Flight Test Data Validation of GPS Ranging Error Characteristics Haochen Tang Todd Walter, Juan Blanch and Per Enge Stanford University ION GNSS 2009 Session C6, Sep 25th 2009 Research funded by FAA 008-G-007 ## Introduction and Motivation - Dual-frequency GPS signals exclude the ionosphere delays - However, the measurement combination increases signal noises - Carrier smoothing is developed to alleviate the ranging signal noise - Unexpected results occur when processing the flight test GPS measurement data with algorithms developed for static receiver data processing Shown in the followed flight test data error statistics # **Code Measurement Error Statistics** #### WAAS corrected ranging errors in the flight test 95% of Non-smoothed L1-only errors are within ±2.4m 95% of Non-smoothed dual-freq errors are within ±3.1m Only a small increase in the noise going from L1-only to Dual-freq signal ## **Code Measurement Error Statistics** #### WAAS corrected and Carrier smoothed ranging errors 95% of Smoothed L1-only errors are within ±2.3m (±2.4m) 95% of Smoothed dual-freq errors are within ±3m (±3.1m) Carrier smoothing did NOT effectively reduce the apparent meas. noises ## Introduction and Motivation ## Error statistics do NOT agree with well-established concepts: - Dual-freq signals should be much noisier than L1-only signals - Carrier smoothing should effectively reduce code meas. Noises Are there any unidentified errors with the flight test data? Before get into details of the data, take a brief look at the data processing background. # Flight test Data Collection and Record Date: Sep 19th, 2006 Site: Memphis Int'l Airport, TN Data: 2 sets of dual-freq 1Hz GPS data; Aircraft position data file (TSPI); WAAS broadcast messages. **On-board Receiver** **Ground Receiver** # Flight test Data Collection and Record Total 8 flight approaches: climb-keep-dive # **Data Process Steps** # **Code Measurement Error Findings** #### Shown in the error statistics: Only a small noise increase for the dual-frequency signal comparing with the single-frequency signal The carrier smoothing does not effectively reduce the error, either for the L1-only signal or the dual-frequency one To identify the problem we investigated the ranging errors of several satellites # Non-smoothed L1-only signal # Non-smoothed Dual-freq signal ## Receiver Clock Error - The fast-changing receiver clock error is the dominant error term - The receiver clock error variations are identical across all satellites - To clearly identify the desired error characteristics, the receiver clock errors need to be better estimated - The airborne receiver clock error is estimated by averaging the measurement errors at each epoch - previously assumed smoothly varying clock over several hundred seconds Airborne Receiver Clock error \Box Averaging the carrier measurement errors across all the SV at each time epoch b_{air} # **Receiver Clock Error Estimate Result** #### On board receiver clock error # **Receiver Clock Error Estimate Result** #### **Ground receiver clock error** ## **Error Results Validation** WAAS-corrected ground receiver ranging error: 95% are within ±0.55m. WAAS PAN Report, Sep 2006: 95% error at Atlanta GA are within ±1.4m. WAAS-corrected ground receiver measurement error **Data Duration: 6 minutes** **All Satellites** # **Airborne Code Measurement Error** PRN 16 WAAS-corrected code meas. Dual-freq signal noise is more than twice of the L1-only noise before smoothing # **Airborne Code Measurement Error** PRN 16 WAAS-corrected code meas. #### Carrier smoothing works effectively and the two signal noises are comparable - High-frequency oscillation caused by WAAS corrections - Still noticeable low-frequency error remains ## **Airborne Error Results** ### WAAS corrected ranging errors in approach 4 95% of Non-smoothed L1-only errors are within ±0.7m 95% of Non-smoothed dual-freq errors are within ±1.3m Significant noise increase by dual-freq combination, but still less than expected ## **Airborne Error Results** #### WAAS corrected ranging errors in approach 4 95% of Smoothed L1-only errors are within ±0.6m (±0.7m) 95% of Smoothed dual-freq errors are within ±0.8m (±1.3m) Carrier smoothing works effectively, especially for dual-freq signals Comparable noise level after carrier smoothing # **Findings** #### After exclude the receiver clock error: Dual-freq meas. combination greatly increases the signal noise before the smoothing The errors of both the L1 and dual-frequency signals are effectively mitigated by the carrier smoothing The noise levels of the L1 and dual-frequency signals are comparable after smoothing ## **Conclusions and Future Works** - The high rate of on-board receiver clock variation makes identification of measurement errors more difficult on flight test data - A GPS receiver clock error estimation method is developed and its effectiveness is validated - The ranging error noises of the two signals are similar after the carrier smoothing - May still be other error terms present obscuring desired error terms - The future work will include clearly understand and identify all the error sources - The future work will include the protection level calculations with better understanding of the error characteristics # Q&A Thank you