

Real-Time Software Receiver Using Massively Parallel Processors for GPS Adaptive Antenna Array Processing

Jiwon Seo, David De Lorenzo, Sherman Lo, Per Enge, Stanford University

Yu-Hsuan Chen, National Cheng Kung University, Taiwan

Dennis Akos, University of Colorado, Boulder

ION ITM 2011

26 January 2011

The authors gratefully acknowledge the support of the Federal Aviation Administration.

Possible aviation application: Protecting GBAS ground facility

Receiver Architecture: Initial Phase Alignment

[De Lorenzo et al., ION GNSS 2010]

Computational Cost

	Single-antenna L1 receiver	4-antenna adaptive beamsteering L5 receiver
Sampling rate	4 Msps X	(10 40 Msps
Number of channels	12 ×	x 5 60
	T: Computational cost 12-channel L1 software	st for $50 \text{ T} \rightarrow 100 \text{ T}$ re receiver
Synthesis of 4-antenna data	None Bearri	ation gost .7 T x 12 beams = 20 T
Covariance calculation	None Adaptive	e processing 15 T
Sample resolution	2 bits No bit-W (About twice fast	Nise parallelism 14 bits ter [Decinea et al., 2003])

Objective: Real-time 4-antenna adaptive beamsteering L5 software receiver (85 of integer-correlation L1 receivers; 135 of bit-wise-parallel-correlation L1 receivers)
Don't: Have hardware support such as FPGA or ASIC
Do: Use a desktop computer with commercial-off-the-shelf processors

Commercial-off-the-shelf desktop parallel processors

Hardware Setup

Raw IF data collection setup (4 sets)

Demonstrate real-time computational capability for L5 processing

global memory, gmem (green)

Time

Hardware Parallelism

17

18

Real-Time Receiver Demo (Recorded)

Real-Time Receiver Demo (Recorded)

Objective:

- Real-time, 4-antenna, all-in-view, adaptive beamsteering GPS software receiver capable of L5 signal processing and running on a desktop computer

Results:

- Developed an optimized parallel computation architecture for the beamsteering receiver on cost-efficient CPU & GPU
- Confirmed real-time computational capability and anti-jamming performance under a synthetic CDMA jammer
- Demonstrated that cost-efficient commercial-off-the-shelf hardware and processors would be enough to implement an adaptive beamsteering GPS receiver

