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ABSTRACT

Current lab tests demonstrate vibration and orienta-

tion control of highly 
exible vehicles using only the

GPS carrier to measure motion. A 30-foot long test

structure has been constructed that is suspended from

above, and moves in an analogous way to a 
exible

orbiting platform. The test structure is out�tted with

an array of GPS antennas for motion sensing, and an

array of compressed air thrusters for control actuation.

The sensor has shown better than 0:5 degree rotational

accuracies as measured with respect to on board rate

gyroscopes. We have shown simultaneous rigid-body

Presented at ION-GPS96, Kansas City, Missouri, September 17-

20, 1996.

orientation and elastic vibration control by closing a

feedback loop from the GPS di�erential carrier phase

(DCP) measurements to the thruster commands.

Central to the success of the GPS deformation sens-

ing system is the sub-centimeter level di�erential po-

sition information available from GPS carrier track-

ing. However, it is challenging to use this accuracy

due to inherent, and arbitrarily large, measurement

biases. Bias resolution (akin to cycle ambiguity res-

olution) has been solved for vehicle navigation and

attitude determination problems. We show bias es-

timation for an antenna array mounted on a structure

whos relative antenna motions due to 
exibility are on

the same order of magnitude as those due to overall

attitude changes.

This research is a signi�cant step toward general dis-

tributed antenna array GPS carrier based sensing sys-

tems. Our techniques are applicable to systems that

exhibit relative motions with frequencies (< 10 Hz)

and de
ections (> 1 cm) that are detectable by cur-

rent receivers.

1 INTRODUCTION

The widespread availability of the GPS signal is hav-

ing a revolutionary e�ect on positioning and naviga-

Figure 1: Experimental structure in motion
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tion. In particular, the ability to obtain centimeter

level position information by tracking the GPS carrier

has opened up a wide range of applications, from ter-

minal navigation of aircraft [3], to automatic control

of farm and construction vehicles [9], to guidance and

control of spacecraft [2]. The di�culties in using car-

rier information, such as cycle ambiguity and timing

errors, have been the subject of intense research in the

recent past.

The majority of carrier based sensing systems rely on

di�erencing carrier measurements between pairs of an-

tennas in an antenna array. The antenna motions

may be highly correlated, such as in rigid body at-

titude determination [4], or uncorrelated, such as in

free-
ying space robot navigation [13]. The focus of

this research is to extend the use of di�erential carrier

phase (DCP) tracking to the case where antenna mo-

tion is consistent with 
exible body dynamics. Cohen

shows the measurement of aircraft wing 
exure in an

attitude sensor in [4]. In our previous work, these ideas

are generalized to measurement of structural 
exibil-

ity for systems whose antenna motion is dominated by

structure deformations. Simulations and �lter design

are presented in [12], and spectral analysis verifying

the modal observability for our experimental system

is shown in studied in [11].

In this paper, techniques of using a system model for

initial and real-time data processing are shown, and

the experimental veri�cation of these ideas is presented.

This research is unique in that it shows real-time con-

trol of a system with complicated elastic and rigid-

body dynamics, using only the DCP measurements

from a distributed array of antennas as the motion

sensor. A picture of the experimental apparatus is

shown in Fig. 1.
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Figure 2: Elements in the Control Loop

2 THEGPS/FLEXIBLE STRUCTURE
EXPERIMENT

2.1 Experimental Objectives

The following is a list of our experimental objectives:

1. Design an estimator that can observe selected

rigid-body and elastic deformation states in real-

time using only GPS measurements.

2. Evaluate the accuracy of the state estimates by

comparing them with estimates based on inde-

pendent rate gyro measurements.

3. Successfully damp elastic vibrations in the test

structure with a real-time control system.

4. Demonstrate an automatic rigid-body orienta-

tion slew maneuver with simultaneous structural

vibration control.

2.2 Experimental Setup

A diagram of the main elements of the experimental

setup and their interconnection is shown in Fig. 2. The

numbers in the following list correspond to the num-

bered labels in the �gure. The hardware descriptions

here are brief; see [11] for more details.

1. The physical structure.

The structure is an aluminum body that hangs from

twelve meter threads from an overhead crane in our

laboratory. A diagram of the structure is shown in

Fig. 3. The structure consists of three massive rigid

bodies (65 kg) that are connected together by long,

elastic aluminum tubes in a horizontal line. This con-

�guration was selected to achieve relatively large, low

frequency de
ections in the lab environment. The

tubes provide enough elasticity to allow the whole struc-

ture to vibrate slowly with signi�cant de
ections. Pas-

sive structural damping is very small (time constants

of several minutes), making the system suitable for ac-

tive vibration control.

The suspension threads are attached at the top to

a rigid beam that is mounted to a bearing, allowing

the beam, and the structure below, to rotate freely in

the horizontal plane. The system provides a platform

whose motions will be detectable by GPS antennas

mounted on the structure.

The estimator and controller make use of a dynamic

model of the test structure that was computed us-

ing MSC/NASTRAN on the Cray computer at NASA
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Figure 3: The test structure

Ames. Suspension induced modes were predicted in

addition to the structure's elastic modes. The modal

frequencies predicted by this model were adjusted to

better �t Fourier transformed experimental data. The

�nal linear model contains under 10 modes below 2

Hz.

2. The GPS sensors.

Since the testing is done indoors, the signals from the

GPS satellites are not detectable. Therefore, a set

of six pseudolite transmitters were constructed and

mounted on the ceiling and walls of the laboratory.

The transmitters are equally distributed in the \sky"

to provide favorable signal geometry. One of the pseu-

dolites was modi�ed to broadcast a data message that

is used for coarse synchronization of our GPS receivers.

Two hemispherical GPS patch antennas are mounted

to each rigid body for a total of six antennas (a sev-

enth antenna is also on a static stand in the lab, and

was used for calibration and testing, but is not es-

sential to system operation). Two 4-antenna Trimble

TANS Quadrex c
 receivers measure the pseudolite sig-

nals and output DCP measurements at 10 Hz. The

receiver core code is modi�ed at the signal processing

level to suit the experiment requirements. The signal

from one of the antennas on the structure is split and

runs to both receivers. This common signal at each

receiver allows carrier measurements to be di�erenced

only between antennas connected to the same receiver,

which eliminates timing errors (see Appendix A).

The resulting GPS sensing system consists of an ar-

ray of interconnected antennas that provide enough

information to resolve the overall motion with su�-

cient bandwidth and de
ection sensitivity for control.

The DCP measurement equation is discussed further

in Section 3.

3. The rate gyros.

Six inexpensive rate gyroscopes were mounted to the

test structure primarily to provide an independent mea-

surement with which to compare the GPS results. It is

possible to take advantage of the good high frequency

performance of the gyros to enhance state estimates

[8], although this is not currently being done.

4. State Estimator

The states of the experimental system are de�ned as

selected elastic and rigid-body structural modes, and

their derivatives. These states are estimated in real-

time using an extended Kalman Filter that has been

optimized for execution speed. The original analyti-

cal �lter development for this work is shown in [12].

The time updates of the �lter are computed using the

NASTRAN dynamic model.

The measurement updates are computed from the mea-

surement equation linearized about the current esti-

mated state. Relinearization is performed only when

the state perturbations from the previous lineariza-

tion exceed certain thresholds, minimizing unneces-

sary processing.

The measurement equation and its gradients are for-

mulated using the symbolic manipulator, Autolev c
,

to process the vector functions of the state variables.

A custom text �le manipulation code was written in

Perl that reads the Autolev output, and generates a

C language program that can then be compiled and

linked with the real-time application. The automati-

cally generated C code text �le is over 100 kilobytes

in size, but executes in less that 5 milliseconds on a

Pentium c
 200.

The state estimator relies on an initialization process

that provides an estimate of the biases intrinsic to

DCP measurements. Bias estimation is discussed fur-

ther in Section 4.

Experimental results of the estimator are shown and

discussed in Section 2.4.

5. Controller

The controller used for the data presented in this pa-

per is a multi-input multi-output full-state regulator

that minimizes a quadratic function of weighted states

and control outputs (known as a linear quadratic reg-

ulator, or LQR). The weights were set initially from

our estimates of noise magnitude, and �nally tuned

by processing simulated data. Further control design
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may improve real-time performance, and is a topic for

further investigation.

6. Actuators

A system of 24 on/o� cold gas thrusters is used to im-

part forces on the test structure. The system pressure

is 100 psi and each thruster can deliver � 2 Newtons

of force. The thruster positions and orientations were

chosen to provide controllability of all modes of inter-

est, while minimizing the number of thrusters. The

thruster valves are capable of cycling at a maximum

rate of 100 Hz.

Continuous control force requests from the controller

were realized using pulse - width, pulse - frequency

(PWPF) modulation of the on/o� valves.

7. Real-time computer

Real-time data collection, processing and control im-

plementation were performed on a Pentium Pro 200

running LynxOS c
 Ver. 2.4.0 from Lynx Real-Time

Systems c
 [7]. The code was written in a multithreaded,

priority based framework conforming to POSIX real-

time standards.

2.3 Real-Time Data Processing

Fig. 4 illustrates the main components of the real-time

code. GPS data is received though two serial ports,

and stored in global space. When the state estimator

is signaled of the presence of new data, it processes the

serial
packet
collector
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packet
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data

receivers
GPS

timing
clock

PWPF
control
modulator

raw
data
storage

logging

thread of execution

drive
disk
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feedback
computator

Figure 4: Real-Time Processing Setup

data and control feedback is computed based on the

new estimates. This control feedback is passed to the

control modulator that commands the thruster valves

though a digital I/O card.

2.4 Real-Time Estimator Results

Fig. 5 plots estimates of the rotation angle of the struc-

ture's center rigid body about a lab �xed vertical axis.

This data was processed in real-time subsequent to

a dynamic bias estimation (see Sec. 4.3). The struc-

ture is initially rotated (manually) as a whole in the

horizontal plane to illustrate state estimation during

a large scale platform slew. Then (at about 140 sec-

onds), the structure is randomly excited to illustrate

estimation during elastic vibration.
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Figure 5: Comparison of GPS and Gyro based

estimates.
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GPS based and gyro based estimates are plotted. The

gyro estimate is obtained by integrating the body �xed

vertical axis gyro signal, which is equal to the labo-

ratory �xed rotation for small out-of-plane rotations.

The second plot shows the di�erence between the two

estimates. The �rst and the second �gure show a lin-

ear trend in the di�erence that is attributable to drift

in our gyroscopes. The third plot shows the di�er-

ence with the linear trend removed. For analysis of

GPS estimates, it is fair to remove this trend which is

known to be contributed by the gyros alone. The third

plot shows that the di�erence is always less than one

degree, and has an RMS value of 0.3 degrees. These

results show that the estimates based on the indepen-

dent sensors agree during both the slew maneuver and

during elastic vibration.

These results are signi�cant in that they show a sub-

degree, sub-centimeter sensor of general structural de-

formations with zero drift characteristics. This per-

formance is available wherever the GPS signal envi-

ronment exists, or can be re-created (such as in our

laboratory).

2.5 Real-Time Control Results

Thus far, we have discussed our GPS sensor system

and estimation objectives. Now we present experimen-

tal test results that address our goals for real-time con-

trol. The �rst test illustrates active vibration damp-

ing. The structure was perturbed manually such that

it vibrated \randomly" with relative antenna de
ec-

tions on the order of 10 to 20 centimeters. Due to the

low system damping, vibrations typically persist for 5

to 10 minutes after excitation. Fig. 6 shows estimated

angles of rotation of each of the three rigid sections

about the longitudinal twist axis (coincides with the

elastic beams when the structure is at rest, see Fig. 3)

during this vibration. The �rst 15 seconds show free

motion. At about 15.5 seconds on the plot, the control

loop is closed, and the thrusters begin �ring. Vibra-

tion damping is achieved with a settling time of � 5

seconds, and the angles are controlled to within 0.15

degrees as measured by GPS.

The second plot in Fig. 6 shows two raw integrated

gyro measurements. In contrast with the top plot of

estimator outputs, this shows un�ltered structure mo-

tion measurements before and after loop closure. The

bottom plot of Fig. 6 shows the di�erence between the

GPS and Gyro based state estimates.

The next experiment was a test of the feedback sys-

tem's ability to perform a slew maneuver. The struc-

ture was rotated 16� in the horizontal plane and left

0 5 10 15 20 25 30 35
−6

−4

−2

0

2

4

6
Horizontal axis twist rotation of each rigid section

T
w

is
t a

ng
le

(d
eg

)

Open loop Closed loop

Rigid section 1
Rigid section 2
Rigid section 3

0 5 10 15 20 25 30 35
−4

−2

0

2

4
Difference in GPS and Gyro based estimates (no gyro on 3rd section)

T
w

is
t a

ng
le

(d
eg

)

Rigid section 1
Rigid section 2

0 5 10 15 20 25 30 35
−6

−4

−2

0

2

4

6

8

D
eg

re
es

Raw integrated gyro measurements (no gyro on 3rd section)

Time (seconds)

Rigid section 1
Rigid section 2

Figure 6: Elastic vibration control

0 10 20 30 40 50 60 70 80
−20

−15

−10

−5

0

5
Full structure rigid−body rotation

D
eg

re
es

Time (sec)

0 10 20 30 40 50 60 70 80
−3

−2

−1

0

1

2

3
Vertical axis rotation of each rigid section (− 1, −− 2, −. 3) 

Time (sec)

D
eg

re
es

Figure 7: Slew maneuver control

at rest. At time zero, a command for 0� rigid-body

angle was issued to the control system. The maneu-

ver settled within thirty seconds, which is fast given

the limited thruster force and large rotational inertia

associated with this motion. Fig. 7 shows the time re-

sponse plots. The �rst plot is the estimated slew angle,
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which settles to within a half of a degree as measured

by GPS. The second plot shows the relative vertical

axis rotations of each of the rigid sections of the struc-

ture. These plots indicate the ability of the control

system to simultaneously regulate internal vibrations

(to within a degree) during a slew maneuver.

The experimental results given in this paper depend on

the ability to make sub-centimeter level GPS carrier

based relative position measurements, and the ability

to resolve a system's states given these measurements.

The following two sections discuss the basics of DCP

and some methods for resolving the bias unknowns

associated with these measurements.

3 DCPMEASUREMENT EQUATION

This research uses carrier measurements that are dif-

ferenced relative to a common clock reference. This is

achieved by multiplexing several antennas connected

to the same receiver. (The general carrier phase ob-

servable is developed in Appendix A.) The resulting

DCP measurement equation is illustrated in Fig. 8.

In our current receivers, a DCP measurement is the

di�erence in phase at a \master" antenna and one of

the \slave" antennas. The vector between the anten-

nas is called the \baseline vector." The measurement

consists of the di�erence in the line-of-sight distance

from a transmitter to each antenna, plus a bias that

is �xed at the time of carrier lock at each antenna. In

some cases, this bias may be written as the sum of the

so called integer ambiguity and line bias, but for this

paper, the quantity is left as a general bias.

��ij = jp
NjPi j � jp

NjPM j+ bij + �ij (1)

where,

��ij - DCP of baseline i, transmitter j

Pi - the point corresponding to the

phase center of antenna i (i = M

denotes the master antenna)

Nj - the point corresponding to the

phase center of transmit antenna j

p
NjPi - position vector from Nj to Pi
bij - the bias associated with baseline i

and transmit antenna j

�ij - stochastic noise

If the transmitter is su�ciently distant from the an-

tennas, the received wavefront is well approximated as

planar. This allows the carrier phase measurement to

be written as vector dot product of the baseline vector

with the line-of-sight vector to the transmitter. Our

N

P

P

1

2

wavefront

carrier wave

∆φ

Figure 8: DCP Measurement

indoor experiment uses pseudolite transmitters that

are too close to the experiment to allow for the planar

assumption. See [11] for further details.

The next step is to form the vector measurement equa-

tion for the whole system by stacking measurements.

�� =
(1)

h(x) + b+ � (2)

Unsubscripted symbols denote a vector of stacked quan-

tities, and x represents the system state. (A number

under the equals sign is a reference to a previous equa-

tion). h(x) contains the geometric functional depen-

dence in the measurements, and depends on the vector

magnitudes, which in turn depend on x
1.

We may linearize (2) about a nominal state, �x to form,

�� �=
(1)

H(�x)�x + h(�x) + b+ � (3)

where,

x = �x+ �x

H(�x) =
@h

@x

����
x=�x

(4)

Since there are always as many unknown biases as

measurements, this system of equations is underde-

termined. Hence, another method of estimating b is

sought.

4 BIAS ESTIMATION

The purpose of a bias estimator is to �nd b in Eq. (2).

Three types of estimators (in order of increasing com-

1For non-planar wavefronts, h(x) also depends strongly on
the transmitterphase center locations, whichmust be estimated.
An algorithm based on GPS measurements was developed for
our experimental work and used for this task, but is not pre-

sented here.
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plexity) will be discussed: static, kinematic, and dy-

namic.

First, we simply show the formulation of the mathe-

matics of each estimator type. Then, in Section 4.4,

we discuss the operational di�erences in the estima-

tors and state how each estimator was used, and how

it performed, in our experimental work.

4.1 Static

A static bias estimator is simple, but is rarely practical

for operational use because it requires motionless data

collection during which an accurate state estimate is

known. The biases then may be computed from (2)

as b̂ = �� � h(x̂), where �� is the averaged phase

measurements and x̂ is the best guess of the state. If

�� is zero mean, the primary source of bias error is

errors in the state estimate, x̂. The sensitivity of b̂

may be analyzed by computing the maximum singular

value of H(x̂) from (4). This gives an indication of the

potential worst case bias error due to small errors in

x̂.

4.2 Kinematic

A kinematic bias estimator uses multiple measurement

sets (the ith set being a vector of measurements taken

from the system that is in some state, x(i)), and uses

the knowledge that the biases are constant, to form an

overdetermined system. If there are n states and m

measurements per set, combining N sets and lineariz-

ing yields,

2
664
�y

(1)

�y
(2)

...
�y

(N)

3
775 =

(3)

2
664
H

(1) 0 I

H
(2)

I

. . .
...

0 H
(N)

I

3
775

2
66664

�x
(1)

�x
(2)

...
�x

(N)

�b

3
77775+ �

(5)

or, �y =
(5)

~H

�
�x

�b

�
+ � (6)

where the superscript is the measurement set index

and,

�y
(i) = ��(i) � h(�x(i))� b (7)

H
(i) = H(�x(i)) (8)

�y
(i) is the measurement residual. If the system is

observable, a solution may be found by iterating the

weighted least-squares equation with weights de�ned

by the diagonal matrix, R (a good choice of R is an

estimate of the inverse of the measurement noise co-

variance), �
�x̂

�b̂

�
=
�
~HT

R ~H
�
�1

~HT
R�y (9)

For this system to be observable, ~H must have full col-

umn rank. First, this requires that you collect enough

data sets such that ~H is \tall." This requires N >

m
m�n

. Another interesting requirement for observabil-

ity is that no column of H(i) be constant for all i (see

Appendix B for proof). This indicates that the mea-

surement, h(x), must be a non-linear function of the

state x, and that data, �y, must depend on this non-

linearity. Further, the sensitivity of each state variable

(column of H(i)) must be a function x.

These observations lead to somewhat detailed require-

ments for system motion during data collection. An

alternative that may provide a better bias estimate,

given a su�ciently accurate model, uses knowledge of

system dynamics.

4.3 Dynamic

If the antennas are mounted to a system for which we

have a dynamic model, it is possible to use this infor-

mation to improve our bias estimate. For example, say

we are given a (discrete) dynamic model of the form,

xi+1 = Axi +Bwi; i = 1; :::N (10)

If we form the augmented state as,

xaug =

2
4 b

x1

w

3
5 =

2
66666664

b

x1

w1

w2

...

wN�1

3
77777775

(11)

a linearized equation that incorporates all the data and

known system information is given by Eq. (12) [1] (on

next page).

The procedure for performing a batch dynamic solu-

tion of the measurement biases is as follows.

1. Collect and store N sets of data equally spaced

data as the physical system is in motion.

2. De�ne the diagonal weighting matrix W
�1 =

E[wiw
T
i ] as the best estimate of the process noise

covariance. As in Eq. (9), de�ne R�1 = E[�i�
T
i ]

as the best estimate of the measurement noise

covariance.
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2
6666666666664

�y
(1)

�y
(2)

...

�y
(N)

0

0
...

0

3
7777777777775

=

2
66666666666664

I H
(1) 0 0 0

I H
(2)
A H

(2)
B 0 0

I H
(3)
A
2

H
(3)
AB H

(3)
B � � � 0

I H
(4)
A
3

H
(4)
A
2
B H

(4)
AB 0

...
. . .

...

I H
(N)

A
N�1

H
(N)

A
N�2

B H
(N)

A
N�3

B � � � H
(N)

B

I

3
77777777777775

2
66666664

�b

�x1

�w1

�w2

...

�wN�1

3
77777775
+ � (12)

or,

�
�y

0

�
=
(12)

�
C

I

�24 �b

�x1

�w

3
5+ � (13)

3. De�ne the diagonal weighting matrices, � and

X1. These determine the relative weighting of

the b and x1 portions of the state. They may be

set to zero, or scaled to improve convergence of

the batch estimator.

4. Perform the batch solution by iterating Eq. (14)

until convergence.

2
4 �̂b

^�x1

�̂w

3
5 =

0
@CT

RC +

2
4� X1

W

3
5
1
A
�1

C
T
R�y

(14)

4.4 Discussion of Bias Estimators

The static estimator may have value for certain cases

due to its computational simplicity. Given a static bias

estimate based on a state guess, x̂, subsequent (kine-

matic least-squares) state estimate errors are equal to

the error in x̂, as long as the linearization in (3) re-

mains valid. However, most applications do not satisfy

this property.

Kinematic algorithms have been used exclusively for

the research on which this work builds [4, 9, 10]. Their

advantage is speed and simplicity. The sparse struc-

ture of Eq. (5) can be exploited for e�cient computa-

tion. However, we have not yet obtained usable bias

estimates from a kinematic algorithm due to insu�-

cient observability in our experimental system.

It is possible to re�ne bias estimates using the addi-

tional information in a system model. Using a known

correlation between states over time, and a known sta-

tistical character of process noise, bias observability

and estimate accuracy can be improved. A dynamic

approach has not been used for previous projects be-

cause a model did not exist which was accurate enough

to add information to the high-precision GPS carrier

measurements.

The best bias estimator for a particular application

depends on several factors, including model accuracy,

required estimate accuracy, and motion available dur-

ing data collection. All of the experimental results

presented in this paper used the dynamic algorithm in

Sec. 4.3.

Finally, the bias estimators presented here use a batch

approach, where the estimate update is computed us-

ing all the available data simultaneously. It is possi-

ble to use iterative recursive smoothing techniques to

arrive at the same result [5]. The computational e�-

ciency of recursive processing is superior, especially for

systems with many states. Also, recursive techniques

are more 
exible to operational non-idealities, such as

temporary signal losses, etc. [10]. However, a much

better initial guess is needed for the recursive than the

batch algorithm for reliable convergence. Due to this

limitation, we chose a batch algorithm for our experi-

mental work.

5 CONCLUSIONS

The experimental results presented in this paper are

promising for a number of reasons:

1. Estimation of the elastic and orientation states of

a highly 
exible structure was shown using only

GPS carrier measurements. Rotation estimate

accuracies of 0:3 degree standard deviation were

measured relative to independent gyro sensors.
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2. The implication is that high accuracy, zero-drift

deformationmeasurements are available anywhere

the GPS signal environment exists, or can be cre-

ated.

3. A constant gain controller based on a simple

linear dynamic model was able to control both

structural orientation and elastic vibrations si-

multaneously using pulsed thrusters for actua-

tion. Tests show vibration settling times on the

order of 10 seconds, to sub-centimeter/sub-degree

positioning accuracy.

4. These results show the use of GPS for control

of a system with complicated dynamics depend-

ing on many parameters (our experiments use 36

measurements and 18 states). This represents a

next step in sophistication of distributed antenna

GPS sensing systems.

Three di�erent methods of resolving the intrinsic bias

uncertainty in DCP measurements are shown. The

appropriate method for an application depends on re-

quirements for simplicity, accuracy, and reliability.

We believe that this system is directly applicable to

real systems which have motions in the bandwidth

and sensitivity limits of current receiver technology.

The only requirement is the existence of a GPS sig-

nal environment, which could be supplied by the GPS

satellites, by pseudolites, or both. Further system per-

formance could be obtained by more accurate model

determination (either analytically, or by using mea-

surement based system identi�cation), and more re-

�ned control compensator design.
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APPENDIX

A General Di�erential
Carrier Phase Analysis

The phase of an incoming, down-converted carrier wave

may be written as (ignoring a constant o�set)

� = (! � !c)t +
2�

�
x (15)

where,

!; � - frequency and wavelength of in-

coming wave

Channel speci�c:

� - measured phase at the antenna

phase center

!c - downconverter reference oscillator

frequency

t - time of phase measurement

applicability

x - distance from the antenna to the

transmitter

Fig. 9 shows a diagram of such a receiver channel. Let

�(�) = (�)2 � (�)1. If we assume perfect phase lock in

both receivers, and �t small with respect to antenna

motion bandwidth, the di�erence in carrier phase be-

tween two antennas is,

�� = [(! � !c2)t2 � (! � !c1)t1] +
2�

�
�x

(16)

Neglecting second order terms, and letting t1 = t and

!c1 = !c,

�� = [(! � !c)�t��!ct] +
2�

�
�x (17)

The term in brackets represents error terms related to

timing. Our receivers use antenna multiplexing and a

cω

Clock

ω, λ

φ

Receiver

Antenna

t

CorrelatorDownconverter

x

Figure 9: General Phase Reception Diagram

common clock reference, thus �!c = 0,

�� = (! � !c)�t+
2�

�
�x (18)

Now, �t is a function only of multiplexing switching

time and unequal antenna cable lengths. These are

constant over time after phase lock, and thus consti-

tute a line bias term.

In the absence of a common clock reference, other tech-

niques must be employed to make use of the di�eren-

tial carrier observable, such as double di�erencing to

remove relative clock o�sets between di�erenced chan-

nels.

B Kinematic Estimator
Observability Proof

Theorem: Given,

~H =

2
6664
H

(1) 0

H
(2)

. . .

0 H
(N)

I

I

...

I

3
7775 (19)

~H is not full column rank if any column of H(i) is

constant for all i.

Proof: ~H is not full column rank if all its columns are

not linearly independent[6], equivalently, if we can �nd

any ~v 6= 0 such that

~H~v = 0 (20)

Let h
(i)

k equal the kth column of H(i). De�ne vk as a

vector whose length equals the number of columns of
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H
(i), and whose elements are all zero except for the

k
th element, which is 1.

vk =

2
6666664

0
...

1
...

0

3
7777775
 kth element (21)

Suppose,

~v =

2
666664

vk

vk

...

vk

vI

3
777775

(22)

with vI arbitrary. Then,

~H~v =

2
6664

H
(1)
vk + vI

H
(2)
vk + vI

...

H
(N)

vk + vI

3
7775

=

2
66664

h
(1)

k + vI

h
(2)

k + vI

...

h
(N)

k + vI

3
77775

(23)

Thus, if h
(i)

k is constant for all i, we can set the arbi-

trary vI = �h
(i)

k , and then

~H~v = 0

DONE.
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