
Enhancements of the Range Consensus 
Algorithm (RANCO) 

 
 

Georg Schroth1, Markus Rippl1, Alexandru Ene2, Juan Blanch2, Boubeker Belabbas1,  
Todd Walter2, Per Enge2, Michael Meurer1  

 
1German Aerospace Center 

2Stanford University 
 
 
 
BIOGRAPHY   
 
Georg Schroth is currently working on his Master’s 
Thesis in Electrical Engineering and Information 
Technology at the Technical University of Munich 
(TUM) and he is a working student at the Institute of 
Communications and Navigation (IKN) of the German 
Aerospace Center (DLR). He also participates in the 
graduate program on Technology Management of the 
Center for Digital Technology and Management (a joint 
venture of both Munich Universities), which is part of the 
Elite Network Bavaria. 
 
Markus Rippl received his Diploma in Electrical 
Engineering and Information Technology from TUM in 
2007. Since then, he has been a research fellow in the 
IKN at DLR in Oberpfaffenhofen near Munich. His field 
of work is the integrity of Global Navigation Satellite 
System (GNSS) based navigation using receiver-side 
algorithms. 
 
Alexandru Ene is a Ph.D. candidate in Aeronautics and 
Astronautics working in the GPS Laboratory at Stanford 
University. His research focus is on software simulation 
in the area of combined GPS/Galileo signals, positioning 
error threat space and navigation integrity. 
 
  Juan Blanch received a Ph.D. in Aeronautics and 
Astronautics in December 2003 from Stanford University, 
for his work on ionospheric estimation for the Wide Area 
Augmentation System (WAAS). He continued as a 
Research Associate in the Stanford GPS laboratory, where 
he is currently developing algorithms for civil aviation 
navigation integrity. 
 
Boubeker Belabbas is a research fellow in the IKN at 
DLR in Oberpfaffenhofen. He is a PhD student at ENPC 
(Ecole Nationale des Ponts et Chaussées) – Paris and an 
external PhD student at the TUM. His field of work is that 
of GNSS integrity, with its applications in augmentation 
systems and for Safety of Life receivers. 

 
Todd Walter is a Senior Research Engineer and the 
WAAS Lab Director in the Department of Aeronautics 
and Astronautics at Stanford University. He received his 
Ph.D. from Stanford in 1993 and is currently developing 
WAAS integrity algorithms and analyzing the availability 
of the WAAS signal. He is a fellow of the ION. 
 
Per Enge is a Professor of Aeronautics and Astronautics 
in the School of Engineering at Stanford University. He 
directs the GPS Research Laboratory, which develops 
satellite navigation systems based on the Global 
Positioning System (GPS). He has been involved in the 
development of WAAS and LAAS for the FAA. Per is a 
Fellow of the ION and the IEEE, and has received the 
Kepler, Thurlow, and Burka Awards from the Institute of 
Navigation (ION) for his work. 
 
Michael Meurer received a Ph.D. degree in Electrical 
Engineering and in 2005 became an Associate Professor 
(PD) at the University of Kaiserslautern, Germany. Since 
2006, Dr. Meurer has been with the IKN at DLR, where 
he is currently the director of the Department of 
Navigation. 
 

ABSTRACT  
 
In anticipation of the future GNSS constellations 
becoming operational, it will no longer be possible to 
assume that the probability of failure for more than one 
satellite within a certain timeframe is negligible. Further, 
it is questionable whether it is always reasonable to 
compute a position estimate based on all satellites in 
view, rather than selecting the “best” subset. 
 
The Range Consensus (RANCO) algorithm is not only 
capable of detecting multiple satellite failures at a time, 
but it also allows the determination of good estimates of 
the current ranging biases. RANCO calculates position 
solutions based on subsets of four satellites and compares 



this estimate with the pseudoranges of all the satellites not 
contributing to this solution. The residuals of this estimate 
are then used as a measure of statistical consensus. 
 
The scope of this work is the optimization of the 
performance of RANCO by restricting it to the detection 
of a certain number of failed satellites at a time and by 
finding an optimal subset selection process for this 
constraint. Furthermore, the computation of the subset 
quality was reconsidered and significantly improved by 
the use of the Weighted Dilution of Precision (WDOP).  
In this paper, the physical model for determining the 
threshold for the separation between correct and faulty 
satellite signals has been extended. The RANCO 
algorithm was also verified with respect to its capability 
of detecting and identifying satellites with a bias higher 
than a given threshold. Throughout the paper those 
satellites are defined to fail.  
 
The abilities of RANCO, to exclude multiple 
simultaneous ranging faults and low biases, paves the way 
for safety critical applications by combining receiver 
autonomous algorithms with the integrity channel 
information from future GNSS systems.  
 

INTRODUCTION  
 
With the rise of enhanced GNSS services over the next 
decade (i.e. the modernized GPS, Galileo, GLONASS, 
and Compass constellations) [11], the number of ranging 
sources (satellites) available for a positioning will 
significantly increase to more than double the current 
value. Simulations show that with full Galileo and GPS 
constellations an average of 18 satellites and a minimum 
of 13 will be in view for most users. Hence, the 
applicability of RAIM techniques for the purpose of 
monitoring position integrity will increase. Additionally, 
the use of dual frequency receivers will eliminate almost 
completely the largest magnitude errors for unaided GPS, 
those caused by the ionospheric delay [7,8].  
 
Unfortunately, one cannot assume that GNSS services, 
other than GPS, will have the same satellite failure 
probabilities. A failure probability of 10-3 might be proven 
and realized by the control segment much more easily 
than the currently accepted probability of 10-5. Altogether, 
it will no longer be possible to assume that the probability 
of failure for more than one satellite within a timeframe, 
significant for safety critical applications, is negligible. 
 
Selecting only a subset of the “best” satellites might be 
superior to computing a position estimate based on all 
satellites in view if it can be guaranteed that this subset 
includes only small biases in the range measurements.  In 
Augmented GPS scenarios like the Local Area 
Augmentation System (LAAS), it could be necessary to 
consider and correct only a subset of the current 

constellation, for reasons related to the available signal 
bandwidth or due to large propagation errors affecting a 
number of satellite signals.  
 
The Range Consensus (RANCO) algorithm [1], 
developed at the Stanford GPS Lab and presented at the 
European Navigation Conference 2008 in Toulouse, is not 
only supposed to be capable of detecting multiple satellite 
failures at a time but also to allow the determination of 
good estimates of the current ranging biases. Throughout 
the simulations in this paper, we will consider the 
particular case where all ranging sources are satellites of 
the GNSS constellations (i.e. no SBAS, GEOs, or 
pseudolites).  
 
RANCO calculates position solutions based on subsets of 
four satellites and compares this estimate with the 
pseudoranges of all the satellites not contributing to this 
solution. The residuals of this comparison are then used as 
a measure of statistical consensus. The satellites that have 
a higher estimated range error than a certain threshold are 
identified as outliers, as their range measurements 
disagree with the expected pseudoranges by a significant 
amount given the position estimate. All subsets of four 
satellites that have an acceptable geometric conditioning 
with respect to orthogonality will be considered.  
 
The chances are very high that a subset of four ranging 
sources that is consistent with all the other “healthy” 
range measurements will be found. The subset with the 
most inliers is consequently utilized for identification of 
the outliers in the combined constellation.   
 
This approach allows the identification of as many 
outliers as the number of satellites in view minus five: 
four for the estimation, and one additional satellite that 
confirms this estimation. As long as more than five 
measured pseudoranges are consistent with respect to 
each other, one can exclude the ones that have a bias 
higher than the threshold. This approach is similar to the 
Random Sample Consensus Algorithm (RANSAC), 
which is applied for computer vision tasks [3], as well as 
previous Range Comparison RAIM algorithms [5]. As 
this algorithm is designed for the use with a combined 
GPS and Galileo constellation, it is performing 
significantly better in this environment. However, it can 
also be used with GPS only and still detect failed satellites 
at low biases. 
 
The first section is a review of the basic ideas of the 
RANCO algorithm, which form the basis for the 
enhancements presented in the second section. Here, the 
procedure for the determination of the fault-free subset is 
improved and a physical model for the determination of 
the threshold for the separation between correct and faulty 
satellite signals is extended.  
 



In the next section, the performance improvement of 
RANCO by restricting it to the detection of a certain 
number of failed satellites at a time and using a new 
optimal subset selection process for this constraint is 
presented. Further, the computation of the subset quality 
is reconsidered and significantly enhanced with the aid of 
the so called Weighted Dilution of Precision. 
 
The fourth section contains a comparison of the results 
with the initial and enhanced versions of the algorithm, 
followed by a conclusions section 
 

RANGE CONSENSUS APPROACH 
 
The algorithm developed and investigated in this work is 
based on the elementary idea of the Random Sample 
Consensus (RANSAC) algorithm, which is used in the 
field of graphics and image processing. The algorithm is 
capable of interpreting data containing a significant 
percentage of gross errors [3].  
 
Usually, by computing a Least Squares (LS) solution 
based on multiple measurement samples that correspond 
to a noise distribution, a single biased sample will 
influence the result to a considerable extent. Therefore, it 
is very important to detect and identify outliers and 
remove them from the final solution. Figure 1 shows a 
two-dimensional abstraction of this problem. The blue 
noisy measurement points correspond to the green line 
that represents the true model behind the samples. One of 
them has a large bias and causes an inaccurate estimate 
(the red line) of the true model when computing a LS 
solution over all measurements.  
 
The RANSAC approach calculates an estimate based on 
the minimal necessary subset of sample points, in order to 
minimize the amount of corrupted measurements 
employed in the estimation.  

 
Figure 1: All in view solution 

In the two-dimensional example, an estimate is directly 
computed based on only two samples. This stands in 
contrast to the most RAIM algorithms like the Multiple 
Hypotheses Solution Separation (MHSS) algorithm, 
where the maximum number of samples is used [9]. 
 
As displayed in Figure 2, this may result in many bad 
estimates (e.g. the blue line), depending on the selected 
sample pair. In order to find the best pair, the algorithm 
iterates through all possible combinations of subsets and 
counts the number of samples that lie within a box 
surrounding the model (the box is defined by a threshold 
distance from the model solution space, represented in 
this two-dimensional case by a line). 
 
If the count of the “inliers” is high, this indicates a high 
consensus of our current solution with the remaining 
samples. The measurement points that lie outside of the 
box are called “outliers”. With a threshold that 
corresponds to the distribution of the noise, it can be 
assumed, that there is a subset, which corresponds to all 
other unbiased samples, see Figure 3. Therefore, this 
approach is applicable to detect multiple biased samples. 
 
Now this approach will be transferred to the satellite 
navigation case with four-dimensional estimates. Here, 
the pseudorange measurements are used as sample points 
and the minimum subset position estimation is based on a 
combination of four satellites.  
 
These position estimations are compared with the 
pseudoranges of all satellites. If the residuals of this 
comparison are higher than the threshold, the 
corresponding satellites are called outliers. Again, the 
algorithm iterates through all subsets that are acceptable 
with respect to the conditioning of their geometry matrix 
and skips the weak geometries that lead to a higher 
position Dilution of Precision (DOP) and worse estimates.  
 

 
Figure 2: Minimum subset solution 



  
Figure 3: Best subset solution 

 
The best position estimate is based on the subset of four 
satellites, which leads to the highest consensus with the 
other pseudoranges and therefore has the highest inlier 
count. It also defines which satellites are believed to have 
a bias higher than acceptable. Those biased satellites are 
referred as outliers relative to this final estimate. 
 
To simulate and evaluate this approach it is not necessary 
to use the real pseudoranges or to calculate the real 
position solution. As we are interested in the degree of 
consensus between the ranges, we rather look at the 
distributions and errors to avoid many unnecessary 
computations. The well-known position determination in 
equation (1) shows the true position vector ݔ, the 
geometry matrix ܩ, the pseudorange vector  ݕ, and the 
noise vector ݊:  

ݕ ൌ ݔܩ ൅ ݊ (1) 
 
This equation also holds for a single satellite, where ݕ෤ and 
෤݊ are the pseudorange and noise scalars and ்݃ is the 
corresponding line in the geometry matrix, where the first 
three columns are the components of the normal vectors 
between the true position and the individual satellites: 
 

෤ݕ ൌ ݔ்݃ ൅ ෤݊ (2) 
 
The LS estimation for the position is obtained by 
inverting the G matrix. As only subsets of four are 
considered, the linear system is not over determined and 
therefore it is not necessary to build the so called Moore-
Penrose pseudoinverse:   

 
ොݔ ൌ ݕܪ ൌ ݔܩܪ ൅ ܪ          (3)  ݊ܪ ൌ  ଵ (4)ିܩ

 
Now, the consensus between the position estimate that 
was derived by a subset of four satellites and the 
remaining satellites has to be evaluated. Therefore, 
equation (2) is remodeled and stated for the noise free 
case: 

 
ොݔ்݃ െ ෤ݕ ൌ 0  (5) 

 
This is the main relation, which has to be evaluated for all 
satellites and with every reasonable subset of four. As 
already mentioned, it is not necessary to calculate the true 
position estimates but only to investigate the errors. This 
fact stems from inserting equations (2) and (3) into 
equation (5) and reducing ܩܪ ൌ  : ܫ
 

݊ܪ்݃ െ ෤݊ ൌ 0 (6) 
 
The final equation (6) can now be used for the simulations 
of the RANCO approach.  
 
 
RANCO AND ITS NOVEL EXTENSIONS 
 
This section gives a detailed illustration of RANCO and 
its novel extensions. According to equation (6), the 
normal vectors and consequently the geometry matrix of 
all satellites in view as well as the error vectors are 
necessary inputs; see Figure 4. Additionally, the sigma 
values of the expected error distributions that result by 
modeling the effects of the troposphere and the 
ionosphere are required. Those will be used to define 
appropriate thresholds.  
 
As described above, the algorithm is identifying biased 
ranging sources by analyzing the agreement of all 
satellites with all possible subsets of four. As the number 
of possible subsets is rather high and many of them have a 
weak geometry, which means that some of the satellites 
are close to each other in the sky, it is reasonable to 
consider only the best subsets. The process of the subset 
selection is described in the following section.  
 
We can assume at this point that there is at least one 
subset that includes no faulty satellites and has a 
reasonable geometry. 
 
The position estimations that are based on these subsets 
are then compared with the pseudoranges of all satellites 
in view, indicated as the range comparison block in 
Figure 4. As mentioned, this process is accomplished 
based on equation (6), in order to reduce the 
computational complexity.  
 
The expected deviation of a pseudorange from an 
assumed model is generally related to the individual 
measurements and the geometry of the subset. Therefore, 
the error tolerance should be different for each satellite. 
To allow a separation of errors that lie within the expected 
error distribution, and biases of unacceptable magnitude, 
the thresholds are individual and multiples of the expected 
standard deviation of the residual of the range 
comparison.  



This standard deviation is a function of the expected 
measurement error standard deviations ߪ and the standard 
deviation of the position estimate.  
 
With W, the inverse of the covariance matrix, the term 
ሺܩ்ܹܩሻିଵ computes a four-dimensional measure of 
confidence of the current position estimate. This allows us 
to determine the confidence in the direction of the satellite 
that has to be investigated by projecting the four-
dimensional measure on the corresponding line-of-sight 
vector ݃. This results in the expected variance of the 
position in the direction of the satellites to be compared. 
Due to the fact that at each range comparison the set of 
satellites in the subset and those to be compared do not 
overlap, there is no dependency between them. Thus, the 
variance of the residual is given by the sum of the 
variances of the position estimations and the 
pseudoranges (equation 7).  
 

௥௘௦௜ௗ௨௔௟ߪ ൌ ඥ்݃ሺܩ்ܹܩሻିଵ݃ ൅  ଶ    (7)ߪ
 

Hence, the threshold of the range comparison can now be 
defined to be a multiple of the expected residual standard 
deviation. The satellites, whose residuals of the 
comparison are smaller than the corresponding threshold, 
are defined as inliers of the current subset. Thus, the 
degree of discrepancy corresponds to the expected noise 
deviation and the geometry of the subset. 

As shown in Figure 4, RANCO iterates through all 
selected subsets and performs the above described 
comparison. This allows the determination of the 
consensus set for each subset and thus the number of 
inliers. The subset with the highest inlier count can be 
assumed to have the highest correspondence with all other 
satellites. The count of inliers, k, has to be large enough to 
ensure that a correct estimate of the true position was 
detected. To avoid the possibility that the final consensus 
is compatible with faulty ranging sources (and assuming 
that ݖ is the probability that any given measurement is 
within the error bounds of an incorrect position estimate), 
 ௞ିସ must be very small. While there is no general way ofݖ
precisely determining z, it is reasonable to assume that it 
is less than the a priori probability that a given 
measurement is within the error bounds of the correct 
model. Assuming ݖ ൏ 0.5, a value of k-4 equal to seven 
will provide a probability of better than 99 percent that 
compatibility with an incorrect position estimate will not 
occur. On the other hand, in the absence of faults, the 
algorithm can be stopped as soon as a subset that defines 
all satellites as inliers has been found. In this case, 
RANCO identified no satellites to have a bias higher than 
the threshold.  
 
As indicated above, a failed satellite within a subset 
directly impacts the resulting position estimate since four 
satellites are used to compute four unknowns.  Thus, a 
subset that includes a failed satellite will result in a small 

Figure 4: Data flow diagram for the RANCO algorithm



consensus set. This allows the detection of small biases. 
However, we can even improve this by the additional use 
of the Weighted RAIM approach [2].  
 
Thus, we compute the Weighted Sum of the Squared 
Errors (WSSE) of each relevant consensus set, determined 
within the range comparison. As the consensus set 
includes more than four satellites, a LS solution can be 
computed. With the WSSE, the overall consistency of the 
solution is examined by the error residual of the fit. An 
estimate of the ranging errors from the LS fit can be 
obtained from the basic measurement equation  
 

̂ߝ ൌ ݕ െ ොݔܩ ൌ ሺܫ െ ݕሻܭܩ ൌ ሺܫ െ ܲሻ(8) ,ݕ 
 

where ܭ is the weighted pseudo-inverse of G 
 

ܭ ൌ ሺܩ்ܹܩሻିଵ(9)  ்ܹܩ 
and 
 

ܲ ൌ  (10)  .ܭܩ
 
Based on these error estimates (̂ߝ), the scalar WSSE 
measure can be defined: 
 
ܧܹܵܵ ൌ ̂ߝ்ܹ̂ߝ ൌ ሾሺܫ െ ܲሻݕሿ்ܹሾሺܫ െ ܲሻݕሿ ൌ
ܫሺ்ܹݕ                  െ ܲሻ(11)  .ݕ 
 
Thus, a low WSSE indicates that the fit was good and the 
error in the position is most likely small.  
 
We will combine the two approaches described, by 
building a quotient of the WSSE and the inlier count. If a 
fault free and a faulty subset result in the same or nearly 
the same number of inliers, due to the fact that the bias is 
very small, the WSSE is capable of indicating which of 
the subsets has the highest probability of being fault-free 
[2]. Thus, the detection rate can be further improved. If 
the best subset does not correspond to all the satellites in 
view, the outliers of this subset are then likely to have a 
bias higher than the threshold. Then, a final position 
estimate is computed with a Weighted Least Squares 
(WLS) solution based on all inliers of the best subset. As 
this solution is expected to be closer to the true position 
than the estimate based on four satellites, the residuals of 
the comparison between this position estimate and the 
pseudoranges of all satellites in view are determined once 
more. Thus, a very good guess of the true ranging errors 
for the satellites is obtained. In turn, this permits the 
ranking of the satellites with respect to their quality and 
the exclusion of satellites that have an unacceptable bias. 
It also allows detecting and removing of a specific bias 
that is common to multiple satellites, which is useful for 
reducing multipath effects [10]. This is equivalent to 
removing the information of one satellite from the final 
solution; an affordable tradeoff given a high number of 
satellites in view. As a final remark, with the knowledge 

about the position of the satellites, it is possible to detect 
geometric correlations with respect to the ranging errors, 
which can be used to detect ionospheric fronts [4]. 
 
 
SUBSET SELECTION 
 
The selection of the useful subsets out of ቀ݊ݏቁ possible 
subsets is of central importance for the performance of the 
algorithm. Here, ݊ is the number of satellites in view and 
 .the number of satellites in a subset, which is set to 4 ݏ
Only subsets having excellent satellite geometry shall be 
considered, as they are less sensitive to errors. Those 
subsets where line-of-sight vectors are far from 
orthogonality will generally be skipped.  
 
On the other hand, we have to ensure that for every 
relevant combination of faulty measurements there is at 
least one subset that excludes it. This means, that the 
algorithm has to be aware whether it can guarantee that 
there is one fault-free subset with a good geometry. 
Otherwise, the algorithm has to give a warning, if the 
current constellation does not allow inspecting all 
possible combinations of failed satellites, called failure 
modes.  
 
Hence, the subsets with acceptable quality have to be 
determined first. With a combined GPS and Galileo 
constellation the number of satellites in view and thus the 
number of subsets is quite high. Hence, the ranking of the 
satellite quality has to be very computationally efficient. 
We propose to use an iterative approach to first eliminate 
the subsets that do not have a robust geometry and thus 
are unlikely to result in a high consensus set.  
 
This is done with the subset pre-selection algorithm 
shown in Figure 5.  
 

 
 

Figure 5: Subset pre-selection algorithm  



 
Figure 6: Distribution of the WDOP filtered with the pre-

selection algorithm  

Here, a two dimensional correlation matrix of all line-of-
sight vectors is generated by computing the inner product 
of all possible pairs of line-of-sight vector combinations.    
 
This allows the identification of the satellites whose lines 
of sight are nearly aligned. A good measurement 
geometry entails satellites well-dispersed across the 
visible sky. Therefore, subsets should not include 
satellites that are in about the same relative direction. 
Hence, we exclude the subsets that comprise pairs of 
satellites that are detected to be more collinear than a 
certain threshold. 
 
The red histogram in Figure 6 shows a typical distribution 
of the WDOP of the available subsets for a single 
measurement. The WDOP is a measure of the expected 
positioning confidence and of the overall quality of the 
satellite geometry. It is determined as ܹܱܲܦ ൌ
ඥሺܩ்ܹܩሻିଵ. 
 

 
 

Figure 7: Subset post-selection algorithm  

The application of a threshold for the allowed collinearity 
of a pair of line-of-sight vectors included in a subset 
results in the filtered blue and green distributions. It was 
empirically assessed that a considerable part of the 
unacceptable subsets can be excluded at thresholds of 
0.95 and 0.90 respectively. Unfortunately, there are 
subsets with a very high WDOP and thus a bad geometry 
that cannot be identified by inspecting the geometry 
matrix from a two-dimensional perspective only. 
However, the advantage of applying this algorithm is that 
it is extremely fast in reducing the number of subsets to 
be considered in the next selection step.  
 
In the initial version of the RANCO algorithm, the subsets 
have been evaluated by the computation of the condition 
number, which proved to be a reliable indicator for the 
geometry of the subsets. As the results of Singular Value 
Decomposition (SVD) are used for the computation of the 
geometry matrix inverse and of the conditioning number, 
this seemed to be an appropriate approach. However, with 
the implementation of the new threshold that is based on 
the standard deviations of the expected signal errors and 
the geometry, the WDOP turned out to be the optimal 
measure for the subset quality. Here, both the geometry 
and the expected signal errors of the satellites in the 
subset are considered. Hence, the subsets with the lowest 
WDOP values can be assumed to result in the best 
position estimates if they are fault-free. Experiments 
showed, that a WVDOP, that investigates the vertical 
quality of the position estimate can be computed faster 
but is an insufficient estimate of the WDOP. The 
threshold for the subset selection has been set to a WDOP 
value of 8 m. The change of this parameter results in an 
alteration of the availability of RANCO. If the threshold 
is set to a very low WDOP value, the chances are high 
that there are not sufficient subsets to investigate all 
possible failure modes. On the other hand, a high 
threshold increases the Missed Detection and False Alarm 
Rates.  
 
After having determined which subsets have the highest 
probability to produce optimal position estimations, it is 
now important to find the subsets essential in 
investigating all possible failure modes. Whereas the 
previous version of RANCO was capable of identifying 
more than half of the satellites in view to be faulty, this 
ability is generally not necessary in integrity scenarios 
since the probability for this event can be neglected.  The 
probability for a satellite fault is assumed to be lower than 
10-3, which allows limiting the assumed maximum 
number of satellites likely to be failed at a time.  
 
This additional information allows RANCO to 
significantly reduce the computational complexity by 
reducing the number of subsets that have to be 
considered. By limiting the maximum number of failed 
satellites to a certain value, all possible satellite failure 



combinations can be determined. The post-selection 
algorithm, illustrated in Figure 7, starts with the 
identification of the  ቀ

݊
݂ቁ failure modes, where ݊ 

corresponds to the number of satellites in view and ݂ to 
the maximum failed satellites. Subsequently, the goal of 
the algorithm is to find the smallest combination of 
subsets that can investigate all identified failure modes. 
Additionally, this combination of subsets should be 
ideally the one with the lowest WDOP values.  
 
A subset can investigate all ranges not contained in it with 
respect to their biases, and thus all failure modes that are 
composed of these not contained measurements. For a 
maximum number of possibly failed satellites ݂, each 

satellite is part of  ൬݊ െ 1
݂ െ 1൰ failure modes. With every 

investigated failure mode, this count is reduced for the 
satellites included in these modes. Hence, the algorithm 
can identify the satellites that are in the least failure 
modes. The subset, which can investigate the most 
remaining failure modes, includes the satellites with the 
lowest count of being part of a failure mode.   
 
The algorithm naturally begins with the subset, which has 
the lowest WDOP value and determines the failure modes 
that can be investigated with it. Subsequently, these can 
be deleted from the list of remaining failure modes. 
Hence, the count for the satellites of being part of the 
remaining modes can also be updated. By calculating the 
sum of these counts for every subset, the remaining 
subsets can be ranked by their ability to investigate the 
remaining failure combinations. Thus, the subset with the 
lowest sum comprises of the satellites which are included 
in the least failure modes. This subset can investigate the 
satellites that are not part of the subset and thus the ones 
that have the highest occurrence in the remaining failure 
combinations. Additionally, the subset ranking includes 
also the WDOP value to give preference to the subsets 
resulting in optimal position estimates.  
 

 
 

Figure 8: Previous RANCO worst case False Alarm Rate  

The search for the next best subset continues until all 
failure modes can be investigated. For the case in which 
not all failure modes can be investigated, a warning has to 
be given. Experiments show that for an average of 19 
satellites in view, about 5-6 subsets are required to cover 
all possible failure modes, assuming a maximum of four 
failed satellites at a time. Compared to the average of 
2000 previously evaluated subsets, this poses an 
enormous advantage with respect to the computation time.     
 
As the evaluation of the subsets will start with the best, 
from a WDOP point of view, it is therefore likely that the 
first comparison already identifies all satellites to be 
inliers and stops the algorithm in the error-free case.  
 

SIMULATION RESULTS 
 
The improvements and modifications to the original 
RANCO algorithm have been verified by simulating a 
worst case scenario and a realistic simulation over 78% of 
the earth.  

 
I. Worst-case scenario 

 
The worst case scenario is used to directly compare the 
previous RANCO algorithm with the enhanced version. In 
the worst case scenario, a geometry with 13 visible 
satellites providing a maximum GDOP is used, where two 
satellites failed at a time. As described above, RANCO 
needs at least one subset of four satellites with a good 
geometry that does not include any failed satellite. Hence, 
this very challenging scenario should be ideal to illustrate 
the strengths and weaknesses of this approach. 
 
First, both versions of the algorithm are evaluated in this 
scenario with respect to the False Alarm Rate. Here, all 13 
satellites were unbiased and a normally distributed noise 
has been applied to each of them.  
 
 

 
 

Figure 9: Enhanced RANCO worst case False Alarm Rate  



 
 

Figure 10: Previous RANCO worst case Missed Detection 
Rate for 2 biased SVs  

 
In Figures 8, and 9 the False Alarm Rate (FAR) is plotted 
against the two thresholds, where the first is used to 
identify the subset with the highest probability to be fault 
free and the second to differentiate between biased and 
unbiased satellites.  
 
Here, the thresholds range from 1.7 times to 6.0 times the 
expected noise standard deviation (sigma) for each 
individual satellite. As assumed, the FAR is mainly 
depending on the second threshold. However, if the first 
threshold is set to very low values, the identified fault free 
subset is small and the differentiation based on this subset 
is less reliable. In comparison, due to the new definition 
of the threshold, the enhanced version results in FARs of 
two orders of magnitude lower than the previous version.   
 
In the second part of the worst-case scenario, the Missed 
Detection Rate (MDR) for the two failed space vehicles 
(SVs) is determined. Here, both thresholds are set to the 
same value to simplify the evaluation. The bias of the two 
satellites is applied in multiples of the expected noise 
standard deviation (sigma) and has a random sign. It 
ranges from 8 times to 20 times the standard deviation.  
 
A Missed Detection is recognized if one of the two biased 
satellites has not been identified. The improvements with 
the new version of RANCO achieve a MDR that is one 
order of magnitude lower than the previous version. The 
results with the two versions are illustrated in Figures 10 
and 11. It is important to note that at very low thresholds 
a further reduction of the threshold does not necessarily 
result in a lower MDR.  
 
In these cases, the subset identified to be fault free is 
small due to the fact that also some correct satellites are 
excluded. Thus, as described above, the probability that 
this subset is indeed fault free decreases.    

 
 
Figure 11: Enhanced RANCO worst case Missed Detection 

Rate for 2 biased SVs 

 
II. Realistic simulations  

 
To provide the reader with more realistic statistics on the 
performance of the enhanced version of RANCO, this 
algorithm has been evaluated with MAAST, a simulation 
tool developed at Stanford [6]. The following statistics are 
based on constellations observed by 240 users, equally 
distributed over the earth surface between latitudes 70° S 
-70° N at 102 time points over 24 hours. A combined GPS 
and Galileo constellation with 54 satellites altogether has 
been simulated.  
 
In these simulations, the first threshold has been set to 2.5 
times sigma and the second to 3.5 times sigma as those 
values resulted in a good balance between MDR and 
FAR. Under these conditions, the FAR has been 
determined to be lower than 10-4. The subset post-
selection algorithm has been adjusted to assume a 
maximum of four failed satellites at a time.   
 
Figure 12 illustrates the Missed Detection Rate relative to 
the bias applied to a single satellite. To show the impact 
of the subset post-selection algorithm, the blue curve 
represents the performance without the post-selection 
algorithm and the red line the performance with enabled 
post-selection.  
 
The comparison of both clearly shows that the selection 
of only necessary and optimal subsets is superior to the 
selection of all subsets with good geometry. Hence, this 
enhancement not only significantly reduces the 
computational complexity but also improves the 
performance of RANCO. 
 
In Figure 13, the same scenario with four biased satellites 
is illustrated.  



 
 

Figure 12: Enhanced RANCO Missed Detection Rate for 1 
biased SVs simulated over 78% of the world 

 

 
 

Figure 13: Enhanced RANCO Missed Detection Rate for 4 
biased SVs simulated over 78% of the world 

 
As the number of failed satellites now corresponds to the 
assumed maximum, the post-selection cannot outperform 
the version without the post-selection with respect to the 
Missed Detection Rate.  
 
The post-selection algorithm gives warnings in the cases 
where it was not able to find sufficient subsets. This 
information is not included in the displayed MDR values.  
 
Altogether, the enhancements to the previous version of 
RANCO resulted in Missed Detection Rates that are 
lowered by more than two orders of magnitude. 
 
 

CONCLUSIONS 
 
The reliable and fast detection of faulty range 
measurements is a central challenge in satellite 
navigation, especially with respect to safety of life 
applications. This fact is becoming more important with 

the upcoming GNSS and regional satellite navigation 
systems. 
 
This novel algorithm, called RANCO (Range Consensus 
Algorithm), developed at the Stanford GPS Lab and the 
German Aerospace Center, addresses this problem by 
identifying faulty satellites in the range domain at very 
low biases. 
 
In general, by knowing the error in the range domain, one 
can easily calculate the effect of measurement faults in 
the position domain and decide whether it is reasonable to 
exclude a satellite or not. RANCO calculates a position 
solution based on subsets of four satellites and compares 
this estimate with the pseudoranges of all the satellites not 
contributing to this solution. The residuals of this 
comparison are then used as a measure of statistical 
consensus.  
 
This approach allows identifying as many outliers as the 
number of satellites in view minus five, four for the 
estimation, and one additional satellite that confirms this 
estimation. As long as more than at least five satellites in 
view are consistent with respect to the pseudoranges, one 
can reliably exclude the ones that have a bias higher than 
the threshold. This threshold allows balancing between 
the Missed Detection Rate and the False Alarm Rate at 
the same time.  
 
The enhancements presented in this paper, such as the 
subset evaluation, the subset selection algorithm, and the 
modified threshold definition, resulted in a significant 
reduction in both the Missed Detection Rate and the False 
Alarm Rate. In parallel, the number of subsets that have to 
be evaluated in this approach could be reduced from 
approximately 2000 to less than ten in most scenarios.  
 
It is important to note that the computational complexity 
of this approach decreases with the increasing number of 
available satellites because less subsets have to be 
evaluated to cover all possible failure modes. Altogether, 
this marks an important step in the ongoing development 
of this algorithm.  
 
For future development it will be of importance to 
analyze the properties of the algorithm in more detail with 
respect to the optimal adjustment of the thresholds under 
more complex scenarios. Replacing the binary thresholds 
for the identification of the fault free subset by continuous 
measures, like the sum of the residuals, might reveal an 
additional performance gain.  Additionally, an analytical 
derivation of the distribution for the missed detection and 
false detection is necessary. 
 
RANCO’s abilities to exclude multiple faulty ranging 
sources at a time and at low biases paves the way for 
safety critical and mass market applications by allowing 



reliable and accurate estimations of position, velocity, and 
time even during erroneous satellite constellations. 
 
For RANCO, a European patent application has already 
been filed [12]. 
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