low power advantage of around 1 dB introducing a 600 m bias in the
time solution.
The used IMU model is detailed in [16] following the standard text [28]. The noise characteristics reflect a tactical grade IMU
and are specified by the power spectral density (PSD). Table 1 summarizes the root PSDs of the accelerometer noise

√
Sa, gyro

noise
√
Sg , accelerometer bias

√
Sba and gyro bias

√
Sbg from [16].

Table 1: Tactical grade IMU model characteristics. Sa, Sg , Sba and Sbg represent the PSDs of accelerometer and gyro noise and biases.

√
Sa

√
Sg

√
Sba

√
Sbg

100µg/
√
Hz 0.1◦/

√
h 100µg/

√
Hz 2 ∗ 10−6rad s−0.5

We show results for both scenarios in Figure 3. Specifically we show the change in ECEF position and clock bias since the
start of the scenario. We once again depict the SDR solution in blue and the nominal truth in black. The "compromised" EKF



estimate is shown in red, the "trusted" EKF in green. Dashed lines indicate the ±2σ uncertainty of the filter. The two figures
contain a lot of valuable information.

(a) Scenario 4. (b) Scenario 3.

Figure 3: Navigation solution from clean data (black, our "truth"), a least squares solution using all main peaks (blue), an EKF tracking
continuously (red) and an EKF coasting during times that a spoofing alarm is active (green). Dashed lines represent the ±2σ bounds on the
EKF estimates. The continuously tracking solution is compromised, it follows the spoofed signals. We can see the increase in position and

clock estimate uncertainty during the coasting phase of the "authentic" solution which successfully tracks the true solution.

Most importantly, the green "trusted" solution closely tracks the authentic, black solution. We can see its uncertainty grow
rapidly during the coasting phase. The coasting phase is around 40 sec longer in scenario 4, resulting in a significantly larger
uncertainty.
The "compromised" EKF tracks the spoofed solution very well, closer than the SDR. A closer examination would reveal severely
elevated IMU bias estimates during the lift-off phase, where the compromised GNSS measurements are in disagreement with
the IMU measurements.

The results from Figure 3 underline the reliance of the approach on sufficient navigation capabilities during the coasting phase
to support the assignment decision once two consistent GNSS solutions have emerged. This is largely dependent on how fast
the lift-off is performed, as the uncertainty of the trusted measurement scales with time cubed.
As we stated in Section II.1, newer GNSS signals with higher chipping rate such as the GPS L5 signal should significantly help
in this situation as secondary signals for each PRN appear 10 times faster.

b) Driving Data
The considered dataset was recorded from an automobile driving for one hour on highways around Calgary, Alberta, Canada.
It has been reported on e.g. in the context of integrity for precise point positioning (PPP) solutions in [29]. Figure 4 shows the
ground track. Truth pvt data is obtained from a NovAtel OEM729 paired with a tactical grade IMU as specified in Table 1 with
forward and reverse processing.

The spoofing signals are injected 2100 seconds into the scenario. The IMU bias estimates in the EKF have converged at this
point, providing good coasting performance. The attack scenario considers a highly potent spoofer with precise knowledge of
the victim’s planned trajectory, position and velocity. The spoofer performs a slow lift-off attack that moves along the same
trajectory as the truth, but with a velocity increasing by 1mphs for 10 sec until it reaches a velocity 10 mph faster than the truth.
This slow lift-off results in a long coasting phase of around 240 sec until two signals are continuously decoded for at least 5
PRNs at 2340 sec. 3400 seconds into the scenario the attack stops, no more spoofed signals are broadcasted.



Figure 4: Ground track of the analyzed driving data.

Both EKFs use only GPS L1 signals at 1 Hz and IMU measurements at 100 Hz. The trusted EKF repeatedly applies a motion
constraint (no slip) as pseudo-measurement [28] during the coasting phase.

We show results of both filter’s estimates in Figure 5. In Figure 5a we can see the two EKF closely tracking both the true and
spoofed positions during the attack. The "trusted", robust EKF navigates successfully despite the spoofing attack, whereas a
standard, "compromised" EKF follows the spoofer’s trajectory. During nominal conditions both filters track the true solution
well.
In Figure 5b we take a closer look at the "trusted" EKF’s performance. Specifically we depict its absolute navigation error and
the 2σ bound given by its covariance in a local north (N), east (E), down (D) coordinate system. The error is generally very
well bound by the 2σ bound, only a small bias remains for a while in the local vertical direction after two consistent solutions
have been identified and satellite navigation has resumed at 2340 sec. We can see a significant reduction in the "trusted" filter’s
uncertainty and error at around 2250 sec. Here for a brief period a second signal was received for 5 satellites, allowing the
trusted filter to use several GNSS measurements.

0 500 1000 1500 2000 2500 3000 3500 4000

-1

0

1
10

4

0 500 1000 1500 2000 2500 3000 3500 4000

0

1

2

10
4

0 500 1000 1500 2000 2500 3000 3500 4000

0

1

2
10

4

(a) Position truths and estimates of both EKFs relative to first epoch in
ECEF coordinates.
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Figure 5: EKF results from the driving data scenario.

The results of the "trusted" EKF in Figure 5b represent continuous navigation despite the presence of a spoofing attack. The



temporarily significant navigation error and uncertainty can be further reduced through the use of signals with higher chipping
rate such as GPS L5 or additional sensors for improved dead reckoning capabilities.

IV. INTEGRITY
The algorithms and methods we have explored in this paper offer continuous navigation thanks to identification of the spoofed
and authentic navigation signals with low computational complexity. We have however employed some heuristics, and the 2σ
bound in Figure 5b should not be interpreted as an integrity bound.
In this section we will now derive real time integrity bounds in the sense of RAIM, guaranteeing a certain low probability of
hazardous misleading information (HMI, and its probability PHMI). We will see that these bounds can be derived directly
from the Multi-Hypothesis Solution Separation (MHSS) equations in [19]. We then apply the algorithms to the driving data
analyzed in Section III.2 b).

1. Protection Level Computation
We work with the definition of HMI used in e.g. [19]: it is the true position lying outside the error bound determined by the
user. Its probability PHMI can be computed as the sum of the integrity risk of all N considered threat or fault hypothesis Hi

with i = 0, . . . , N and H0 being the fault-free hypothesis weighted by their prior probability Pap,i:

PHMI =

N∑
i=0

Pap,iP (HMI|Hi) (9)

Closely following the explanation in [19], we compute a subinterval Li for each fault hypothesis such that

P (||x(i) − x|| ≥ Li|Hi) ≤
P (HMI|Hi)

Pap,i
(10)

Here x(i) is the position solution computed using the un-faulted measurements under hypothesis Hi and x is the true position.
Depending on the application, Eq. (10) can be phrased for each coordinate axis separately, for horizontal and vertical bounds,
or for a 3-dimensional bound. In this paper we follow the aviation-implementation of RAIM and compute separate bounds for
the local north, east and down direction.

The real time protection level (PL) is then computed for each direction as

PL = max
i

(
||x(i) − x(0)||+ Li

)
(11)

where x(0) is the position estimate under the nominal hypothesis.

[19] offers a solution for Li that satisfies Eq. (10). Let S be a weighted least squares estimator [25] to solve the linearized
measurement equation (1) and S(i) the estimator for a fault-free satellite combination under hypothesis Hi.

x(i) = S(i)y (12a)

S(i) =
(
GTi WGi

)−1
GTi W (12b)

The navigation solution uncertainty in the kth coordinate axis is then given by

σ2
k,i = S

(i)
k,.W

−1S
(i)
k,. =

(
GTi WGi

)−1
k,k

(13)

where the subscript k, . indicates the kth row of the matrix. In RAIM pseudorange errors are modeled as Normally distributed
with covariance W−1 and maximum bias b. The maximum position state error in the kth direction under the ith hypothesis
introduced by biases is bounded by [19]



Bk,i =

n∑
l=1

|S(i)
k,l|bl (14)

Li in the kth coordinate direction can then be calculated as

Lk,i = KHMI,iσk,i +Bk,i (15)

with

KHMI,i = Q−1
(

1− PHMIi
2Pap,i

)
(16)

where Q−1 is the inverse Normal cumulative distribution function and PHMIi is the HMI budget allocated to the ith fault
mode. The budgets are allocated such that they sum up to the HMI requirement.

PHMIreq =

N∑
i=0

PHMIi (17)

This concludes the real time PL computation using MHSS which we have largely taken from [19]. We now explore two options
how to modify these considerations to include spoofing attacks in the threat model.

a) Conservative Approach: Inflated biases
In Section II.1 we have briefly reviewed how to track and decode multiple signals per PRN, resulting in more than one
pseudorange measurement from each satellite. Two distinct peaks in the auto-correlation function can be tracked if they are at
least one chip length apart [16]. In the case of a spoofing attack, the maximum distance between the fault free pseudorange
measurement and any other pseudorange measurement for that satellite corresponds to a possible bias in that measurement.
Specifically, we can update the maximum pseudorange bias of the lth bias to include the multiple peaks.

b∗l = 2bl + max
c
|∆yc| (18)

where we use the pseudorange bias |∆yp| between the fault free measurement y(0) and the measurements of pseudorange
combination c y(c). If a spoofing alarm was raised but only one peak is detected, the signals must be less than one code chip
apart. The pseudorange bias is then set to the chip length δ.

max
c
|∆yc| =

{
max
p
|y(c) − y(0)| if more than one peak detected (19a)

δ otherwise (19b)

For GPS L1 signals, δ = (2.9979 · 108)/(1.023 · 106) = 293.05 m.

With the updated biases, Equations (11 - 16) can then be applied as before to compute protection levels. These protection levels
now include in their threat model all spoofing attacks that can be detected before any pvt error is introduced and that allow
tracking of the authentic and spoofed signal once they are more than one chip apart.

Using this simple modification has one caveat. The protection level computation in RAIM leverages the linear approximation
of the observation equation (1). This approximation is very accurate even up to several hundreds of meters. With pseudorange
biases exceeding several hundred meter however, this approximation error grows. Preliminary results for protection levels of
several km show this error on the order of magnitude of several cm. Within the range of this error, Eq. (14) possibly no longer
bounds the position error introduced by the biases. Further research is necessary to determine the impact of the approximation
error and how it could be mitigated.



b) Tighter Bounds around Consistent Solutions
The conservative approach lets us include a wide range of spoofing attacks in the threat model with a rather simple modification
of the pseudorange error model. Using this modified error model in Eq. (14) bounds all 2n (in the case of two signals per
PRN) possible combinations of pseudorange measurements. As we have discussed in Section II.2, most of these solutions
actually stem from highly inconsistent combinations of pseudoranges and can be discarded as improbable navigation solutions.
Their likelihood as given by Eq. (4) is significantly smaller than the allowed PHMI . The bound calculated using the updated
pseudorange bias from Eq. (18) is therefore very conservative.

Here we propose an alternative approach. Following the spirit of MHSS of considering multiple hypotheses, we cast RAIM
protection levels around each consistent solution. A global protection level PL∗ in the kth coordinate direction can then be
computed to encompass the individual PLs.

PL∗k = max
c

(
|x(c)k − x

(0)
k |+ PL

(c)
k

)
(20)

with c = 0, . . . , |C| − 1 for |C| considered consistent sets of pseudorange measurements. Any set of measurements can be
chosen as the "fault free" set c = 0.

The individual protection levels PL(c) are calculated as usual using Eq. (11 - 17) with HMI budgets that sum up to the overall
HMI requirement.

PHMIreq =

|C|−1∑
c=0

PHMI(c)req (21)

The individual PLs are therefore slightly inflated compared to standard RAIM, as the HMI budget is shared among all consistent
solutions.

This approach allows for tighter protection levels but comes with a major assumption. It assumes that the set of all authentic
satellite signals is among the considered sets. In the examples shown in the next section we make this assumption once the
Histogram Filter described in Section II.2 a) has converged on the two most consistent solutions. The results of this approach
are encouraging, but a proof for this assumption is left for future work.

2. Application to Driving Data
We now apply both protection level algorithms to the driving data analyzed in Section III.2 b). Once again we assume a spoofing
detection mechanism in place that detects the attack before any bias is introduced in the pvt solution. All protection levels in
this section are computed with PHMIreq = 10−7/hour and Pap = 10−5 following the guidance provided by [30].

We start the analysis with a single snapshot 2250 sec into the scenario. At this point, the lift-off phase of the attack is completed
with two peaks visible in the autocorrelation function for several satellites. More than one consistent navigation solution can
be computed by the receiver, and the histogram filter has converged on the two most consistent solutions. In Figure 6a we show
the conservative and tight PLs computed using the approaches in Sections IV.1 a) and IV.1 b), respectively. The difference is
quite dramatic, the tight protection levels are significantly smaller at this moment. Position solutions are once again depicted
color-coded according to their likelihood and all lie within the tight PL.

Figure 6b shows a zoomed in view of the situation. We further depict the actual true and spoofed locations in the figure, as well
as the PLs PL(s) around each individual consistent solution that make up the tight PL. Any solution with likelihood (given by
Eq. (5)) ≥ PHMIreq is considered here.

The difference between conservative and tight PL is quite significant in the example shown in Figure 6. This is not always
the case. The difference depends on various factors such as satellite geometry and the offset between authentic and spoofed
solution. To analyze the difference between conservative and tight PL as well as the absolute navigation error in more detail
than a single snapshot, we show the three parameters throughout the entire scenario in Figure 7. The navigation error here is
the distance between the true position and the solution used in the "trusted" EKF described in Section III.1.

We can see both PLs easily bounding the error. Depending on the epoch, the tight PL is significantly smaller than the conservative
bound, in other epochs the two are almost identical. A significant improvement is achieved in the vertical direction, because
the spoofer barely introduces any vertical error. Based on these results, depending on the scenario, a user might very well
elect to continue using satellite navigation despite an attack. The victim knows not only the likely difference between authentic
and spoofed position solution, but has a guarantee on the maximum navigation error. Even a safety of life system such as an
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(a) Conservative (blue dashed line) and tight (black solid line) PLs together
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Figure 6: Protection levels shortly after lift-off. Position solutions are color-coded depending on their likelihood.

aircraft might still elect to use satellite navigation in a terminal area if the conservative PL is within the required navigational
performance.

During the lift-off period between 2100 and around 2250 sec, no "trusted" GNSS solution or tight PL exists. The conservative
PL however still provides an integrity bound on the spoofed solution using the pseudorange bias of one chip length δ as described
in Section IV.1 a).

The navigation error shown in Figure 7 remains small throughout the scenario. We have leveraged an IMU in the MHEKF
architecture to successfully identify the authentic navigation solution. This success is however not guaranteed, or an IMU might
not be available. As a last result we therefore show the ratio of the worst case navigation error, if at every epoch the worst
navigation solution (with the maximum offset) were chosen, and the tight PL in Figure 8. To bound the worst case errors, the
ratio has to be < 1 at all times.

The figure shows successful bounding of the error, the integrity guarantee holds. The shown ratio does get remarkably close
to 1 a significant number of times however. These are cases where the tight PL computation is dominated by the large distance
between the individual solutions maxp |∆yp|. The individual PL(s) are comparably small, resulting in ratios close to 1.

V. SUMMARY AND CONCLUSION
In this paper we have shown techniques to provide both continuous navigation and protection levels during the presence of a
spoofing attack. Continuity is achieved with the help of an IMU in a Multi-Hypothesis EKF, while integrity is provided by
an extension to the Multi-Hypothesis Solution Separation algorithm developed in the scope of RAIM. The foundation for both
approaches is the simultaneous reception of authentic and spoofed satellite signals. We demonstrate successful results when
testing the algorithms against the TEXBAT dataset and a simulated attack on real IMU and GNSS data collected during a
highway driving scenario.

Continuity, and especially integrity in the presence of a spoofing attack is a fairly unexplored research area and a lot of future
work remains to be done. For example the effect of the linear approximation to the position solution over several km needs to be
explored in more detail, just like a proof for the convergence of the greedy histogram filter. Further performance improvements
would be possible when incorporating the MHEKF architecture into the integrity work. [29] is a good example for the integrity
bounds possible when running multiple EKFs, one for each threat hypothesis. A tightly coupled EKF could be considered to
extend the continuity and tight integrity bounds when two signals are received for less than 5 satellites.
It could further be interesting to explore the use of the techniques presented in this paper under multipath conditions, attempting
to both identify the correct solution and provide an integrity bound on its error.
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Figure 7: Conservative and tight PL as well as the navigation error in a local north (N), east (E), down (D) frame.

Figure 8: Ratio of worst case navigation error and tight PL.
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