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ABSTRACT  
 
GNSS has wide adoption in critical military and civilian infrastructure, requiring reliable operation. Therefore, its 
susceptibility to interference can result in anything from a minor inconvenience to a life-threatening affair. In this paper, we 
present a prototype implementation of the GNSS interference detection and localization, or, so-called, J911 system, which 
crowdsources measurements of GNSS observables from smartphones. Access to Carrier-to-Noise-density ratio (C/N0) and 
Automatic Gain Control (AGC) level enables the system to distinguish natural causes of signal degradation from intentional 
jamming. A mobile application was developed for the Android OS, which records current location, per-GNSS-satellite C/N0 
and other available GNSS observables. The collected data is sent to a central server, where it is subject to interference 
detection assessment and visualization. With a high enough density of smartphones, localization methods can be employed, 
such as time difference of arrival (TDOA) or power difference of arrival (PDOA). With the help and oversight of the 
Department of Homeland Security, an exercise to test interference mitigation technologies was conducted in 2017, called 
JamX 17, where we fielded fifteen smartphones with GPS- and GLONASS-capable hardware. At the time of testing, the 
Android OS did not support AGC level reporting, so four SiGe GN3S Sampler Software-Defined Radios (SDR) were used 
instead. Analysis of the collected data shows that rough tracking of the jammer is possible, based on measurements from many 
phones. When the jammer gets closer to a smartphone, both GPS and GLONASS C/N0 decrease in a similar pattern. When the 
jammer moves away, C/N0 is restored to nominal levels, but decreases in the next phone that the jammer is closing in on, thus 
allowing phone-density-limited tracking. The C/N0 measurements are validated by comparison to the AGC measurements 
from nearby SDRs, confirming that jamming, rather than natural obstruction, took place. In the test site area where the phone 
density was highest, a TDOA method was conducted and provided a good estimate of the jammer location. 
 

INTRODUCTION  
 
Services derived from global navigation satellite systems (GNSS) are widely used in many critical military and civil 
applications. Hence, the susceptibility of GNSS to interference can potentially result in inconvenient, costly and even life-
threatening conditions. This is a problem as GNSS jammers, while illegal, can still be easily and cheaply procured. While there 
are regulations that seek to prevent GNSS interference, they are difficult to enforce. Enforcement requires detection and 
localization. However, detection and localization currently requires expensive signal processing equipment and manpower 
[1][2]. Resources dedicated to GNSS interference detection are few and far between. Non-dedicated resources may not 
distinguish interference from natural or physical outages. As a result, many jamming instances are either undetected or 



misidentified. Hence, developing flexible and cost-effective methods to identify and locate the source of interference is 
necessary. 
Smartphones can be extremely valuable sensors for detecting and localizing GNSS interference. They are deployed in the 
billions and are in high density in our most populated areas, where GNSS interference has the potential to do the most damage. 
Crowd-sourced information from even a small fraction of these could prove very valuable, as they can detect local interference 
that cannot be easily detected by reference station networks. Additionally, the Android operating system (OS) will provide 
access to many GNSS receiver observables that will allow for robust detection of jamming, allowing us to distinguish these 
events from other natural causes of signal degradation. 
For the Department of Homeland Security (DHS) JamX 2017 exercise, we developed an Android application (app) to 
demonstrate a basic capability of smartphone based GNSS interference detection. The app gathers basic GNSS observables 
such as satellite information and carrier-to-noise-density ratio (C/N0) and pushes this data to a central server for interference 
detection assessment. We fielded 15 smartphones throughout the test site for this demonstration. 
This report discusses the technology involved, the JamX test setup and the results from our testing of smartphone-based 
interference detection. 
 
BACKGROUND 
 
Smartphone-based crowd-sourcing of GNSS observations has been suggested for interference detection due to its many 
advantages [3][4]. The existing infrastructure provides built-in communications. An app based system allows for ease of 
deployment, updating and feedback [3]. The high adoption rate of smartphones allows for low cost but high density 
deployment. A density of as little as 100 smartphones per squared kilometer can provide useful detection and localization 
results, which is easily achieved in urban areas [3]. Lower densities can provide detection, thus providing a deterrent to an 
attacker though they may not suitable for providing precise localization due to inaccuracies in measurements, unknown 
variables and other errors [3][4]. Smartphones have been successfully used to detect GPS jamming in specific, controlled 
scenarios, such as interference by commercial drivers to circumvent vehicle tracking systems [5] or via an Android application 
on a single phone with C/N0 readings and dead reckoning [6].  
Our work expands upon previous research with an actual implementation of a GNSS jamming detection and localization 
system around low cost, consumer hardware with a bigger scale, distributed design and wider deployment in mind.  
 
INTERFERENCE DETECTION 
 
GNSS interference detection can accomplished using observables, such as C/N0 and automatic gain control (AGC) levels, 
available to most GNSS receivers. C/N0 is a standard metric used to quantify the power of a tracked GNSS satellite signal 
relative to noise and is similar to signal to noise ratio (SNR). This is calculated for each individually tracked signal. AGC is a 
standard piece of receiver equipment used to set a level of gain such that power coming to the analog to digital converter 
(ADC) is relatively constant. Thus, AGC level essentially indicates the amount of energy entering the antenna. C/N0 and AGC 
can provide indications of anomalous energy that may be the result of interference. More powerfully, these two complementary 
measures can be used together to differentiate degradation due to interference from spoofing and natural causes. These are 
convenient measures for a crowd-sourced detection system. Android OS provides access to C/N0 measurements. Android 8 or 
“Oreo”, introduced in August 2017, also provides the ability to access AGC outputs. Future smartphones should provide AGC 
measurements provided the smartphone original equipment manufacturer (OEM) and the GNSS chipset support it. 
C/N0 expresses the power of a GNSS signal compared to the background and thermal noise. When a jammer approaches a 
GNSS receiver, such as a smartphone, the interfering noise level increases. This increases noise on all satellite signals and 
hence decreases C/N0 on all satellites. As the jammer gets closer, the received interference may become powerful enough to 
cause the GNSS receiver to lose track of the satellites. However, reduction of C/N0 and loss of tracking can occur due to 
natural causes such as going under foliage or going indoors. Hence, C/N0 measurements from individual receivers are 
generally not adequate for robust jamming detection. Additional information from AGC, C/N0 time history, different 
frequency bands and other receivers can be used to make C/N0-based jamming detection more robust. 
Using C/N0 for rapid interference detection typically requires a comparison to expectations. For the comparison, we must 
know the nominal C/N0 for the receiver. This is typically around 30-40 dB-Hz. We also should know which satellites should 
be reachable from the location of the receiver. This allows us to determine if we should be getting C/N0 value for specific 
satellites, indicating if something has caused our receiver not to track an available satellite. 
An AGC is used in receivers to amplify the incoming signal, after down-conversion and filtering to a specific level. After 
amplification, it is sampled, then digitized/quantized and passed on to the digital part of the receiver via the ADC. The specific 
amplification level needed is determined by the receiver design and, more specifically, its digital section. To be able to 
accommodate input signals of varying power, AGC mechanism is responsible for altering the gain level of the variable gain 
amplifier (VGA) by varying the voltage input to one of its pins, as illustrated in Figure 1. The required AGC voltage is 
controlled by the number of samples in each of the quantization bins, as illustrated by the histogram in Figure 2. For example, 



if the incoming signal is quantized with two bits into four possible values, a goal could be to have 32% of the samples in 
maximum and minimum bins, which correspond to 3 and -3 in the figure, respectively. If the percentage of samples in the 
maximum and minimum bins starts increasing, the AGC voltage is lowered to reduce gain, thus increasing the number of 
samples which fall into bins closer to 0. Inversely, if the number of samples in maximum and minimum bins starts decreasing 
beyond 32%, the AGC voltage is increased. 

 

 
Figure 1. Block diagram of a GNSS receiver with Low Noise Amplifier (LNA), Phase Lock Loop (PLL), Temperature 

Compensated Crystal Oscillator (TCXO) and AGC. The AGC utilizes a Variable Gain Amplifier (VGA) 
 

 
Figure 2. Bins for a 2 bit ADC 

  
When a jammer is turned on, it emits a relatively powerful and noisy signal into the GNSS spectrum. This high power signal 
causes the AGC to reduce its amplification of the input signal, including the useful signal from the GNSS satellite, by dropping 
the AGC voltage. In that case, the digitized samples correspond more closely to the jammer’s noise and do not contain enough 
information to resolve and extract the weak signal from the GNSS satellites -- the receiver is jammed. 
To use AGC for interference detection, we need to know the nominal AGC voltage. Each device has its own nominal AGC 
voltage, as different receivers use different discrete components and different antennas. This is important to ascertain as many 
factors (i.e. imperfections in manufacturing processes, differences in operating temperature, etc.) can result in different 
nominal AGC levels even in the same model. The nominal AGC voltage/level can be determined by collecting samples over 
time and, for example, averaging them in ideal conditions. Statistical deviations of AGC from its nominal average or standard 
deviation provides useful information. A voltage increase means that satellites are obstructed, thus less power is received, and 
a voltage decrease indicates interference or jamming that deposits more power into the spectrum. A scenario is illustrated in 
Figure 3, where around hour 59, the AGC level decreases significantly below the standard deviation, suggesting interference in 
the GNSS spectrum. 

 



 
Figure 3. AGC samples with the average 

 
While C/N0 and AGC can be used individually for interference and potentially spoof detection, when used together, they can 
distinguish different causes of GNSS degradation [7][8]. They can differentiate cases of environmental changes (i.e. going 
indoors) from man-made interference. Figure 4 shows AGC and C/N0 values from different scenarios. It shows the different 
relationship between C/N0 and AGC for spoofing, radio-frequency interference (RFI) and normal/nominal conditions. 
Generally speaking, jamming/RFI increases incoming energy (i.e. lowers AGC levels) while decreasing C/N0 whereas 
spoofing increases incoming energy while having similar or higher C/N0 levels. In summary, the combined use of C/N0 and 
AGC increase jamming detection robustness by reducing false positives. 

 

 
Figure 4. Effects of RFI, Spoofing and Nominal Conditions on AGC & C/N0[7] 



 
LOCALIZATION 
 
A powerful capability of a crowd-sourced GNSS measurements is the ability to localize jamming. C/N0 and AGC are coarse 
measures that are not meant to provide ranging, bearing or positioning information. Hence, single measurements cannot 
indicate jammer location. However, measurements from multiple smartphones can allow for geolocation of a jamming source 
due to the geometric diversity of these measurements. This capability requires that the smartphone measurements be shared or 
sent to a central server for processing. Time difference of arrival (TDOA) processing and power difference of arrival (PDOA) 
are both possible ways to provide refined localization. Measurement errors due to various factors means that three independent 
difference measurements, derived from four devices, will not generate an exact solution. Hence, least squares or similar 
algorithms need to be used#. 
TDOA measures the difference in times of the signal’s arrival to two or more receivers with known locations. All possible 
locations of the jamming emitter form a hyperboloid, to justify the time difference, and the intersection of multiple such 
hyperobloids gives, ideally, a single possible location. 
PDOA measures the difference in the received power at two or more receivers with known locations. Once a propagation 
model is taken into account, the power difference correlates to a ratio of distances from the emitter to each station. A sphere of 
possible locations fits the distance ratio and the intersections of multiple spheres, ideally, give a unique emitter location. 
 
EXPERIMENTAL SYSTEM 
 
The tested system has both software and hardware components as well as server and field equipment. In addition, a SiGe 
software defined radio (SDR) was used to collect AGC data. The SiGe is a simple, low cost SDR and we had four units which 
were generally located near a smartphone. These are used as Android OS does not yet support AGC measurements and hence 
these can act as a proxy for the future when these measurements are available. This section focuses on the smartphone app and 
server software developed. 
The system developed was tested at the 2017 DHS JamX exercise. This exercise supported tests of different technologies to 
address interference issues such as GNSS interference. It was held at a remote location in eastern Idaho over three nights in 
July 2017. We tested on two of those nights – we termed Night 1 (July 19-20) and Night 2 (July 20-21). GNSS jamming was 
tested on this exercise using various commercial jammers bought via the Internet. These jammer had varying specified levels 
of radiated power from milliwatt (mW) to watt (W) levels. They also potentially had different jamming waveforms. Each 
jammer was operated statically in our test area before being driven in a roughly 2 mile loop by the test area at low speeds. 
 
Smartphone application 
 
We developed a bespoked app for capturing, storing and sending GNSS measurement information. It is designed to capture 
GNSS information if available from the OS with position, accuracy, satellite, C/No, pseudo range, and AGC values all 
supported. This app supports all constellations (GPS, GLONASS, Galileo and Beidou). It is built without using new features 
introduced in newer versions of Android while taking advantage of the new data made available by these newer versions. 
Hence it can operate on earlier version of Android, while it has an eye towards the future and newer Android data capabilities. 
These observables are captured at a 1 Hz rate and can be uploaded to a server should connectivity be available. 
 



 
Figure 5. GNSS Interference Detection App. Data Collection Setting (Left) and Data Log (Right) 

 
The application was developed in the programming language Java, which is well supported in the Android ecosystem, through 
the software development kit (SDK) and the integrated development environment (IDE). It is based on the open-source 
GNSSLogger application developed by Mohammed Khider of Google to demonstrate GNSS capabilities of Android OS [9]. 
The settings screen is shown on the left side of Figure 5, with options explained later in this section. The logging screen, shown 
on the right of Figure 5, includes all the information that is sent to a remote server, for user's preview. 
 
Raw GNSS measurements, NMEA sentences and location 
 
The application can gather the following location- and GNSS-related information offered through the Android application 
programming interface (API): 

 location updates sourced by GNSS, 
 location updates sourced by the cellular network, 
 location updates sourced by the fused provider, 
 standardized National Marine Electronics Association (NMEA) sentences. 

Location updates provided by the cellular network are based on the known cellular tower locations and are fairly imprecise, 
when compared to GNSS-sourced location. The fused provider is available through Google Play Service. While not built into 
Android, Google Play Services were available on all the tested phones, therefore it was used too. It takes into account GNSS, 
cellular network, visible WiFi and Bluetooth stations when calculating current location. Ephemeris and information about 
acquired satellites is sent to the application using NMEA sentences, which are parsed to extract the desired information. An 
example of NMEA sentences: 
$GLGSV,2,1,07,69,70,061,35,79,66,069,37,80,37,187,26,70,35,318,33*60 
$GLGSV,2,2,07,68,25,111,32,86,11,330,32,85,11,279,30*56 
$GPGSV,3,1,11,22,77,258,42,31,60,059,42,03,55,305,41,14,38,072,36*72 
$GPGSV,3,2,11,01,33,235,38,26,28,136,30,23,26,278,38,32,19,082,32*7E 
$GPGSV,3,3,11,25,12,036,26,11,08,225,29,16,09,159,*49 
$GPGGA,080741.00,4332.360641,N,11249.798235,W,1,17,0.4,1527.6,M,-17.4,M,,*63 
Later Android versions (7.0 and up) offer an interface to programmatically extract the same information that is contained in the 
NMEA sentences, however it was not used in the application to avoid diverging in source code between older and newer 
Android versions. Version 8.0 introduced API to get AGC level, which will be useful in future revisions of the application. 



 
Internet connectivity 
 
Messages are created periodically on the phone and sent to the server whenever a connection can be established. The user can 
select the remote destination -- host address and port -- where the messages get sent to. A message contains all the information 
that is received from the OS and the times of last updates. An example is shown: 
{ 
 "other_nmea":"$GPGGA,080741.00,4332.360641,N,11249.798235,W,1,17,0.4,1527.6,M,-17.4,M,,*63", 
 "GLGSVs":[ 
  "$GLGSV,2,1,07,69,70,061,35,79,66,069,37,80,37,187,26,70,35,318,33*60", 
  "$GLGSV,2,2,07,68,25,111,32,86,11,330,32,85,11,279,30*56" 
 ], 
 "GPGSVs":[ 
  "$GPGSV,3,1,11,22,77,258,42,31,60,059,42,03,55,305,41,14,38,072,36*72", 
  "$GPGSV,3,2,11,01,33,235,38,26,28,136,30,23,26,278,38,32,19,082,32*7E", 
  "$GPGSV,3,3,11,25,12,036,26,11,08,225,29,16,09,159,*49" 
 ], 
 "id":"cjACrijA1QA", 
 "timestamp":1500624462232, 
 "lat_gnss":43.53934467869471, 
 "lon_gnss":-112.82997114268005, 
 "alt_gnss":1510.1347219543397, 
 "hacc_gnss":4, 
 "vacc_gnss":0, 
 "timestamp_gnss":1500624459999, 
 "lat_network":0, 
 "lon_network":0, 
 "alt_network":0, 
 "hacc_network":0, 
 "vacc_network":0, 
 "timestamp_network":0, 
 "lat_fused":43.5393447, 
 "lon_fused":-112.8299711, 
 "alt_fused":1510.1347219543397, 
 "vacc_fused":0, 
 "hacc_fused":4, 
 "timestamp_fused":1500624459999, 
 "agc_bei":0, 
 "agc_gal":0, 
 "agc_glo":0, 
 "agc_gps":0 
} 
The message is constructed in JavaScript Object Notation (JSON) format and is ASCII encoded. Because of its encoding, there 
is a lot of redundancy. The message, as given in the example, is 929 bytes long. If, instead, binary encoding was used, with just 
sending the extracted data, where every numerical value is presented with 8 bytes as a double-precision floating-point number 
and timestamps as 8 byte integers, the message would be 647 bytes long, which is a significant saving even with the 
approximate transmission control protocol (TCP) overhead of 40 bytes with each message. Furthermore, presenting numerical 
values with 4 bytes as single-precision floating-point numbers and timestamps as 4 byte integers can still give enough 
precision but would further reduce the message size. 
Message size and frequency may be important considerations to reduce the load on cellular towers in densely populated areas, 
if E911 infrastructure were to be used for jamming detection (so-called J911) [3]. 
 
Storage 
 
To prevent data loss in unexpected scenarios, where the developed application crashes, every message that is created is stored 
into a file on the phone in the JSON format. If recovered from the phone, the file can be "replayed" to the remote server. When 
Internet connectivity is unavailable, the messages are stored in working memory of the application. To prevent data loss 



between restarts of the application, all unsent messages are saved from the working memory into a SQLite database that is a 
standard part of the Android OS and independent of other applications. 
 
Server software 
 
A publicly reachable machine was used to host the backend, which consisted of a web server, implemented in Python, and a 
PostgreSQL database. When a message on the phone is ready, it is sent through the opened TCP connection to the server. After 
receiving a message, the server interprets it as a JSON object and extracts all data from it. If no problems were encountered in 
the message formatting, the data is stored into the PostgreSQL database, laid out in Figure 6. 

 

 
Figure 6. Layout of the PostgreSQL database. 

 
Processing algorithm and visualization software 
 
With the data in the central server, processing was developed to identify jamming. For the initial development, a simple 
algorithm was created for detection and identification. Each receiver reported, in a message to the server, the C/N0 of all 
satellites that it sees and each message was treated individually without consideration of other receivers or prior messages. For 
our initial analysis, the average of the highest four C/N0 reported in a message for each constellation was used an interference 
metric. If less than four satellites’ C/N0 was measured at a time, the missing ones were assumed to be zero. The single number 
for each constellation for an instant in time is compared to a fixed threshold to determine if that given receiver indicates 
jamming at that given time. A more sophisticated version may have examined the time history of the receiver to set thresholds. 
Additionally, satellites may be weighted based on their likelihood to be attenuated by jamming or other sources.  
Frontend software was developed to visualize all the measurements taken. Since all captured information gets stored into the 
database, the frontend is independent of other parts of the stack, as long as the database layout does not change. MATLAB was 
used to query the database for specific time periods and specific phones and then used to plot locations of phones and the 
measured C/N0, overlaid on a map of the area, over the duration of the test. Screenshots of the plots that the frontend makes 
are given in section “Results”. 
 
J911 
 
In the United States of America, E911 is an upgrade to the 911 system that enables the automatic reporting of telephone 
number and location of every 911 caller, wired or wireless, to public safety entities. Its European equivalent is called E112 
Such a system allows for prompt reaction even when communicating a location is difficult or impossible. 

 
 

 
 



Two phases are involved in obtaining the caller’s location. Phase I sends the cell tower’s location to the PSAP, which is easier 
to obtain, while Phase II sends the cellphone’s location. Enhanced 911 infrastructure is an excellent candidate to be reused for 
J911, a system for real-time GNSS jamming monitoring on the national level, since the changes needed for J911 
implementation would need to be made only in software, across the whole stack [3]. All essential hardware is already in place, 
except the smartphones with GNSS chips supporting required features. However, with the current relatively short smartphone 
life-cycle, it is a matter of a few years when a significant portion of the Android market will have a minimum or higher 
Android OS version and necessary hardware needed to run the developed application with both AGC and CN0 measurements, 
if historical trends continue [12]. 
 

 
 
EXPERIMENT SET UP 
 
The baseline test equipment were smartphones with our GNSS measurement application installed. The observables that were 
captured by the application were captured at a 1 Hz software-configurable rate. Several different Android smartphones were 
used for the tests with Android OS versions ranging from 5.1 to 7.0:  

 9 x Alcatel Ideal (ALC) 
 1 x Galaxy Note 3 (GN3) 
 1 x Galaxy S5 (GS5) 
 2 x LG Aristo (LGA) 
 1 x LG Tribute HD (LGH) 
 1 x HTC Desire 530 (HTC) 

All the smartphones have a multi-constellation capable GNSS chip with GPS and GLONASS measurements available, despite 
documentation indicating that all four GNSS are supported. The Samsung phones utilize a Broadcom GNSS chip while the 
others use a Qualcomm GNSS solution. The Alcatel is the lowest cost phone and can be found for $20 while the Samsung 
phones are several year old flagships. The smartphones were distributed across approximately one kilometer squared, as 
depicted in Figure 9, for the first and second night of testing. Most were set on the ground though some were in elevated 
positions on a post or on a hill. 
 

Figure 9. 
Smartphone Locations Night 1 (Left, July 19) and Night 2 (Right, July 20): Alc = Alcatel Ideal, LGA = LG Aristo, LGT = LG 

Tribute HD, GS5 = Samsung Galaxy S5, GN3 = Samsung Galaxy Note 3 
 
A satellite image of the test site and a topographical map are shown on the left and right side of Figure 12, respectively. From 
the topographical map, a rough idea of the terrain can be had and the presence of changes in elevation, significant for 
electromagnetic wave propagation, can be seen. 
AGC measurements were also taken at four sites that are nearly collocated with some of the smartphones. The set up for Night 
1 and 2 are shown in Figure 10 and Figure 11, respectively. 
 



 
Figure 10. SiGe (with Smartphone) Locations Night 1 (July 19-20)  

 

 
Figure 11. SiGe (with Smartphone) Locations Night 2 (July 20-21)  

 
With the smartphones distributed and set up, various jammers, turned on one at a time, were driven in a car around the test site. 
Data was collected and plotted over time. Due to space constraints of this paper, one interesting sequence of measurements is 
shown from the first night of the test in the next section, section “Results”. 

 



 
Figure 12. Satellite image (Left, from Google Maps) and topographical map (Right, ArcGIS) of the test site 

 
RESULTS 
 
Carrier-to-Noise-density smartphone detection 
 
Analysis of the videos and plots made by the frontend showed that tracking the jammer is possible. It should be noted, 
however, that the measurements are fairly noisy. Additionally, power saving measures in some version of the Android OS 
would not let the application run for longer than an hour without any additional activity. It is hard to insure a message 
construction frequency of 1 Hz precisely, thus some one-second intervals have more than one message in them, while other 
one-second intervals do not have any messages in them, which is perceived as flickering in the video. Nonetheless, at least 
twelve phones were recording reliably throughout the test. Indeed, the benefit of this system is that it should work with many 
smartphones not operating or providing data. 
Figure 13 shows progression of the jammer, as observed by the smartphones. There was no accurate truth reference available. 
Nevertheless, the way which the jammer moved, taking into account that it was in a car on the road, can be clearly seen. The 
dark circles indicate low average C/N0 suggesting proximity to the jammer. The plots show the movement of the jammer in 
time which shown in coordinated universal time (UTC). The order of the plots is also given in numbers on the top left of the 
figure and from this we can clearly see the travel of the jammer over time. This travel order is also shown in Figure 15. 
 



 
Figure 13. Progression of Jamming Indication over time for one Jammer drive. 

 

 
Figure 14. GPS (Left) and GLONASS (Right) C/N0 progress over time for five phones  

 
Alternatively, the progress of the jammer can be seen in Figure 14 which depicts the average C/N0 over time for the top four 
tracked GPS or GLONASS satellites for several receivers. The location of the receivers are shown in Figure 15 and not all 
phones are shown in Figure 14, to maintain readability. As the jammer moves, we can observe different phones having 
significant dips in C/N0 level when the jammer gets close to them. Both GPS and GLONASS exhibit very similar patterns. 
 



 
Figure 15. Position of phones with their IDs shown. 

 
Figure 15 shows positions of the various phone identities as well as the motion direction of the jammer. At the start of the plot, 
the jammer is at the northernmost group of smartphones, where d-HUnLadfXs is a representative one from the group. As the 
jammer moves southward on the road, C/N0 of d-HUnLadfXs improves, but fBe--ZaQFUA worsens, located at the middle, 
between the two junctions on that stretch of the road. Some "spilling" can be noticed, from the northernmost group all the way 
to the middle of the road to d-HUnLadfXs, which is likely to be caused by the geography of the terrain. Next smartphone to 
have a noticeable dip is the southernmost, eLd2WKgou8Q, quickly followed by dijlTSjrjHA, the westernmost smartphone. 
The next one that sees a dip is dwBADxqj_BY, located in the middle of the hypotenuse of the "triangle" of roads. Afterwards, 
the reverse of the first two phones is seen, again with some "spilling". It is easy to recognize from the plots which smartphones 
is close to a jammer, given their history. 
 
AGC measurements 
 
AGC measurements taken at four sites provides us some sense of its utility in aiding or corroborating C/N0 results. Figure 16 
shows the AGC levels of the four SiGe over time for Night 1. The difference performance level of each of the different 
jammers can be seen. Figure 17 shows a zoomed in comparison of AGC and C/N0. These measure corroborate each other and 
show how these measures can be used to verify that jamming, rather than obstruction, caused the GNSS degradation. Because 
it was taken with a SDR and time tagged with GNSS, more sophisticated localization can be conducted on these 
measurements. Localization using time difference of arrival (TDOA) can be conducted. The TDOA derived position 
hyperbolas are shown in Figure 18 for the case when the jammer is in test site 2A, the open area at the end of the road where 
we have a high density of phones. The TDOA localization, where the hyperbolas intersect, provides a good estimate of the 
jammer location. 
 

 
Figure 16. SiGe AGC level over time on Night 1 

 



 
Figure 17. Zoomed comparison of SiGe AGC (blue) and collocated phone C/N0 (red) 

 

 
Figure 18. Time Difference of Arrival position hyperbolas from Night 1, 7:29 am GMT, dashed line indicate 1 std bounds 

 
FUTURE WORK 
 
Increased receiver density 
 
A test with a higher density of smartphones would make locating the jammer visually easier and would provide more data to be 
analyzed. With enough samples gathered, and a high enough receiver density, successful localization with PDOA would be 
more likely. The limiting factor for TDOA is time accuracy and a high time resolution, which cannot be achieved on 
smartphones. On the SiGe Sampler, however, TDOA worked well enough with the limited phone density. 
 
Improved robustness and spoofing detection with AGC 
 
Android OS version 8 (just released at the time of writing) introduces an API to get AGC level of the smartphone GNSS 
chipset. While AGC has in general been shown to be useful for both GNSS interference and spoofing detection [10], the utility 
of AGC within a smartphone needs to be validated. The electromagnetic environment in smartphones is volatile due to the 
various radios that are located inside the limited space, but the extent of its effects on AGC measurements and spoofing 
detection should be researched once Android 8 is out and more phones with supporting hardware appear on the market. 
Furthermore, tracking satellites on multiple frequencies, that might not be jammed, will help maintain location and time fix, 
improving the jammer localization process. 
 
Better data processing algorithms 
 



Current data processing methods are quite simple, but more advanced data processing or averaging algorithms may give better 
results, in terms of how easy it is to subsequently detect jamming or differentiate going indoors from true jamming. 
 
Leverage other smartphone information 
 
The received GNSS power in a smartphone can be influenced by many factors. Due to the smartphone design constraint, its 
orientation could significantly influence the power of received signals. Since design and hardware between different phones 
differs, the ideal phone orientation for one phone might not be ideal for another. Quantization of orientation's effects on 
measurements would be beneficial in future test. Afterwards, the use of internal smartphone measures of orientation may help 
calibrate out the effects of orientation. Similarly being indoors, in a pocket or under foliage can also reduce signal power and 
C/N0. Smartphone sensors such as light sensor, other radio-frequency measures, etc. may be useful for detecting these 
scenarios and reducing false positives. 
 
Data compression 
 
There is a lot of spatial redundancy when ASCII encoding and JSON format are used, as well as temporal redundancy. Using 
binary encoding reduces spatial redundancy, but temporal still remains, thus bandwidth savings could be achieved and load on 
cellular towers reduced if messages were batched together, compressed and then sent to the server. 
 
Authentication 
 
The backend that was developed for this test accepts incoming connection from any actor, allowing for easy abuse of the 
experimental system. Authentication between an Android device and the backend should be implemented for a more robust 
solution. 
 
CONCLUSION 
 
The work presented in this paper has laid a practical foundation towards using smartphones for crowd-sourcing GNSS 
jamming detection, by building an Android application and support server software. It demonstrates that smartphones are 
indeed a suitable platform for collection of GNSS observables, especially when newer hardware and Android OS versions 
become available. The JamX GNSS jamming results showed that measurements from multiple phones give insight into 
jammer's location, given the constraint that the jammer is on the road. All the different phones behaved the same way with a 
jammer presents -- big variation from the nominal levels, a dip in C/N0, which is easy to spot. Increasing the phone density 
would provide significant benefits. There was also some success in TDOA localization using the SiGe Sampler. The work is 
still in its preliminary phase and additional development will improve performance. 
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