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ABSTRACT 

 

  With the rise of enhanced GNSS services over the next 

decade (i.e. the modernized GPS, Galileo, GLONASS, 

and Compass constellations), the number of ranging 
sources (satellites) available for a positioning will 

significantly increase to more than double the current 

value. One can no longer assume that the probability of 

failure for more than one satellite within a certain 

timeframe is negligible. To ensure that satellite failures 

are detected at the receiver is of high importance for the 

integrity of the satellite navigation system. With a large 

number of satellites, it will be possible to reduce 

multipath effects by excluding satellites with a 

pseudorange bias above a certain threshold. The scope of 

this work is the development of an algorithm that is 
capable of detecting and identifying all such satellites 

with a bias higher than a given threshold.      

 

  The Multiple Hypothesis Solution Separation (MHSS) 

RAIM Algorithm (Ene, 2007; Pervan, et al., 1998) is one 

of the existing approaches to identify faulty satellites by 

calculating the Vertical Protection Level (VPL) for 

subsets of the constellation that omit one or more 

satellites. With the aid of the subset showing the best (or 

minimum) VPL, one can expect to detect satellite faults if 

both the ranging error and its influence on the position 

solution are significant enough. At the same time, there 
are geometries and range error distributions where a 

different satellite, other than the faulty one, can be 

excluded to minimize the VPL. Nevertheless, with 

multiple constellations present, one might want to 

exclude the failed satellite, even if this does not always 

result in the minimum VPL value, as long as the 

protection level stays below the Vertical Alert Limit 

(VAL).  



 

 

  The Range Consensus (RANCO) algorithm, which is 

developed in this work, calculates a position solution 

based on four satellites and compares this estimate with 

the pseudoranges of all the satellites that did not 

contribute to this solution. The residuals of this 

comparison are then used as a measure of statistical 

consensus. The satellites that have a higher estimated 

range error than a certain threshold are identified as 

outliers, as their range measurements disagree with the 
expected pseudoranges by a significant amount given the 

position estimate. All subsets of four satellites that have 

an acceptable geometric conditioning with respect to 

orthogonality will be considered. Hence, the chances are 

very high that a subset of four satellites that is consistent 

with all the other ñhealthyò satellites will be found. The 

subset with the most inliers is consequently utilized for 

identification of the outliers in the combined 

constellation.  

 

  This approach allows one to identify as many outliers as 

the number of satellites in view minus four satellites for 
the estimation, and minus at least one additional satellite, 

that confirms this estimation. As long as more than four 

plus at least one satellites in view are consistent with 

respect to the pseudoranges, one can reliably exclude the 

ones that have a bias higher than the threshold. This 

approach is similar to the Random Sample Consensus 

Algorithm (RANSAC), which is applied for computer 

vision tasks (Fischler, et al., 1981), as well as previous 

Range Comparison RAIM algorithms (Lee, 1986). 

 

  The minimum necessary bias in the pseudorange that 
allows RANCO to separate between outliers and inliers is 

smaller than six times the variance of the expected error. 

However, it can be made even smaller with a second 

variant of the algorithm proposed in this work, called 

Suggestion Range Consensus (S-RANCO). In S-

RANCO, the number of times when a satellite is not an 

inlier of a set of four different satellites is computed. This 

approach allows the identification of a possibly faulty 

satellite even when only lower ranging biases are 

introduced as an effect of the fault.  

 
 The batch of satellite subsets to be examined is 

preselected by a very fast algorithm that considers the 

alignment of the normal vectors between the receiver and 

the satellite (first 3 columns of the geometry matrix). 

Concerning the computational complexity, only 4 by 4 

matrices are being inverted as part of both algorithms. 

With the reliable detection and identification of multiple 

satellites producing very low ranging biases, the resulting 

information will also be very useful for existing RAIM 

Fault Detection and Elimination (FDE) algorithms (Ene, 

et al., 2007; Walter, et al., 1995).  

 
 

1. INTRODUCTION   

 

  In anticipation of the future GNSS constellations like 

GPS IIF/III, Galileo, GLONASS, and Compass becoming 

operational (Revnivykh, et al., 2007), a multitude of 

questions on the use of these numerous ranging sources 

will arise. Simulations show that with full Galileo and 

GPS constellations an average of 18 satellites and a 

minimum of 13 will be in view for most users. Hence, 

with the given threat models, the applicability of RAIM 

techniques for the purpose of monitoring position 

integrity will be increased. Additionally, the use of dual 

frequency receivers will eliminate almost completely the 

largest magnitude errors for unaided GPS, those caused 

by the ionospheric delay (Misra, et al., 2005; Parkinson, 

et al., 1996). Unfortunately, one cannot assume that 
GNSS services different from GPS will have the same 

satellite failure probabilities. A failure probability of 10-3 

might be proven and realized by the control segment 

much more easily than the currently accepted probability 

of 10-5. Altogether, it will no longer be possible to 

assume that the probability of failure for more than one 

satellite within a certain timeframe is negligible. 

 

  The MHSS algorithm (Ene, 2007; Pervan, et al., 1998) 

is one of the existing approaches to identify faulty 

satellites by observing their influences on the VPL. This 

RAIM algorithm separates the computation of the VPL in 
multiple hypotheses, which include the cases where 

single and multiple satellites or even whole constellations 

have failed. By determining the individual VPL values 

under each of the hypotheses, weighted by the probability 

of their occurrence, one can determine the overall VPL. 

In order to identify faulty satellites, the algorithm builds 

subsets of the current geometry by excluding one or 

multiple satellites at a time. An overall VPL is computed 

for each subset and, as the VPL should increase with a 

decreasing number of correct satellites, one can expect 

that the VPL values for the subsets are all higher than for 
the full geometry. Nevertheless, if a satellite bias 

influenced the position estimation by a considerable 

extent, the computed VPL will decrease when excluding 

this faulty satellite. Therefore, the satellite that was 

excluded in the corresponding subset, which results in the 

lowest VPL, is assumed the faulty one.  

 

  By minimizing the VPL, satellites with a high ranging 

bias which does not translate in a large position domain 

error may not be excluded, as their contribution still 

reduces the VPL, even though to a small extent. 
Nevertheless, with multiple constellations present, one 

might want to exclude the failed satellite, even if this 

does not always result in the minimum VPL value, as 

long as the protection level stays below the VAL. 

 

  Further, it is questionable if it is always reasonable to 

compute a position estimate based on all satellites in view 

rather than selecting only a subset of the ñbestò. In 

Augmented GPS scenarios like the Local Area 

Augmentation System (LAAS), it could be necessary to 

consider and correct only a subset of the current 

constellation, for reasons related to the available signal 
bandwidth or due to large propagation errors affecting a 

number of satellite signals. Hence, there is a need for a 

novel algorithm, which is not only capable of detecting 

multiple satellite failures at a time but also allows 

determining good estimates of the current ranging biases. 

This enables a system to deselect the satellites that have a 

bias higher than a given threshold. With a good estimate 

of the current ranging bias of each individual satellite, it 



 

 

might be possible to reduce multipath effects by 

excluding satellites with a pseudorange bias above a 

certain threshold.  

 

  The remainder of this paper is organized as follows: 

Section 2 discusses the main idea of the RANCO 

algorithm, which is designed to cope with the challenges 

and requirements discussed above. Section 2.1 is devoted 

to the thorough elaboration on its underlying 
methodology, while section 2.2 comprises a detailed 

presentation and comparison of the two major subset 

selection processes, which are part of the RANCO 

algorithm. The S-RANCO algorithm, a variation of 

RANCO that allows the suggestion of possibly failed 

satellites at very low biases, is introduced in section 2.3. 

Then, section 3 gives an overview on the simulation 

results of the algorithm and illustrates the differences 

with respect to the MHSS algorithm. Section 4 concludes 

the work with a brief summary and an outlook on future 

work.  

 
 

2. A NOVEL, RANGE -CONSENSUS-DRIVEN 

APPROACH 

 

The algorithm developed and investigated in this work is 

based on the elementary idea of the Random Sample 

Consensus (RANSAC) algorithm, which is well known in 

the field of graphics and image processing. The algorithm 

is capable of interpreting/smoothing data containing a 

significant percentage of gross errors (Fischler, et al., 

1981). Usually, by computing a Least Squares (LS) 
solution based on multiple measurement samples that 

correspond to a noise distribution, a single biased sample 

will influence the result at a considerable extent. 

Therefore, it is very important to detect and identify 

outliers and remove them from the final solution. Figure 

1 shows a two-dimensional abstraction of this problem. 

The blue noisy measurement points correspond to the 

green line that represents the true model behind the 

samples.  

 

One of them has a large bias and causes a very bad 
estimate (the red line) of the true model when computing 

a LS solution over all measurements.  

 

 

 
Figure 1: All in view solution 

 
Figure 2: Minimum subset solution 

   

 
Figure 3: Best subset solution 

  The RANSAC approach calculates an estimate based on 

the minimal necessary subset of sample points, in order to 

minimize the amount of corrupted measurements 

employed in the estimation. In the two-dimensional 

example, an estimate is directly computed based on only 

two samples. 

 
  As displayed in Figure 2, this may result in many bad 

estimates (e.g. the blue line), depending on the sample 

pair we select. To find the best pair, the algorithm iterates 

through all possible combinations of subsets and counts 

the number of samples that lie within a box surrounding 

the model (the box is defined by a threshold value). If the 

count of the ñinliersò is high, this indicates a high 

consensus of our current solution with the remaining 

samples. The ones that lie outside of the box are called 

ñoutliersò. With a threshold that corresponds to the 
distribution of the noise, it can be assumed, that there is a 

subset, which corresponds to all other unbiased samples 

(see Figure 3). Therefore, this approach is applicable to 

detect multiple biased samples. 

 

  Now we want to transfer this approach to the satellite 

navigation case where one makes four-dimensional 

estimates. Here, the pseudorange measurements are used 

as sample points and the minimum subset position 

estimation is based on a combination of four satellites. 

These position estimations are compared with the 
pseudoranges of all satellites. If the residuals of this 



 

 

comparison are higher than the threshold, the 

corresponding satellites are called outliers. Again, the 

algorithm iterates through all subsets that are acceptable 

with respect to their geometry matrix conditioning and 

skips the weak geometries as those lead to a higher 

position Dilution Of Precision (DOP) and worse 

estimates, which will be discussed in section 2.2. The 

best position estimate is based on the subset of four 

satellites, which leads to the highest consensus with the 
other pseudoranges and therefore has the highest inlier 

count. It also defines which satellites are believed to have 

a bias higher than acceptable. Those biased satellites are 

referred as outliers relative to this final estimate. 

 

  To simulate and evaluate this approach it is not 

necessary to use the real pseudoranges or to calculate the 

real position solution. As we are interested in the degree 

of consensus between the ranges, we rather look at the 

distributions and errors to avoid many unnecessary 

computations. The well-known position determination in 

equation (1) shows the true position vector ὼ, the 

geometry matrix Ὃ, the pseudorange vector  ώ, and the 

noise vector ὲ:  
 

ώ= Ὃὼ+ ὲ (1) 

 

  This equation also holds for a single satellite, where ώ 
and ὲ are the pseudorange and noise scalars and ὫὝ is the 
corresponding line in the geometry matrix, where the first 

three columns are the components of the normal vectors 
between the true position and the individual satellites: 

 

ώ= ὫὝὼ+ ὲ (2) 
 

  The LS estimation for the position is obtained by 

inverting the G matrix. As only subsets of four are 

considered, the linear system is not over determined and 

therefore it is not necessary to build the Moore-Penrose 

pseudoinverse:   

 

ὼ= Ὄώ= ὌὋὼ+ Ὄὲ  (3)          Ὄ= Ὃ 1 (4) 

 

  Now, the consensus between the position estimate that 

was derived by a subset of four satellites and the 
remaining satellites has to be evaluated. Therefore, 

equation (2) is remodeled and stated for the noise free 

case: 

 

ὫὝὼ ώ= 0  (5) 
 

  This is the main relation, which has to be evaluated for 

all satellites and with every reasonable subset of four. As 

already mentioned, it is not necessary to calculate the true 

position estimates but only to investigate the errors. Thus, 

equations (2) and (3) are inserted into equation (5) 

and ὌὋ= Ὅ is eliminated. 

 

ὫὝὌὲ ὲ= 0 (6) 

 
  The final equation (6) can now be used for the 

simulations of the RANCO approach, which will be 

explained in the following section. 

 

2.1 A DETAILED ILLUSTRATION OF RANCO  

 

  After the discussion of the basic ideas behind the 

RANCO algorithm, this section will take a more detailed 

look at it. According to equation (6), the normal vectors 

and consequently the geometry matrix of all satellites in 

view, and also the error vectors are necessary inputs. 

Additionally, the sigma values of the expected error 

distributions that result by modeling the effects of the 
troposphere and the ionosphere are required. Those will 

be used to define appropriate thresholds.  

 

  As described above, the algorithm is identifying biased 

ranging sources by analyzing the agreement of all 

satellites with all possible subsets of four. As the number 

of possible subsets is rather high and many of them have 

a weak geometry, which means that some of the satellites 

are close to each other in the sky, it is reasonable to 

consider only the best subsets. The process of the subset 

selection is described in section 2.2. We can assume at 

this point that the subsets are sorted with respect to the 
robustness to errors, that every satellite will be included 

in at least one subset, and that no satellite is within all 

subsets.  

  The position estimations that are based on these subsets 

are then compared with the pseudoranges of all satellites 

in view. As mentioned, this process is accomplished 

based on equation (6), in order to reduce the 

computational complexity. The deviation of the residuals 

of the comparison is a function of the measurement error 

variances „ and the geometries of the subsets. The 
variances of the residuals are given by the sum of the 

variances of the position estimations and the 

pseudoranges (equation 7). Here, W is the inverse of the 

covariance matrix. 

 

„ὶὩίὭὨόὥὰ= ὫὝ(ὋὝὡὋ) 1Ὣ+ „2    (7) 

 
  The expected deviation of a pseudorange from an 

assumed model is generally related to the individual 

measurements, and therefore, the error tolerance should 

be different for each satellite. Hence, the thresholds are 

individual and are multiples of the expected noise 

deviation. The satellites, whose residuals of the 

comparison are smaller than the corresponding threshold, 

are defined as inliers of the current subset. Here, the 

degree of discrepancy corresponds to the expected noise 

deviation. 

 

  As shown in Figure 4 the number of inliers is counted 
for each subset to find the one with the most inliers and 

thus the highest correspondence with all other satellites. 

The count of inliers, k, has to be large enough to ensure 

that a correct estimate of the true position was detected. 

To avoid the possibility that the final consensus is 

compatible with incorrect ranging sources (and assuming 

that ᾀ is the probability that any given measurement is 

within the error bounds of an incorrect position estimate), 

ᾀὯ 4 must be very small. While there is no general way 
of precisely determining z, it is reasonable to assume that 

it is less than the a priori probability that a given 

measurement is within the error bounds of the correct 
model.  



 

 

Assuming ᾀ< 0.5, a value of k-4 equal to seven will 

provide a probability of better than 99 percent that 

compatibility with an incorrect position estimate will not 

occur. 

 
  Naturally, the algorithm can be stopped as soon as a 

subset that defines all satellites as inliers has been found. 

In this case, RANCO identified no satellites to have a 

bias higher than the threshold. However, if the best subset 

does not correspond to all the satellites in view, the 

outliers of this subset are then likely to have a bias higher 

than the threshold. Then, a final position estimate is 

computed with a Weighted Least Squares (WLS) solution 

based on all inliers. As this solution is expected to be 

closer to the true position than the estimate based on four 

satellites, once more the residuals of the comparison 

between this position estimate and the pseudoranges of 
all satellites in view are determined.  

 

  Thus, a very good guess of the true ranging errors for 

the satellites is obtained. This, in turn, allows the ranking 

of the satellites with respect to their quality and the 

exclusion of satellites that have an unacceptable bias. 

  This allows detecting and removing of a specific bias 

that is common to multiple satellites, which is useful for 

reducing multipath effects (Phelts, et al., 2000). It is 

equivalent to removing the information of one satellite 

from the final solution; nevertheless, this is easily 
affordable given a high number of satellites in view. 

Further, with the knowledge about the position of the 

satellites, it is possible to detect geometric correlations 

with respect to the ranging errors, which can be used to 

detect ionospheric fronts (Konno, 2007). 

 

 

2.2 THE SUBSET SELECTION 

 

  The selection of the useful subsets out of 
Ὧ
ὲ

 possible 

subsets is of central importance for the performance of 

the algorithm. Only subsets that have strong satellite 

geometry, as they are less sensitive to errors, shall be 

considered and those where satellite lines of sight are far 

from orthogonal will generally be skipped. A good 

measurement is the condition number of the geometry 

matrix.  

 
 

     
 

Figure 5: Subset selection algorithm #1 

Figure 4: Data flow diagram for the RANCO algorithm 



 

 

 
 

Figure 6: Subset selection algorithm #2 

As the results of Singular Value Decomposition (SVD) 

are used for the computation of the inverse of the 

geometry matrices and of the conditioning number, this is 
an appropriate approach. 

 

  On the other hand, sufficient subsets are needed to 

ensure that there is at least one subset excluding any 

given satellite. If this is not the case, the given satellite 

cannot be identified to be failed, as it cannot be compared 

against an independent subset. In the case where this 

satellite is biased, all subsets containing it, are affected by 

the bias and consequently erroneous. The probability that 

at least one of our subsets is an error-free set of four 

satellites rises with the number of considered subsets. For 
the case where we have a huge amount of measurements, 

which is usually the case for RANSAC applications, the 

relation is given by equation (8).   

 

 

 

 

   

Here f is the probability that a selected satellite is within 

the error bounds, u is the probability that a subset does 

contain no faulty satellite, and p is the probability that we 

have at least one fault free subset by selecting c 

independent subsets: 

 

(1 ό)ὧ= 1 ὴ ;    ό= Ὢ4       (8) 
 

ὧ=  [log(1 ὴ)]/ [log(1 ό)]     (9) 

 

   

  As in the satellite navigation case a maximum of five 

independent subsets are available, we cannot apply this 

relation directly. However, within a combined GPS and 

Galileo constellation finding sufficient subsets that have a 

conditioning number below a reasonable threshold is 

fortunately usually not a problem.  

 
  As subsets with a good conditioning are less sensitive to 

errors, they are sorted to allow the algorithm to start with 

the best subset as shown in Figure 5. In the error-free 

case, it is therefore likely that the first comparison 

already identifies all satellites to be inliers and stops the 

algorithm. The number of subsets that are finally 

considered is a tradeoff between computation time and 

performance of the algorithm. This approach is already 

fast by building the Singular Value Decomposition 

(SVD) of four-by-four matrices only and reusing the 

results in the further computations. It can nevertheless be 
improved by the selection process in Figure 6: all 

possible subsets of four are determined and saved to an 

array.  

 

 

 

Figure 7: Data flow diagram for the S-RANCO algorithm  



 

 

In parallel, the two-dimensional correlation matrix of the 

normal vectors between the satellites and the receiver 

position is computed. As the algorithm wants to consider 

subsets with satellites whose line-of-sight vectors are 

close to orthogonal, the scalar product of all possible 

combinations of normal vectors is computed. These 

products indicate the collinearity of the vectors. If an 

entry in the symmetric correlation matrix is high, the two 

corresponding satellites are in the same relative direction. 
 

  Based on this knowledge, the algorithm can exclude the 

subsets that comprise satellite combinations that are 

detected to be more collinear than a certain threshold. 

The computation of the collinearity matrix as well as the 

index search is a lot faster than the SVD computation. 

However, as this approach is restricted to two-

dimensional combinations, it cannot evaluate the overall 

orthogonality.  

 

  This means that it excludes subsets that would have 

been accepted by the first approach. Nonetheless, this 
effect is relatively small at high thresholds and therefore 

the tradeoff is acceptable. The two approaches can also 

be combined in a way that the second one preselects 

subsets with a very high threshold to filter out certainly 

not acceptable subsets and forward the remaining ones to 

the first approach. Then, the original algorithm sorts the 

subsets again by the conditioning value and excludes the 

remaining unacceptable subsets. As the second algorithm 

has a negligible computation time compared to the first 

one, it immediately allows a reduction in the number of 

subsets to be inspected by the former. 

 

2.3 S-RANCO, A VARIATION OF RANCO  

 

  After a close look at the subset selection procedure, this 

section will take a look at a second algorithm proposed in 

this paper, which is very closely related to RANCO.  

S-RANCO is also capable of detecting satellite failures 

but its strength can be found in the suggestion of possibly 

failed satellites at very low biases. Therefore, the results 

with S-RANCO can serve as an input for additional 

algorithms. The major differentiator of this algorithm is 
that it does not search for the subset with the least outliers 

but counts the number of times for each satellite being an 

outlier, as shown in Figure 7. Every time a satellite is 

determined not to be an outlier, the counter for that 

satellite is increased. 

 

  As it is not guaranteed that every satellite is included in 

exactly the same amount of subsets, the times the satellite 

is part of the current subset are also counted. This is 

necessary, as a satellite that is part of the position solution 

cannot be an outlier. The addition of the counters 

normalizes these different initial conditions. The satellite 
with the highest counter value is most likely to be faulty. 

It should be investigated by a subsequently executed 

algorithm. If 1000 subsets are considered for instance and 

the value for a specific satellite reaches also 1000 or 

values close to it, is clear that this satellite has been an 

outlier for all or almost all subsets it was not part of. In 

this case, the algorithm could also detect a satellite to be 

failed depending on the threshold. 

3. SIMULATION RESULTS  

 

  The analytically derived results are now supposed to be 

verified by simulations with the Matlab Algorithm 

Availability Simulation Tool (MAAST). This simulator 

has been developed at the GPS Lab in the Department of 

Aeronautics and Astronautics at Stanford University. It is 

a publicly available, customizable MATLAB toolset for 

simulating confidence estimation algorithms and 
evaluating their effects on service availability (MAAST, 

2007). The RANCO algorithm is implemented within 

MAAST as shown in equation (6), Figure 4 and Figure 7. 

The following simulation results are based on a combined 

GPS and Galileo constellation. Users within 70% of the 

earth surface (by excluding the earth poles) in the vertices 

of a longitude and latitude grid with separations of 30 

degrees are considered. The duration of the simulations is 

48 hours, with measurements every 2.4 hours. In this 

way, each simulation run results in 1200 samples. 

 

  Figure 8 shows the distribution of the number of 
satellites in view during the simulation. As expected, 

there is no geometry of less than 13 satellites in a 

combined constellation. An average of 18 satellites in 

view can be fairly accepted. The following two graphs 

show comparisons between the two RANCO algorithms 

and the MHSS algorithm. In this experiment, a single 

satellite failure at a time was simulated. The threshold for 

the RANCO and S-RANCO was set to 2.5 times the 

sigma of the individual satellites to achieve a low missed 

detection rate. The applied biases were multiples of the 

sigma as well and were added to the random noise. 
Therefore, the failure bias and the random noise can add 

up constructively or destructively. If the failure bias is 

equal to the Gaussian noise variance (in the following 

referred to as sigma) then it is very likely that the overall 

error is about zero.  

 

  Therefore, it is evident that the algorithms can hardly 

detect any failures below the addition of the threshold and 

the noise of the satellites. Nevertheless, S-RANCO can 

still suggest the satellite with the highest posterior 

probability of being failed. This early knowledge is very 
useful for further algorithms in a snapshot approach as 

well as in following analyses. RANCO needs a bias of  

 

 

 
 

Figure 8: Distribution of the number of satellites in view 



 

 

 
 

Figure 9: Detection rate by selecting the most critical 
satellite to be failed 

 
 

Figure 10: Detection rate by selecting the least critical 
satellite to be failed 

about two times sigma higher than for the suggestion 

approach, but can identify the faulty satellite. Depending 

on the threshold and the variance of the Gaussian noise, 

there are also false detections, which will be discussed 

later.  

  

 The MHSS is identifying faulty satellites by searching 

for the subset of the current geometry that minimizes the 

VPL. Not only the ranging error, but also its influence to 

the position solution and the probability of the hypothesis 

that a satellite has failed is evaluated here. In Figure 9, 

the most critical satellite was selected to be the failed, and 
therefore the one with the highest influence to the 

position solution, whereas in Figure 10 it was the most 

unimportant one. RANCO is hardly influenced by this 

but the MHSS needs much higher biases to identify 

which satellite has failed. In this comparison, a not 

optimized version of MHSS was used and one can expect 

that MHSS can perform significantly better if it is 

adapted to the FDE application. An implementation of a 

Weighted RAIM (Walter, et al., 1995) approach would 

enhance the performance significantly.    

 
Besides the ability to detect biases that are hardly above 

the noise, the main advantage of RANCO is the detection 

of multiple biases at a time. Figure 11 shows the results 

of an experiment with different numbers of satellites 

failed. There are cases where the algorithm detects only 

partially the failed satellites. 

 
 

Figure 11: Multiple satellite failure detection 

  To quantify detection, a correct and complete detection 

is weighted as 100% and a partial detection of the failed 

satellites in the corresponding percentage. The average 

detection score is visualized in this figure. With an 

increasing number of satellite failures, the necessary bias 

for a correct detection is increasing by about one sigma 

for each additional failed satellite. This behavior changes 

when we encounter more than seven failures.  

 

  With the distribution of the number of visible satellites 
in mind, we see that at least four satellites plus one 

additional correct satellite are necessary to identify a 

subset that does not include biased ranging sources and 

consequently results in an acceptable position estimate. 

This is necessary in order to be able to correctly detect 

the remaining satellites as outliers (and thus faulty). 

Independent of the bias, the constellations where this 

constraint is not fulfilled cannot be correctly analyzed. 

For the case where ten satellites have failed, at least 15 

satellites in view are necessary to identify all outliers.  

 

  The distribution in Figure 8 shows that 5.6% of the 
geometries considered have 15 satellites or fewer in view. 

At a bias of 70 times sigma, the detection rate is 

determined to be 93% with 10 failed satellites, which 

matches very well the theoretical limit. Further, it is 

important that the errors are not correlated. If there are 

more correlated faulty satellites than correct ones, the 

algorithm will also not be able to detect them. Altogether, 

the algorithm is able to identify at most the ñnumber of 

satellites in view ï (4+1)ò faulty satellites. Besides the 

detection rate, the false detection probability is of high 

importance for using RANCO as a RAIM algorithm. To 
obtain results of statistical significance, the following 

simulations were based on a single geometry with only 

13 satellites in view and one million samples were 

recorded. As described before, there are two thresholds 

where the first one is meant to identify the inliers within 

the run through all subsets and therefore to identify the 

best subset. The second threshold is applied after 

calculating a WLS solution based on all previously 

identified inliers.  



 

 

 
Figure 12: False detection probability as a function of the 

thresholds (RANCO) 

   

  As shown in Figure 12, in the most cases it is 

convenient to set both thresholds to the same values. 

However, in geometries with very few satellites it is 

reasonable to reduce the first threshold in order to 

increase the dynamic of the ranking of the subsets via the 

inliers. The final outliers can then be identified based 

upon the weighted and smoothed solution using all 

previous inliers and the second threshold. The blank areas 

in the logarithmic graph show that not a single false 

detection could be recognized within one million 

samples.  

 
  Thus, it could be shown that a threshold of five times 

sigma is sufficient to comply with the requirements for 

the False Alarm Probability. However, the requirements 

for the false detection rate can be reduced by excluding 

satellites only if this results in a reduction of the VPL. 

Further, the Missed Detection Probability for different 

biases and thresholds has to be analyzed. Figure 13 shows 

the relationship between the applied threshold and the 

necessary bias.  

 

  For these simulations, the applied thresholds were set 

solely relative to the expected variances of the 

pseudoranges for reasons of computational complexity. 

At high thresholds, the recalculation of the position 

estimation based on all detected inliers is of high 

importance. Here, the algorithm is rarely able to find the 

best subset, as it will identify all correct satellites already 

in one of the first subsets that are considered. By basing 

our decisions on all inliers rather than on a subset, we can 
reduce the necessary bias significantly. The missed 

detection probability at a threshold of five times sigma 

and a bias of 12 times sigma is therefore lower than 10-4. 

 

 

4. CONCLUSIONS 

 

  The reliable and fast detection of faulty satellite signals 

is a central challenge in satellite navigation, especially 

with respect to safety of life applications. This fact is 

becoming more important with the upcoming new global 

(GNSS) and regional satellite navigation systems. 
 

  This novel algorithm, called RANCO (Range Consensus 

Algorithm), developed at the Stanford GPS-Lab, 

addresses this problem by identifying faulty satellites in 

the range domain at very low biases. 

 

  In general, knowing the pseudorange error in the range 

domain, one can easily calculate the effect of biases in the 

position domain and decide whether it is reasonable to 

exclude a satellite or not. RANCO calculates a position 

solution based on subsets of four satellites and compares 
this estimate with the pseudoranges of all the satellites 

not contributing to this solution. The residuals of this 

comparison are then used as a measure of statistical 

consensus. 

 

 

 

Figure 13: Missed detection probability as a function of the threshold (RANCO) 


